Acclimation to Ex Vitro Conditions in Ninebark
Abstract
:1. Introduction
2. Material and Methods
3. Results
3.1. The Effect of ABA
3.2. The Effect of ABA and Supplemental Light
3.3. Chloropyll a + b and Carotenoid Contents
3.4. Gas Exchange Parameters
3.4.1. Photosynthetic Rate
3.4.2. Transpiration Rate
3.4.3. Stomatal Conductance
3.5. Anatomical Observations
Leaf Blade Structure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pospisilova, J.; Ticha, I.; Kadlecek, P.; Haisel, D.; Plzakova, S. Acclimatization of micropropagated plants to ex vitro conditions. Biol. Plant. 1999, 42, 481–497. [Google Scholar] [CrossRef]
- Hazarika, B.N. Acclimatization of tissue-cultured plants. Curr. Sci. 2003, 85, 1704–1712. [Google Scholar]
- Chandra, S.; Bandopadhyay, R.; Kumar, V.; Chandra, R. Acclimatization of tissue cultured plantlets: From laboratory to land. Biotechnol. Lett. 2010, 32, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Clapa, D.; Fira, A.; Joshee, N. An efficient ex vitro rooting and acclimatization method for horticultural plants using float hydroculture. HortScience 2013, 48, 1159–1167. [Google Scholar] [CrossRef] [Green Version]
- Werner, E.T.; Rozindo Dias Milanez, C.; Barcelos Passos Lima Gontijo, A.; Bastos Soares, T.C.; Teixeira do Amaral, J.A. Leaf anatomy changes related to cultivate in vivo and in vitro and during pre-acclimatization of Crambe abyssinica Hochst. Plant Cell Cult. Micropropag. 2018, 14, 10–17. [Google Scholar]
- Aguilar, M.L. The role of abscisic acid in controlling leaf water loss, survival and growth of micropropagated Tagetes erecta plants when transferred directly to the field. J. Exp. Bot. 2000, 51, 1861–1866. [Google Scholar] [CrossRef] [Green Version]
- Boursiac, Y.; Léran, S.; Corratgé-Faillie, C.; Gojon, A.; Krouk, G.; Lacombe, B. ABA transport and transporters. Trends Plant Sci. 2013, 18, 325–333. [Google Scholar] [CrossRef]
- Mittler, R.; Blumwald, E. The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 2015, 27, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Nowakowska, K.; Bodych, A.; Latkowska, M.; Pacholczak, A. The use of tissue cultures in the mass production of Heuchera‘Silver Scrolls’. Ann. Warsaw Univ. Life Sci. SGGW Hortic. Landsc. Archit. 2020, 16, 5–16. [Google Scholar] [CrossRef]
- Choudhury, F.K.; Rivero, R.M.; Blumwald, E.; Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017, 90, 856–867. [Google Scholar] [CrossRef]
- Seon, J.H.; Cui, Y.Y.; Kozai, T.; Paek, K.Y. Influence of in vitro growth conditions on photosynthetic competence and survival rate of Rehmannia glutinosa plantlets during acclimatization period. Plant Cell. Tissue Organ Cult. 2000, 61, 135–142. [Google Scholar] [CrossRef]
- Pacholczak, A.; Szydło, W. Effect of ammonium zinc acetate on rooting of stem cuttings in Physocarpus opulifolius. Ann. Warsaw Univ. Life Sci. SGGW. Hortic. Landsc. Archit. 2008, 29, 59–64. [Google Scholar]
- Jagiełło-Kubiec, K.; Nowakowska, K.; Ilczuk, A.; Łukaszewska, A.J. Optimizing micropropagation conditions for a recalcitrant ninebark (Physocarpus opulifolius L. maxim.) cultivar. Vitr. Cell. Dev. Biol. Plant 2021. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Jensen, W.A. Botanical Histochemistry: Principles and Practice; W.H. Freeman and Co: San Francisco, CA, USA, 1962. [Google Scholar]
- Wójcik, A.R.; Laudański, Z. Planowanie i wnioskowanie statystyczne w doświadczalnictwie. In Statistical Planning and Concluding in Experimental Works; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1989; ISBN 8301089946/9788301089948. [Google Scholar]
- Rai, M.K.; Shekhawat, N.S.; Harish Gupta, A.K.; Phulwaria, M.; Ram, K.; Jaiswal, U. The role of abscisic acid in plant tissue culture: A review of recent progress. Plant Cell. Tissue Organ Cult. 2011, 106, 179–190. [Google Scholar] [CrossRef]
- Pospisilova, J.; Haisel, D.; Synkova, H.; Batkova-Spoustova, P. Improvement of ex vitro transfer of tobacco plantlets by addition of abscisic acid to the last subculture. Biol. Plant. 2009, 53, 617–624. [Google Scholar] [CrossRef]
- Pospíšilová, J.; Synková, H.; Haisel, D.; Semorádová, Š. Acclimation of plantlets to Ex vitro conditions: Effects of air humidity, irradiance, CO2 concentration and abscisic acid (a Review). Acta Hortic. 2007, 748, 29–38. [Google Scholar] [CrossRef]
- Dias, M.C.; Correia, C.; Moutinho-Pereira, J.; Oliveira, H.; Santos, C. Study of the effects of foliar application of ABA during acclimatization. Plant Cell. Tissue Organ Cult. 2014, 117, 213–224. [Google Scholar] [CrossRef]
- Vilela, B.J.; Carvalho, L.C.; Ferreira, J.; Amâncio, S. Gain of function of stomatal movements in rooting Vitis vinifera L. plants: Regulation by H2O2 is independent of ABA before the protruding of roots. Plant Cell Rep. 2007, 26, 2149–2157. [Google Scholar] [CrossRef]
- Adams, S.R.; Langton, F.A. Photoperiod and plant growth: A review. J. Hortic. Sci. Biotechnol. 2005, 80, 2–10. [Google Scholar] [CrossRef]
- Kubínová, L. Stomata and Mesophyll Characteristics of Barley Leaf as Affected by Light: Stereological Analysis. J. Exp. Bot. 1991, 42, 995–1001. [Google Scholar] [CrossRef]
- Amiard, V.; Mueh, K.E.; Demmig-Adams, B.; Ebbert, V.; Turgeon, R.; Adams, W.W. Anatomical and photosynthetic acclimation to the light environment in species with differing mechanisms of phloem loading. Proc. Natl. Acad. Sci. USA 2005, 102, 12968–12973. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Yu, M.; Wang, Q.; Wang, L.; Yang, H.; Zhao, Y.; Dong, H. Leaf structure and seed histochemistry analyses provided structural insights into the improved yield and quality of tree peony seed under light shading conditions. Sci. Rep. 2020, 10, 4328. [Google Scholar] [CrossRef] [Green Version]
- Balsamo, R.A.; Bauer, A.M.; Davis, S.D.; Rice, B.M. Leaf biomechanics, morphology, and anatomy of the deciduous mesophyte Prunus serrulata (Rosaceae) and the evergreen sclerophyllous shrub Heteromeles arbutifolia (Rosaceae). Am. J. Bot. 2003, 90, 72–77. [Google Scholar] [CrossRef]
- Apóstolo, N.M.; Brutti, C.B.; Llorente, B.E. Leaf anatomy of Cynara scolymus L. in successive micropropagation stages. Vitr. Cell. Dev. Biol. Plant 2005, 41, 307–313. [Google Scholar] [CrossRef]
- Kumar, K.; Rao, I.U. Morphophysiologicals problems in acclimatization of micropropagated plants in-ex vitro conditions- a reviews. J. Ornam. Hortic. Plants 2012, 2, 271–283. [Google Scholar]
- Dragolova, D.; Stefanova, M.; Dimitrova, M.; Koleva, D.; Zhiponova, M.; Kapchina-Toteva, V. In vitro cultivation and ex vitro adaptation of nepeta nuda SSP. Nuda-correlation between regeneration potential, leaf anatomy, and plastid pigments. Bulg. J. Agric. Sci. 2015, 21, 1027–1032. [Google Scholar]
- Noe, N.; Bonini, L. Leaf anatomy of highbush blueberry grownin vitro and during acclimatization toex vitro conditions. Biol. Plant. 1996, 38, 19–25. [Google Scholar] [CrossRef]
ABA Conc. [mg·L−1] | Percentage of Acclimated Plants [%] ** | Plant Height [cm] | Internode Number |
---|---|---|---|
0 (Control) | 88.0 ± 4.58 a * | 5.2 ± 0.41 a | 9.5 ± 0.69 a |
0.5 | 90.0 ± 6.17 a | 5.3 ± 0.11 a | 10.2 ± 0.81 b |
1.0 | 90.0 ± 5.28 a | 5.7 ± 0.23 b | 11.3 ± 0.43 c |
2.0 | 92.0 ± 8.85 a | 5.0 ± 0.15 a | 10.3 ± 0.88 b |
Spraying | Lighting | Percentage of Acclimatized Plants [%] ** | Plant Height [cm] | Internode Number |
---|---|---|---|---|
H2O | − | 90.0 ± 7.16 a * | 4.9 ± 0.58 b | 9.9 ± 1.81 a |
ABA | 90.0 ± 7.16 a | 4.5 ± 0.66 a | 10.3 ± 0.92 a | |
H2O | + | 94.0 ± 5.37 b | 7.7 ± 0.71 c | 12.6 ± 1.32 b |
ABA | 100.0 ± 0.0 c | 7.5 ± 0.58 c | 11.9 ± 1.15 b |
Spraying | Supplemental Light | Chlorophyll A + B [mg·g−1 DW] | Carotenoids [mg·g−1 DW] |
---|---|---|---|
H2O | − | 3.57 ± 0.45 a * | 0.81 ± 0.05 b |
ABA | 3.34 ± 0.62 a | 0.74 ± 0.03 a | |
H2O | + | 4.71 ± 0.49 b | 1.07 ± 0.04 c |
ABA | 4.90 ± 0.41 b | 1.13 ± 0.01 d |
Treatment | Date of Analysis | Mean (Treatments) | |||
---|---|---|---|---|---|
Spraying | Supplemental Light | Date 0 | Date I | Date II | |
H2O | − | 1.60 ± 0.25 a * | 4.69 ± 0.13 b | 5.08 ± 0.16 b | 3.79 ± 0.13 a *** |
ABA | 1.60 ± 0.31 a | 4.85 ± 0.25 b | 5.48 ± 0.39 c | 3.97 ± 0.15 b | |
H2O | + | 1.60 ± 0.20 a | 4.49 ± 0.40 b | 4.88 ± 0.26 b | 3.65 ± 0.25 a |
ABA | 1.60 ± 0.52 a | 5.00 ± 0.15 b | 5.92 ± 0.32 c | 4.17 ± 0.30 b | |
Mean (date) | 1.60 ± 041 a ** | 4.75 ± 0.25 b | 5.34 ± 0.30 c |
Treatment | Date of Analysis | Mean (Treatment) | |||
---|---|---|---|---|---|
Spraying | Supplemental Light | Date 0 | Date I | Date II | |
H2O | − | 7.03 ± 0.41b * | 3.68 ± 0.21 b | 3.57 ± 0.21 b | 4.76 ± 0.25 b *** |
ABA | 7.03 ± 0.41b | 3.20 ± 0.11 a | 2.69 ± 0.15 a | 4.31 ± 0.42 a | |
H2O | + | 7.03 ± 041b | 3.32 ± 0.24 a | 3.03 ± 0.08 ab | 4.46 ± 0.35 ab |
ABA | 7.03 ± 0.41b | 3.14 ± 0.23 a | 2.15 ± 0.40 a | 4.11 ± 0.20 a | |
Mean (date) | 7.03 ± 0.41b ** | 3.33 ± 0.44 a | 2.86 ± 0.11 a |
Treatment | Date of Analysis | Mean (Treatment) | |||
---|---|---|---|---|---|
Spraying | Extra Light | Date 0 | Date I | Date II | |
H2O | − | 0.399 ± 0.03 c * | 0.187 ± 0.01 b | 0.126 ± 0.01 a | 0.237 ± 0.03 b *** |
ABA | 0.399 ± 0.03 c | 0.140 ± 0.02 a | 0.106 ± 0.01 a | 0.215 ± 0.03 a | |
H2O | + | 0.399 ± 0.03 c | 0.173 ± 0.03 b | 0.153 ± 0.02 b | 0.241 ± 0.02 b |
ABA | 0.399 ± 0.03 c | 0.152 ± 0.01 b | 0.100 ± 0.01 a | 0.217 ± 0.01 a | |
Mean (date) | 0.399 ± 0.04 c ** | 0.163 ± 0.01 b | 0.121 ± 0.01 a |
Parameter [µm] | Mean Value on Cross Section | |||||
---|---|---|---|---|---|---|
In Vitro | Acclimatization Condition | In Vivo | ||||
H2O | ABA | H2O—Extra Light | ABA—Extra Light | |||
Adaxial epidermis | 12.1 ± 0.9 a * | 12.1 ± 0.25 a ** | 15.8 ± 0.07 c | 14.5 ± 0.10 b | 15.4 ± 0.15 bc | 13.6 ± 1.7 b |
Palisade mesophyll | 17.9 ± 1.7 b | 18.2 ± 3.18 a | 33.3 ± 3.16 c | 21.2 ± 2.04 b | 22.2 ± 1.14 b | 42.3 ± 4.3 c |
Spongy mesophyll | 31.1 ± 2.6 c | 24.3 ± 6.66 a | 40.5 ± 5.00 c | 30.8 ± 2.88 b | 29.0 ± 3.00 b | 57.2 ± 7.5 d |
Abaxial epidermis | 10.7 ± 1.4 a | 7.3 ± 0.43 a | 7.7 ± 0.08 a | 9.0 ± 0.34 b | 7.7 ± 0.08 a | 9.1 ± 1.5 a |
Leaf thickeness | 72.0 | 61.7 ± 4.95 a | 97.3 ± 9.18 c | 75.5 ± 6.94 b | 74.3 ± 4.10 b | 122.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jagiełło-Kubiec, K.; Nowakowska, K.; Łukaszewska, A.J.; Pacholczak, A. Acclimation to Ex Vitro Conditions in Ninebark. Agronomy 2021, 11, 612. https://doi.org/10.3390/agronomy11040612
Jagiełło-Kubiec K, Nowakowska K, Łukaszewska AJ, Pacholczak A. Acclimation to Ex Vitro Conditions in Ninebark. Agronomy. 2021; 11(4):612. https://doi.org/10.3390/agronomy11040612
Chicago/Turabian StyleJagiełło-Kubiec, Katarzyna, Karolina Nowakowska, Aleksandra Józefina Łukaszewska, and Andrzej Pacholczak. 2021. "Acclimation to Ex Vitro Conditions in Ninebark" Agronomy 11, no. 4: 612. https://doi.org/10.3390/agronomy11040612
APA StyleJagiełło-Kubiec, K., Nowakowska, K., Łukaszewska, A. J., & Pacholczak, A. (2021). Acclimation to Ex Vitro Conditions in Ninebark. Agronomy, 11(4), 612. https://doi.org/10.3390/agronomy11040612