Comparative Evaluation of Tomato Hybrids and Inbred Lines for Fruit Quality Traits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Methodology
2.3. Selection and Assessment Procedure
2.4. Traits Evaluated
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Esposito, S.; Cardi, T.; Campanelli, G.; Sestili, S.; Díez, M.J.; Soler, S.; Prohens, J.; Tripodi, P. ddRAD sequencing-based genotyping for population structure analysis in cultivated tomato provides new insights into the genomic diversity of Mediterranean ‘da serbo’ type long shelf-life germplasm. Hortic. Res. 2020, 7, 134. [Google Scholar] [CrossRef]
- Bramley, P.M. Is lycopene beneficial to human health? Phytochemistry 2000, 54, 233–236. [Google Scholar] [CrossRef]
- Ross, D.A. Vitamin A and public health: Challenges for the next decade. Proc. Nutr. Soc. 1998, 57, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Tee, E.; Lee, C.Y. Carotenoids and retinoids in human nutrition. Crit. Rev. Food Sci. Nutr. 1992, 31, 103–163. [Google Scholar] [CrossRef] [PubMed]
- Marchioli, R.; Schweiger, C.; Levantesi, G.; Tavazzi, L.; Valagussa, F. Antioxidant vitamins and prevention of cardiovascular disease: Epidemiological and clinical trial data. Lipids 2001, 36, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Byers, T.; Guerrero, N. Epidemiologic evidence for vitamin C and vitamin E in cancer prevention. Am. J. Clin. Nutr. 1995, 62, 1385–1392. [Google Scholar] [CrossRef]
- O’Toole, P.; Lombard, M. Vitamin C and gastric cancer: Supplements for some or fruit for all? Gut 1996, 39, 345–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappetta, E.; Andolfo, G.; Di Matteo, A.; Barone, A.; Frusciante, L.; Ercolano, M.R. Accelerating Tomato Breeding by Exploiting Genomic Selection Approaches. Plants 2020, 9, 1236. [Google Scholar] [CrossRef]
- Causse, M.; Damidaux, R.; Rousselle, P. Traditional and Enhanced Breeding for Quality Traits in Tomato. In Genetic Improvement of Solanaceous, 1st ed.; Razdan, M.K., Mattoo, A.K., Eds.; CRC Press: Boca Raton, FL, USA, 2006; Volume 2, pp. 153–192. [Google Scholar] [CrossRef]
- Klee, H.J.; Tieman, D.M. The genetics of fruit flavour preferences. Nat. Rev. Genet. 2018, 19, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Atanassova, B.; Georgiev, H. Expression of Heterosis by Hybridization. In Genetic Improvement of Solanaceous, 1st ed.; Razdan, M.K., Mattoo, A.K., Eds.; CRC Press: Boca Raton, FL, USA, 2006; Volume 2, pp. 113–151. [Google Scholar] [CrossRef]
- Patil, A.A.; Patil, S.S. Heterosis for some quality attributes in tomato. J. Maharashtra Agric. Univ. 1988, 13, 241. [Google Scholar]
- Daskaloff, C.; Konstantinova, M.; Molle, E.; Baralieva, D. Genetic Studies on Tomato Quality, 1st ed.; Bulgarian Academy of Sciences Press: Sofia, Bulgaria, 1990. [Google Scholar]
- Dod, V.N.; Kale, P.B. Heterosis for certain quality traits in tomato (Lycopersicon esculentum Mill.). Crop Res. 1992, 5, 302–308. [Google Scholar]
- Savita, T.; Singh, J.P. Heterosis for quality traits in tomato. Asian J. Plant Sci. Res. 2015, 5, 27–32. [Google Scholar]
- Yadav, E.D.; Kale, P.N.; Wavhal, K.N. Genetic analysis of fruit dry matter in tomato. Vegetable Sci. 1988, 15, 49–54. [Google Scholar]
- Shrivastava, A.K. Heterosis and inbreeding depression for acidity, total soluble solids, reducing sugar and dry matter content in tomato (Lycopersicon esculentum Mill.). Adv. Plant Sci. 1998, 11, 105–110. [Google Scholar]
- Mageswari, K.; Natarajan, S. Studies on heterosis for yield and quality in tomato (Lycopersicon esculentum Mill.). South Ind. Hortic. 1999, 47, 216–217. [Google Scholar]
- Tiwari, A.; Lal, G. Studies on heterosis for quantitative and Qualitative characters in tomato (Lycopersicon esculentum Mill.). Prog. Hortic. 2004, 36, 122–127. [Google Scholar]
- Kumar, M.S.; Pal, A.K.; Singh, A.K. Studies on Heterosis and Inbreeding Depression for Quality Traits and Yield in Tomato (Solanum lycopersicum L.). Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3682–3691. [Google Scholar] [CrossRef]
- Chen, Q.S.; Zhao, Y.W. Study on genetical effects on four characteristics of tomato. J. Jiangsu Agric. Coll. 1990, 11, 33–38. [Google Scholar]
- Amaral, A.T., Jr.; Casali, V.W.D.; Finger, F.L.; Daher, F.R. Heterosis in tomato for content of carotenoids with medicinal end-use. SOB Inf. 1997, 1, 20. [Google Scholar]
- Kumar, R.; Mishra, N.K.; Singh, J.; Rai, G.K.; Verma, A.; Rai, M. Studies on yield and quality traits in tomato (Solanum lycopersicum L.). Veg. Sci. 2006, 33, 126–132. [Google Scholar]
- Kumar, P.; Paliwal, A. Heterosis breeding for quality improvement in hybrids to be developed specifically for garhwal hills in tomato (Lycopersicon esculentum Mill.). Int. J. Sci. Res. 2016, 5, 356–359. [Google Scholar]
- Kurian, A.; Peter, K.V.; Rajan, S. Heterosis for yield components and fruit characters in tomato. J. Trop. Agric. 2001, 39, 5–8. [Google Scholar]
- Hidayatullah; Jatol, S.A.; Ghafoor, A.; Mahmood, T. Path coefficient analysis of yield components in tomato (Lycopersicon esculentum). Pak. J. Bot. 2008, 4, 627–635. [Google Scholar]
- Adalid, A.M.; Roselló, S.; Valcárcel, M.; Nuez, F.; Adalid-Martínez, A.M. Analysis of the genetic control of β-carotene and l-ascorbic acid accumulation in an orange-brownish wild cherry tomato accession. Euphytica 2011, 184, 251–263. [Google Scholar] [CrossRef]
- Dobhal, V.K.; Kohli, U.K.; Mehta, D. Genetic analysis of fruit firmness and related traits in tomato. J. Hill Res. 1999, 12, 31–33. [Google Scholar]
- Rai, N.; Syamal, M.M.; Joshi, A.K.; Ghosh, P.K. Diallel analysis for pericarp thickness and storability in tomato Lycopersicon esculentum Mill.). Ann. Agric. Res. 1997, 18, 71–75. [Google Scholar]
- Shrivastava, A.K. Combining ability analysis for total soluble solids, reducing sugars, dry matter content and seeds weight in tomato. (Lycopersicon esculentum Mill.). Adv. Plant Sci. 1998, 11, 17–22. [Google Scholar]
- Hosamani, R.M. Biometrical and Transformation Studies in Tomato (Solanum lycopersicum L.). Ph.D. Thesis, University of Agricultural Sciences, Dharwad, Karnataka, India, 2010. [Google Scholar]
- Dhaliwal, M.S.; Singh, S.; Cheema, D.S. Estimating combining ability effects of the genetic male sterile lines of tomato for their use in hybrid breeding. J. Genet. Breed. 2000, 54, 199–205. [Google Scholar]
- Mana, M.; Paul, A. Studies on genetic variability and characters association of fruit quality parameters in tomato. Hortic. Flora. Res. Spect. 2012, 1, 110–116. [Google Scholar]
- El-Gabry, M.; Solieman, T.; Abido, A. Combining ability and heritability of some tomato (Solanum lycopersicum L.) cultivars. Sci. Hortic. 2014, 167, 153–157. [Google Scholar] [CrossRef]
- Garg, N.; Cheema, D.S.; Dhatt, A.S. Utilization ofrin, nor, andalcAlleles to Extend Tomato Fruit Availability. Int. J. Veg. Sci. 2008, 14, 41–54. [Google Scholar] [CrossRef]
- Singh, A.; Gautam, J.P.S.; Upadhyay, M.; Joshi, A. Heterosis for yield and quality characters in tomato. Crop Res. 2005, 29, 285–287. [Google Scholar]
- Fasoula, V.A.; Fasoula, D.A. Principles underlying genetic improvement for high and stable crop yield potential. Field Crop. Res. 2002, 75, 191–209. [Google Scholar] [CrossRef]
- Koutsika-Sotiriou, M.S.; Traka-Mavrona, E.A.; Evgenidis, G.L. Assessment of tomato source breeding material through mating designs. J. Agric. Sci. 2007, 146, 301–310. [Google Scholar] [CrossRef]
- Avdikos, I.D.; Tsivelika, N.; Gallidou, A.; Koutsika-Sotiriou, M.; Traka-Mavrona, E. Exploitation of heterosis through recurrent selection scheme applied in segregating generations of a tomato breeding program. Sci. Hortic. 2011, 130, 701–707. [Google Scholar] [CrossRef]
- Scalbert, A.; Monties, B.; Janin, G. Tannins in wood: Comparison of different estimation methods. J. Agric. Food Chem. 1989, 37, 1324–1329. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- D’Souza, M.C.; Singha, S.; Ingle, M. Lycopene Concentration of Tomato Fruit can be Estimated from Chromaticity Values. HortScience 1992, 27, 465–466. [Google Scholar] [CrossRef] [Green Version]
- Scott, A.J.; Knott, M. A Cluster Analysis Method for Grouping Means in the Analysis of Variance. Biomtrics 1974, 30, 507. [Google Scholar] [CrossRef] [Green Version]
- Avdikos, I.D.; Tagiakas, R.; Mylonas, I.; Xynias, I.N.; Mavromatis, A.G. Assessment of Tomato Recombinant Lines in Conventional and Organic Farming Systems for Productivity and Fruit Quality Traits. Agronomy 2021, 11, 129. [Google Scholar] [CrossRef]
- Kumar, R.; Srivastava, K.; Singh, N.P.; Vasistha, N.K.; Singh, R.K.; Singh, M.K. Combining Ability Analysis for Yield and Quality Traits in Tomato (Solanum lycopersicum L.). J. Agric. Sci. 2013, 5, 213. [Google Scholar] [CrossRef]
- Dagade, S.B.; Dhaduk, L.K.; Hariprasanna, K.; Mehata, D.R.; Bhatt, V.M.; Barad, A.V. Parent offspring relations of nutritional quality traits in 8 9 8 partial diallel cross of fresh tomatoes. Int. J. Appl. Biol. Pharm. 2015, 6, 45–55. [Google Scholar]
- Ray, S.; Saha, R.; Raychaudhuri, U.; Chakraborty, R. Different quality characteristics of tomato (Solanum lycopersicum L.) as a fortifying ingredient in food products: A review. Tech. Sci. 2016, 19, 199–213. [Google Scholar]
- Ranieri, A.; Giuntini, D.; Lercari, B.; Soldatini, G.F. Light influence on antioxidant properties of tomato fruits. Prog. Nutr. 2004, 6, 44–49. [Google Scholar]
- Kaur, C.; George, B.; Deepa, N.; Singh, B.; Kapoor, H.C. Antioxidant status of fresh and processed tomato—A review. J. Food Sci. Technol. 2004, 41, 479–486. [Google Scholar]
- Foolad, M.R. Genome Mapping and Molecular Breeding of Tomato. Int. J. Plant Genom. 2007, 2007, 1–52. [Google Scholar] [CrossRef] [Green Version]
- Bruhn, C.M.; Feldman, N.; Garlitz, C.; Harwood, J.; Ivans, E.; Marshall, M.; Riley, A.; Thurber, D.; Williamson, E. Consumer perceptions of quality: Apricots, cantaloupes, peaches, pears, strawberries, and tomatoes. J. Food Qual. 1991, 14, 187–195. [Google Scholar] [CrossRef]
- Martí, R.; Roselló, S.; Cebolla-Cornejo, J. Tomato as a Source of Carotenoids and Polyphenols Targeted to Cancer Prevention. Cancers 2016, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Grandillo, S.; Zamir, D.; Tanksley, S.D. Genetic improvement of processing tomatoes: A 20 years perspective. Euphytica 1999, 110, 85–97. [Google Scholar] [CrossRef]
- Georgiev, H. Heterosis in tomato breeding. In Genetic Improvement of Tomato; Kalloo, G., Ed.; Springer: Berlin, Germany, 1991; pp. 83–98. [Google Scholar] [CrossRef]
- Scott, W.; Angell, F.F. Tomato. In Hybrid Cultivar Development; Banga, S.S., Banga, S.K., Eds.; Narosa: New Delhi, India, 1998; pp. 451–475. [Google Scholar]
- Kumar, R.; Sharma, H.R.; Kumar, M. Heterosis for post harvest and nutritional quality traits in tomato (Solanum lycopersicum L.). J. Appl. Nat. Sci. 2016, 8, 1987–1991. [Google Scholar] [CrossRef] [Green Version]
- Kumari, S.; Sharma, M.K. Exploitation of heterosis for yield and its contributing traits in tomato, Solanum lycopersicum L. Int. J. Farm Sci. 2011, 1, 45–55. [Google Scholar]
- Graça, A.J.; Júnior, A.T.A.; Rodrigues, R.; Gonçalves, L.S.; Sudré, C.P.; Vivas, M.; Melo, P.C.; Nunes, G.H.; Silva, K.J.; Costa, G.G.; et al. Heterosis and combining ability of dual-purpose tomato hybrids developed to meet family farmers’ needs in Brazil and Mozambique. Hortic. Bras. 2015, 33, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Choudhary, R.; Jat, B.L. Heterosis breeding in tomato for yield and quality contributing trait. Asian J. Bio Sci. 2017, 12, 259–279. [Google Scholar] [CrossRef]
- Chauhan, K.; Sharma, S.; Agarwal, N.; Chauhan, B. Lycopene of tomato fame: Its role in health and disease. Int. J. Pharm. Sci. Rev. Res. 2011, 10, 99–115. [Google Scholar]
- Agarwal, S.; Rao, A.V. Tomato lycopene and its role in human health and chronic diseases. Can. Med. Assoc. J. 2000, 163, 739–744. [Google Scholar]
- Garg, N.; Cheema, D.S. Assessment of fruit quality attributes of tomato hybrids involving ripening mutants under high temperature conditions. Sci. Hortic. 2011, 131, 29–38. [Google Scholar] [CrossRef]
- Kumar, R.; Srivastava, K.; Kumar, V.; Saroj, S.K.; Sharma, S.K.; Singh, R.K. Heterosis analysis in tomato (Solanum lycopersicum L.) for Lycopene, TSS, titrable acidity and Ascorbic acid. Electron. J. Plant Breed. 2019, 10, 1547. [Google Scholar] [CrossRef]
- Moco, S.; Bino, R.J.; Vorst, O.; Verhoeven, H.A.; De Groot, J.; Van Beek, T.A.; Vervoort, J.; De Vos, C.R. A Liquid Chromatography-Mass Spectrometry-Based Metabolome Database for Tomato. Plant Physiol. 2006, 141, 1205–1218. [Google Scholar] [CrossRef] [Green Version]
- Borguini, R.G.; Torres, E.A.F.D.S. Tomatoes and Tomato Products as Dietary Sources of Antioxidants. Food Rev. Int. 2009, 25, 313–325. [Google Scholar] [CrossRef]
- Kotíková, Z.; Hejtmánková, A.; Lachman, J. Determination of the Influence of Variety and Level of Maturity on the Content and Development of Carotenoids in Tomatoes. Czech J. Food Sci. 2009, 27, S200–S203. [Google Scholar] [CrossRef] [Green Version]
- Vallverdú-Queralt, A.; Medina-Remón, A.; Martínez-Huélamo, M.; Jáuregui, O.; Andres-Lacueva, C.; Lamuela-Raventos, R.M. Phenolic Profile and Hydrophilic Antioxidant Capacity as Chemotaxonomic Markers of Tomato Varieties. J. Agric. Food Chem. 2011, 59, 3994–4001. [Google Scholar] [CrossRef] [PubMed]
- Capel, C.; Del Carmen, A.F.; Alba, J.M.; Lima-Silva, V.; Hernández-Gras, F.; Salinas, M.; Boronat, A.; Angosto, T.; Botella, M.A.; Fernandez-Muñoz, R.; et al. Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L. Theor. Appl. Genet. 2015, 128, 2019–2035. [Google Scholar] [CrossRef]
- Singh, B.; Kalloo, G.; Pandita, M.L. Combining ability for quality characters in tomato. J. Res. Haryana Agric. Univ. 1980, 10, 179–182. [Google Scholar]
- Gonzalez, M.C. Path coefficient analysis of the relation between fruit weight and various morphological characters in a group of tomato varieties. Cult. Trop. 1985, 7, 22–28. [Google Scholar]
- Kalloo, G. Vegetable Breeding; CRC Press: Boca Raton, FL, USA, 1988; Volume I, p. 239. [Google Scholar]
- Wang, F.; Jingfu, L.; Guiying, L. A study on inheritance and correlation of fruit firmness in tomato. Acta Hortic. 1995, 402, 253–258. [Google Scholar] [CrossRef]
- Resende, L.V.; Maluf, W.R.; Gomes, L.A.A.; Da Mota, F.M.F.; Resende, J.T.V. Diallel analysis of fruit firmness of cultivars and lines of tomatoes (Lycopersicon esculentum Mill.). Ciênc Agrotec. 1999, 23, 12–18. [Google Scholar]
- Atanassova, B.; Balacheva, E.; Molle, E.; Georgiev, H. Genetic study on the prolonged fruits longevity in tomato (Lycopersicon esculentum Mill.). In Proceedings of the XV Meeting of the Eucarpia Tomato Working Group, Bari, Italy, 20–24 September 2005. [Google Scholar]
- Kulkarni, G.P. Investigations on Bacterial Wilt Resistance in Tomato. Ph.D. Thesis, University of Agricultural Science, Dharwad, Karnataka, India, 2003. [Google Scholar]
- Prashanth, H. Heterosis and Combining Ability Analysis for Higher Lycopene Content in Tomato. Master’s Thesis, University of Agricultural Science, Dharwad, Karnataka, India, 2004. [Google Scholar]
- Duhan, D.; Partap, P.S.; Rana, M.K.; Basawana, K.S. Study of heterosis for growth and yield characters in tomato. Haryana J. Hortic. Sci. 2005, 34, 366–370. [Google Scholar]
- Fridman, E.; Pleban, T.; Zamir, D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc. Natl. Acad. Sci. USA 2000, 97, 4718–4723. [Google Scholar] [CrossRef] [Green Version]
- Acciarri, N.; Sabatini, E.; Ciriaci, T.; Rotino, L.G.; Valentino, D.; Tamietti, G. The presence of genes for resistance against Verticillium dahliae in Italian tomato landraces. Eur. J. Hortic. Sci. 2010, 75, 8–14. [Google Scholar]
- Digilio, M.C.; Corrado, G.; Sasso, R.; Coppola, V.; Iodice, L.; Pasquariello, M.; Bossi, S.; Maffei, M.E.; Coppola, M.; Pennacchio, F.; et al. Molecular and chemical mechanisms involved in aphid resistance in cultivated tomato. New Phytol. 2010, 187, 1089–1101. [Google Scholar] [CrossRef]
- Andreakis, N.; Giordano, I.; Pentangelo, A.; Fogliano, V.; Graziani, G.; Monti, L.M.; Rao, R. DNA Fingerprinting and Quality Traits of Corbarino Cherry-like Tomato Landraces. J. Agric. Food Chem. 2004, 52, 3366–3371. [Google Scholar] [CrossRef]
- Fasoula, D.A.; Fasoula, V.A. Bridging the productivity gap between maize inbreds and hybrids by replacing gene and genome dichotomization with gene and genome integration. Maydica 2005, 50, 49–61. [Google Scholar]
- Fischer, R.; Ramos, O.M.; Monasterio, I.O.; Sayre, K. Yield response to plant density, row spacing and raised beds in low latitude spring wheat with ample soil resources: An update. Field Crop. Res. 2019, 232, 95–105. [Google Scholar] [CrossRef]
- Fischer, R. Breeding wheat for increased potential yield: Contrasting ideas from Donald and Fasoulas, and the case for early generation selection under nil competition. Field Crop. Res. 2020, 252, 107782. [Google Scholar] [CrossRef]
Entry | Total Soluble Solids (°Brix) | Total Solids (%) | ||
---|---|---|---|---|
Inb. Vig/Dep (%) | Inb. Vig/Dep (%) | |||
Formula F1 | 5.20 c * | 100 | 5.68 c | 100 |
Formula F5-1 | 6.50 a | 125 | 6.22 b | 110 |
Formula F5-2 | 4.77 d | 92 | 5.84 b | 103 |
Formula F5-3 | 5.50 c | 106 | 6.17 b | 109 |
Formula F5-4 | 4.77 d | 92 | 5.37 c | 95 |
Formula F5-5 | 4.87 d | 94 | 5.58 c | 98 |
Formula F5-6 | 5.48 c | 105 | 6.45 a | 114 |
Formula F5-7 | 5.67 c | 109 | 6.66 a | 117 |
Formula F5-8 | 5.38 c | 103 | 6.34 a | 112 |
Elpida F1 | 5.92 b | 100 | 6.72 a | 100 |
Elpida F5-1 | 5.07 d | 86 | 5.83 b | 87 |
Elpida F5-2 | 4.97 d | 84 | 5.95 b | 89 |
Elpida F5-3 | 4.42 e | 75 | 5.34 c | 79 |
Elpida F5-4 | 4.64 d | 78 | 5.84 b | 87 |
Elpida F5-5 | 5.27 c | 89 | 5.95 b | 89 |
Elpida F5-6 | 5.40 c | 91 | 5.98 b | 89 |
Elpida F5-7 | 5.24 c | 89 | 5.94 b | 88 |
Elpida F5-8 | 5.38 c | 91 | 5.99 b | 89 |
Iron F1 | 5.63 c | 100 | 6.21 b | 100 |
Iron HS6-2 | 5.47 c | 97 | 6.05 b | 97 |
Iron HS6-3 | 5.77 c | 102 | 6.56 a | 106 |
Sahara F1 | 4.31 e | 100 | 5.21 c | 100 |
Sahara HS6-1 | 3.90 e | 90 | 4.58 d | 88 |
Sahara HS6-2 | 4.45 e | 103 | 6.04 b | 116 |
Makedonia | 6.37 a | — | 6.96 a | — |
Entry | β-Carotene (μg/g f.w.) | Carotenoids (μg/g f.w.) | ||
---|---|---|---|---|
Inb. Vig/Dep (%) | Inb. Vig/Dep (%) | |||
Formula F1 | 10.18 a * | 100 | 43.44 a | 100 |
Formula F5-1 | 10.04 a | 99 | 37.35 b | 86 |
Formula F5-2 | 8.21 a | 81 | 27.34 b | 63 |
Formula F5-3 | 10.42 a | 102 | 33.16 b | 76 |
Formula F5-4 | 7.76 a | 76 | 33.73 b | 78 |
Formula F5-5 | 8.19 a | 80 | 33.08 b | 76 |
Formula F5-6 | 11.73 a | 115 | 35.52 b | 82 |
Formula F5-7 | 11.27 a | 111 | 39.13 a | 90 |
Formula F5-8 | 9.62 a | 94 | 39.04 a | 90 |
Elpida F1 | 12.45 a | 100 | 47.51 a | 100 |
Elpida F5-1 | 8.04 a | 65 | 34.33 b | 72 |
Elpida F5-2 | 9.31 a | 75 | 33.52 b | 71 |
Elpida F5-3 | 10.13 a | 81 | 45.21 a | 95 |
Elpida F5-4 | 10.26 a | 82 | 33.15 b | 70 |
Elpida F5-5 | 12.35 a | 99 | 43.31 a | 91 |
Elpida F5-6 | 12.37 a | 99 | 41.26 a | 87 |
Elpida F5-7 | 10.59 a | 85 | 33.53 b | 71 |
Elpida F5-8 | 9.06 a | 73 | 27.86 b | 59 |
Iron F1 | 10.37 a | 100 | 34.43 b | 100 |
Iron HS6-2 | 10.39 a | 100 | 35.49 b | 103 |
Iron HS6-3 | 8.88 a | 86 | 30.06 b | 87 |
Sahara F1 | 11.11 a | 100 | 40.78 a | 100 |
Sahara HS6-1 | 10.94 a | 98 | 37.55 b | 92 |
Sahara HS6-2 | 11.21 a | 101 | 46.01 a | 113 |
Makedonia | 15.57 a | — | 41.75 a | — |
Entry | Lycopene (μg/g f.w.) | Phenols (μg/g f.w.) | Antioxidants (mg Asc/100 g f.w.) | |||
---|---|---|---|---|---|---|
Inb. Vig/Dep (%) | Inb. Vig/Dep (%) | Inb. Vig/Dep (%) | ||||
Formula F1 | 26.63 a * | 100 | 0.153 p | 100 | 20.06 b | 100 |
Formula F5-1 | 22.11 a | 83 | 0.257 b | 173 | 27.44 a | 137 |
Formula F5-2 | 15.12 a | 57 | 0.213 d | 140 | 20.77 b | 104 |
Formula F5-3 | 19.93 a | 75 | 0.173 m | 113 | 19.09 b | 95 |
Formula F5-4 | 19.16 a | 72 | 0.160 o | 107 | 21.01 b | 105 |
Formula F5-5 | 18.61 a | 70 | 0.180 k | 120 | 19.87 b | 99 |
Formula F5-6 | 20.48 a | 77 | 0.173 m | 113 | 17.98 b | 90 |
Formula F5-7 | 22.81 a | 86 | 0.197 g | 133 | 17.00 b | 85 |
Formula F5-8 | 21.88 a | 82 | 0.193 h | 127 | 21.44 b | 107 |
Elpida F1 | 27.25 a | 100 | 0.197 g | 100 | 19.51 b | 100 |
Elpida F5-1 | 19.31 a | 71 | 0.207 e | 105 | 21.59 b | 111 |
Elpida F5-2 | 18.51 a | 68 | 0.177 l | 90 | 19.54 b | 100 |
Elpida F5-3 | 26.21 a | 96 | 0.167 n | 85 | 18.69 b | 96 |
Elpida F5-4 | 18.15 a | 67 | 0.203 f | 100 | 22.11 b | 113 |
Elpida F5-5 | 26.00 a | 95 | 0.183 j | 90 | 19.90 b | 102 |
Elpida F5-6 | 23.00 a | 84 | 0.223 c | 110 | 19.31 b | 99 |
Elpida F5-7 | 18.18 a | 67 | 0.177 l | 90 | 22.50 b | 115 |
Elpida F5-8 | 15.04 a | 55 | 0.187 i | 95 | 22.16 b | 114 |
Iron F1 | 19.26 a | 100 | 0.207 e | 100 | 22.07 b | 100 |
Iron HS6-2 | 20.43 a | 106 | 0.173 m | 81 | 19.83 b | 90 |
Iron HS6-3 | 17.29 a | 90 | 0.200 g | 95 | 22.01 b | 100 |
Sahara F1 | 22.62 a | 100 | 0.193 h | 100 | 23.34 b | 100 |
Sahara HS6-1 | 21.08 a | 93 | 0.183 j | 95 | 19.22 b | 82 |
Sahara HS6-2 | 27.44 a | 121 | 0.203 f | 105 | 25.49 a | 109 |
Makedonia | 17.91 a | — | 0.290 a | — | 28.13 a | — |
Entry | Pericarp Thickness (mm) | Peduncle Size inside the Fruit (mm) | ||
---|---|---|---|---|
Inb. Vig/Dep (%) | Inb. Vig/Dep (%) | |||
Formula F1 | 7.20 c * | 100 | 1.46 b | 100 |
Formula F5-1 | 7.00 c | 97 | 1.48 b | 102 |
Formula F5-2 | 7.42 c | 103 | 1.66 a | 113 |
Formula F5-3 | 7.50 c | 104 | 1.62 a | 111 |
Formula F5-4 | 7.17 c | 100 | 1.95 a | 133 |
Formula F5-5 | 6.56 c | 91 | 1.85 a | 127 |
Formula F5-6 | 6.87 c | 95 | 1.49 b | 102 |
Formula F5-7 | 6.28 c | 87 | 1.28 b | 88 |
Formula F5-8 | 6.50 c | 90 | 0.97 c | 66 |
Elpida F1 | 8.40 b | 100 | 1.89 a | 100 |
Elpida F5-1 | 8.03 b | 96 | 1.56 a | 82 |
Elpida F5-2 | 8.56 b | 102 | 1.62 a | 86 |
Elpida F5-3 | 7.28 c | 87 | 1.60 a | 85 |
Elpida F5-4 | 10.27 a | 122 | 1.85 a | 98 |
Elpida F5-5 | 9.02 b | 107 | 1.72 a | 91 |
Elpida F5-6 | 8.73 b | 104 | 1.49 b | 79 |
Elpida F5-7 | 8.33 b | 99 | 1.03 c | 55 |
Elpida F5-8 | 8.00 b | 95 | 1.08 c | 57 |
Iron F1 | 8.28 b | 100 | 1.87 a | 100 |
Iron HS6-2 | 8.00 b | 97 | 1.77 a | 94 |
Iron HS6-3 | 7.44 c | 90 | 1.38 b | 74 |
Sahara F1 | 6.79 c | 100 | 1.71 a | 100 |
Sahara HS6-1 | 6.28 c | 92 | 1.79 a | 104 |
Sahara HS6-2 | 6.83 c | 101 | 1.43 b | 84 |
Makedonia | 5.72 c | — | 1.17 c | — |
Entry | Number of Locules | Internal Colour of Fruit at Maturity (1:Weak, 5:Strong) | ||
---|---|---|---|---|
Inb. Vig/Dep (%) | Inb. Vig/Dep (%) | |||
Formula F1 | 5.40 a * | 100 | 2.03 c | 100 |
Formula F5-1 | 4.83 a | 90 | 3.00 a | 148 |
Formula F5-2 | 3.55 b | 66 | 2.28 b | 112 |
Formula F5-3 | 5.58 a | 103 | 1.54 c | 76 |
Formula F5-4 | 3.67 b | 68 | 1.75 c | 86 |
Formula F5-5 | 4.42 b | 82 | 2.60 b | 128 |
Formula F5-6 | 4.53 b | 84 | 2.60 b | 128 |
Formula F5-7 | 5.02 a | 93 | 2.63 b | 129 |
Formula F5-8 | 4.50 b | 83 | 3.75 a | 184 |
Elpida F1 | 3.92 b | 100 | 3.13 a | 100 |
Elpida F5-1 | 3.83 b | 98 | 2.97 a | 95 |
Elpida F5-2 | 3.42 b | 87 | 2.06 c | 66 |
Elpida F5-3 | 4.22 b | 108 | 3.46 a | 111 |
Elpida F5-4 | 3.42 b | 87 | 1.77 c | 57 |
Elpida F5-5 | 3.32 b | 85 | 1.79 a | 57 |
Elpida F5-6 | 3.83 b | 98 | 2.43 b | 78 |
Elpida F5-7 | 3.72 b | 95 | 3.26 a | 104 |
Elpida F5-8 | 3.83 b | 98 | 2.83 a | 91 |
Iron F1 | 4.72 a | 100 | 2.95 a | 100 |
Iron HS6-2 | 4.40 b | 93 | 2.40 b | 81 |
Iron HS6-3 | 4.39 b | 93 | 2.54 b | 86 |
Sahara F1 | 5.17 a | 100 | 3.17 a | 100 |
Sahara HS6-1 | 5.89 a | 114 | 1.67 c | 53 |
Sahara HS6-2 | 5.17 a | 100 | 3.50 a | 110 |
Makedonia | 5.22 a | — | 3.46 a | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avdikos, I.D.; Tagiakas, R.; Tsouvaltzis, P.; Mylonas, I.; Xynias, I.N.; Mavromatis, A.G. Comparative Evaluation of Tomato Hybrids and Inbred Lines for Fruit Quality Traits. Agronomy 2021, 11, 609. https://doi.org/10.3390/agronomy11030609
Avdikos ID, Tagiakas R, Tsouvaltzis P, Mylonas I, Xynias IN, Mavromatis AG. Comparative Evaluation of Tomato Hybrids and Inbred Lines for Fruit Quality Traits. Agronomy. 2021; 11(3):609. https://doi.org/10.3390/agronomy11030609
Chicago/Turabian StyleAvdikos, Ilias D., Rafail Tagiakas, Pavlos Tsouvaltzis, Ioannis Mylonas, Ioannis N. Xynias, and Athanasios G. Mavromatis. 2021. "Comparative Evaluation of Tomato Hybrids and Inbred Lines for Fruit Quality Traits" Agronomy 11, no. 3: 609. https://doi.org/10.3390/agronomy11030609
APA StyleAvdikos, I. D., Tagiakas, R., Tsouvaltzis, P., Mylonas, I., Xynias, I. N., & Mavromatis, A. G. (2021). Comparative Evaluation of Tomato Hybrids and Inbred Lines for Fruit Quality Traits. Agronomy, 11(3), 609. https://doi.org/10.3390/agronomy11030609