Controlled Release of Zinc from Soy Protein-Based Matrices to Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Matrix Processing
2.3. Characterization of Matrices
2.3.1. Mechanical Properties
2.3.2. Zinc Loading
2.3.3. Zinc Distribution
2.3.4. Zinc Release in Water
2.3.5. Water Uptake Capacity (WUC)
2.4. Plant Study
2.4.1. Zinc Release in Soil
2.4.2. Matrix Biodegradability
2.4.3. Crop Evaluation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Matrices
3.1.1. Mechanical Properties
3.1.2. Zinc Loading
3.1.3. Zinc Distribution
3.1.4. Zinc Release in Water
3.1.5. Water Uptake Capacity
3.2. Plant Study
3.2.1. Zinc Release in Soil
3.2.2. Matrix Biodegradability
3.2.3. Crop Evaluation
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Organización de las Naciones Unidas para la Alimentación y la Agricultura Cultivos. Available online: http://www.fao.org/faostat/es/#data/QC/visualize (accessed on 27 April 2020).
- Saïdou, A.; Kuyper, T.W.; Kossou, D.K.; Tossou, R.; Richards, P. Sustainable soil fertility management in Benin: Learning from farmers. NJAS Wageningen J. Life Sci. 2004, 52, 349–369. [Google Scholar] [CrossRef] [Green Version]
- Scherr, S.J. Soil Degradation: A Threat to Developing-Country Food Security by 2020? International Food Policy Research Institute: Washington, DC, USA, 2020. [Google Scholar]
- Fertilizar: Civil Association Use of Fertilizers in 2019. Available online: https://www.fertilizar.org.ar/ (accessed on 17 August 2020).
- Hignett, T.P. Fertilizer Manual; Springer Science & Business Media: London, UK, 2013; ISBN 9789401715386. [Google Scholar]
- Flinck, A. Fertilizers and Fertilization: Introduction and Practical Guide to Crop Fertilization; Verlag Hemie: Weinheim, Germany, 1982; ISBN 3527258914. [Google Scholar]
- Kondraju, T.T.; Rajan, K.S. Excessive fertilizer usage drives agriculture growth but depletes water quality. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, IV-3/W1, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Agencia de Gestión Agraria y Pesquera de Andalucía. Caracterización del Sector Agrario y Pesquero de Andalucía; Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible de la Junta de Andalucía: Sevilla, Spain, 2019. [Google Scholar]
- Junta de Andalucía Exportaciones e Importaciones Agroalimentarias. Available online: https://www.juntadeandalucia.es/organismos/agriculturaganaderiapescaydesarrollosostenible/servicios/estadistica-cartografia/estadisticas-agricolas/paginas/comercio-exterior-agricola.html (accessed on 24 October 2020).
- Galdeano, E. Economic impact of the quality and environmental actions on the value added in horticultural cooperatives of Andalusia. In Proceedings of the 24th International Congress of CIRIEC; CIRIEC: Milano, Italy, 2002. [Google Scholar]
- Peña, A.; Gálvez, A.; Rodríguez-Liébana, J.A.; Jiménez de Cisneros, C.; López Galindo, A.; Viseras, C.; Caballero, E. Adsorption of nutrients on natural Spanish clays for enriching seed coatings. Adsorption 2017, 23, 821–829. [Google Scholar] [CrossRef]
- Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in plants: Tansley review. New Phytol. 2007, 173, 677–702. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.; Uchida, R. Essential Nutrients for Plant Growth. In Plant Nutrition Management in Hawaii’s Soils, Approaches and Application to Tropical and Subtropical Agriculture; CTAHR Editorial: Honolulu, HI, USA, 2000; ISBN 978-1-929325-08-5. [Google Scholar]
- Hernández, T.; Chocano, C.; Moreno, J.-L.; García, C. Use of compost as an alternative to conventional inorganic fertilizers in intensive lettuce (Lactuca sativa L.) crops—Effects on soil and plant. Soil Tillage Res. 2016, 160, 14–22. [Google Scholar] [CrossRef]
- Pagnani, G.; Pellegrini, M.; Galieni, A.; D’Egidio, S.; Matteucci, F.; Ricci, A.; Stagnari, F.; Sergi, M.; Lo Sterzo, C.; Pisante, M.; et al. Plant growth-promoting rhizobacteria (PGPR) in Cannabis sativa ‘Finola’ cultivation: An alternative fertilization strategy to improve plant growth and quality characteristics. Ind. Crops Prod. 2018, 123, 75–83. [Google Scholar] [CrossRef]
- Shaji, H.; Chandran, V.; Mathew, L. Organic fertilizers as a route to controlled release of nutrients. In Controlled Release Fertilizers for Sustainable Agriculture; Elsevier: Amsterdam, The Netherlands, 2021; pp. 231–245. ISBN 978-0-12-819555-0. [Google Scholar]
- Chen, J.; Fan, X.; Zhang, L.; Chen, X.; Sun, S.; Sun, R. Research Progress in Lignin-Based Slow/Controlled Release Fertilizer. ChemSusChem 2020, 13, 4356–4366. [Google Scholar] [CrossRef] [PubMed]
- Rakhimol, K.R.; Thomas, S.; Kalarikkal, N.; Jayachandran, K. Nanotechnology in controlled-release fertilizers. In Nanotechnology in controlled-release fertilizers. In Controlled Release Fertilizers for Sustainable Agriculture; Elsevier: Amsterdam, The Netherlands, 2021; pp. 169–181. [Google Scholar]
- Merino, D.; Gutiérrez, T.J.; Alvarez, V.A. Potential Agricultural Mulch Films Based on Native and Phosphorylated Corn Starch With and Without Surface Functionalization with Chitosan. J. Polym. Environ. 2019, 27, 97–105. [Google Scholar] [CrossRef]
- Mesias, V.S.; Agu, A.B.; Benablo, P.J.; Chen, C.-H.; Penaloza, D.J. Coated NPK Fertilizer Based on Citric Acid-Crosslinked Chitosan/Alginate Encapsulant. J. Ecol. Eng. 2019, 20, 1–12. [Google Scholar] [CrossRef]
- Kartini, I.; Lumbantobing, E.T.; Suyanta, S.; Sutarno, S.; Adnan, R. Bioplastic Composite of Carboxymethyl Cellulose/N-P-K Fertilizer. Key Eng. Mater. 2020, 840, 156–161. [Google Scholar] [CrossRef]
- Fernández-Espada, L.; Bengoechea, C.; Cordobés, F.; Guerrero, A. Protein/glycerol blends and injection-molded bioplastic matrices: Soybean versus egg albumen. J. Appl. Polym. Sci. 2016, 133, 42980. [Google Scholar] [CrossRef]
- De Corato, U.; De Bari, I.; Viola, E.; Pugliese, M. Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into high-value added products associated to some emerging markets: A review. Renew. Sustain. Energy Rev. 2018, 88, 326–346. [Google Scholar] [CrossRef]
- Gontard, N.; Sonesson, U.; Birkved, M.; Majone, M.; Bolzonella, D.; Celli, A.; Angellier-Coussy, H.; Jang, G.-W.; Verniquet, A.; Broeze, J.; et al. A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Crit. Rev. Environ. Sci. Technol. 2018, 48, 614–654. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Rosado, M.; Pérez-Puyana, V.; Cordobés, F.; Romero, A.; Guerrero, A. Development of soy protein-based matrices containing zinc as micronutrient for horticulture. Ind. Crops Prod. 2018, 121, 345–351. [Google Scholar] [CrossRef]
- Alloway, B.J. Zinc in Soils and Crop Nutrition, 2nd ed.; IZA and IFA: Brussels, Belgium, 2008. [Google Scholar]
- Hibbard, P.L. Sulfur for neutralizinc alkali soil. Soil Sci. 1921, 11, 385–388. [Google Scholar] [CrossRef]
- Machado, R.; Serralheiro, R. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Alloway, B.J. Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health 2009, 31, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Liebens, J. Spreadsheet macro to determine USDA soil textural subclasses. Commun. Soil Sci. Plant Anal. 2001, 32, 255–265. [Google Scholar] [CrossRef]
- Jiménez-Rosado, M.; Perez-Puyana, V.; Rubio-Valle, J.F.; Guerrero, A.; Romero, A. Processing of biodegradable and multifunctional protein-based polymer materials for the potential controlled release of zinc and water in horticulture. J. Appl. Polym. Sci. 2020, 49419. [Google Scholar] [CrossRef]
- Cong, Z.; Yazhen, S.; Changwen, D.; Jianmin, Z.; Huoyan, W.; Xiaoqin, C. Evaluation of Waterborne Coating for Controlled-Release Fertilizer Using Wurster Fluidized Bed. Ind. Eng. Chem. Res. 2010, 49, 9644–9647. [Google Scholar] [CrossRef]
- Essawy, H.A.; Ghazy, M.B.M.; El-Hai, F.A.; Mohamed, M.F. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Int. J. Biol. Macromol. 2016, 89, 144–151. [Google Scholar] [CrossRef] [PubMed]
- ASTM D570-98: Standard Test Method for Water Absorption of Plastics 2005. Available online: https://www.astm.org/Standards/D570 (accessed on 19 March 2021).
- Jiménez-Rosado, M.; Martín, A.; Alonso-González, M.; Guerrero, A.; Romero, A. Nanotechnology in controlled-release fertilizers. In Controlled Release Fertilizers for Sustainable, Agriculture. Polym. Eng. Sci. 2020, pen.25471. [Google Scholar] [CrossRef]
- Jiménez-Rosado, M.; Perez-Puyana, V.; Rubio-Valle, J.F.; Guerrero, A.; Romero, A. Evaluation of Superabsorbent Capacity of Soy Protein-Based Bioplastic Matrices with Incorporated Fertilizer for Crops. J. Polym. Environ. 2020. [Google Scholar] [CrossRef]
- Torreggiani, A.; Domènech, J.; Atrian, S.; Capdevila, M.; Tinti, A. Raman study of in vivo synthesized Zn(II)-metallothionein complexes: Structural insight into metal clusters and protein folding. Biopolymers 2008, 89, 1114–1124. [Google Scholar] [CrossRef] [PubMed]
- Seidell, A.; Linke, W.F. Solubilities of Inorganic and Metal Organic Compounds; A Compilation of Quantitative Solubilirty Data from the Periodical Literature; D. Van Nostrand Company: New York, NY, USA, 1940. [Google Scholar]
- Huang, X.; Brazel, C.S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release 2001, 73, 121–136. [Google Scholar] [CrossRef]
- Lee, P.I. Initial concentration distribution as a mechanism for regulating drug release from diffusion controlled and surface erosion controlled matrix systems. J. Control. Release 1986, 4, 1–7. [Google Scholar] [CrossRef]
- Ma, Z.; Li, Q.; Yue, Q.; Gao, B.; Xu, X.; Zhong, Q. Synthesis and characterization of a novel super-absorbent based on wheat straw. Bioresour. Technol. 2011, 102, 2853–2858. [Google Scholar] [CrossRef]
- Montesano, F.F.; Parente, A.; Santamaria, P.; Sannino, A.; Serio, F. Biodegradable Superabsorbent Hydrogel IncreasesWater Retention Properties of Growing Media and Plant Growth. Agric. Agric. Sci. Procedia 2015, 4, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, M.; Hosseinzadeh, H. Synthesis of Starch—Poly(Sodium Acrylate-co-Acrylamide) Superabsorbent Hydrogel with Salt and pH-Responsiveness Properties as a Drug Delivery System. J. Bioact. Compat. Polym. 2008, 23, 381–404. [Google Scholar] [CrossRef]
- Cuadri, A.A.; Bengoechea, C.; Romero, A.; Guerrero, A. A natural-based polymeric hydrogel based on functionalized soy protein. Eur. Polym. J. 2016, 85, 164–174. [Google Scholar] [CrossRef]
- Álvarez-Castillo, E.; Bengoechea, C.; Guerrero, A. Composites from by-products of the food industry for the development of superabsorbent biomaterials. Food Bioprod. Process. 2020, 119, 296–305. [Google Scholar] [CrossRef]
- Fosmire, G.J. Zinc toxicity. Am. J. Clin. Nutr. 1990, 51, 225–227. [Google Scholar] [CrossRef] [PubMed]
Element | Amount in Soil (mg/kg Soil) | Ideal Conditions (mg/kg Soil) |
---|---|---|
P | 2841 | 2600–3500 |
NO3− | 49 | 40–350 |
NH4+ | 47 | 20–70 |
Ca | 177,517 | 2200–5000 |
Mg | 5387 | 730–1700 |
K | 3804 | 2000–4000 |
Na | 797 | 80–340 |
Cu | 22 | 20–50 |
Mn | 218 | 200–800 |
Fe | 9158 | 100–10,000 |
Zn | 7 | 15–180 |
S | 789 | 500–800 |
Cr | 13 | 10–60 |
Ni | 9 | 10–35 |
Pb | 3 | <5 |
As | 4 | <5 |
Protocol | Raw Materials in Mixing (%) | Stage of MN Incorporation | Immersion Solvent | ||
---|---|---|---|---|---|
SPI | Gly | ZnSO4·H2O | |||
A | 45 | 45 | 10 | Mixing | Water |
E | 45 | 45 | 10 | Mixing | Ethanol |
S | 50 | 50 | 0 | Immersion | Saturated zinc sulfate salt solution (1 g/mL) |
Protocol | ICP-AES | EDXA | ||||
---|---|---|---|---|---|---|
Zn2+ (mg) | SO42− (mg) | Surface | Inside | |||
Zn (%) | S (%) | Zn (%) | S (%) | |||
A | 4.81 | 0 | 54 a | - | 46 c | - |
E | 15.3 | 22.5 | 52 a | 47 A | 48 ac | 53 A |
S | 28.1 | 41.4 | 58 b | 65 B | 42 d | 35 C |
Protocol | (μS/cm) | m (-) | |
---|---|---|---|
A | 37.0 | 177 | 0.27 |
E | 274 | 30.0 | 1.4 |
S | 277 | 19.9 | 2 |
Protocol | Lettuce | Italian Sweet Pepper | ||||||
---|---|---|---|---|---|---|---|---|
Height (cm) | Foliage | Zn Content (ppm) | Height (cm) | Foliage | Zn Content (ppm) | |||
Size (h × w) cm | Number of Leaves | Size (h × w) cm | Number of Leaves | |||||
+ | 26 a | 11.2 × 3.4 A | 11 I | 70.1 | 30 a | 19.6 × 9.7 A | 15 I | 29.7 |
A | 20 b | 8.4 × 3.3 B | 8 II | 32.7 | 36 b | 16.4 × 9.0 B | 14 I | 16.7 |
E | 28 a | 15.5 × 5.7 C | 14 III | 155.3 | 42 c | 19.1 × 9.4 A | 15 I | 71.0 |
S | 25 a | 13.1 × 5.2 D | 14 III | 94.4 | 28 a | 13.2 × 7.5 C | 9 II | 51.6 |
− | 19 b | 12.6 × 5.2 D | 6 II | 28.8 | 30 a | 14.5 × 7.5 C | 8 II | 13.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Rosado, M.; Perez-Puyana, V.; Guerrero, A.; Romero, A. Controlled Release of Zinc from Soy Protein-Based Matrices to Plants. Agronomy 2021, 11, 580. https://doi.org/10.3390/agronomy11030580
Jiménez-Rosado M, Perez-Puyana V, Guerrero A, Romero A. Controlled Release of Zinc from Soy Protein-Based Matrices to Plants. Agronomy. 2021; 11(3):580. https://doi.org/10.3390/agronomy11030580
Chicago/Turabian StyleJiménez-Rosado, Mercedes, Victor Perez-Puyana, Antonio Guerrero, and Alberto Romero. 2021. "Controlled Release of Zinc from Soy Protein-Based Matrices to Plants" Agronomy 11, no. 3: 580. https://doi.org/10.3390/agronomy11030580
APA StyleJiménez-Rosado, M., Perez-Puyana, V., Guerrero, A., & Romero, A. (2021). Controlled Release of Zinc from Soy Protein-Based Matrices to Plants. Agronomy, 11(3), 580. https://doi.org/10.3390/agronomy11030580