Status of the Ex Situ and In Situ Conservation of Brazilian Crop Wild Relatives of Rice, Potato, Sweet Potato, and Finger Millet: Filling the Gaps of Germplasm Collections
Abstract
:1. Introduction
2. Material and Methods
2.1. Species Selection
2.2. Species Distribution Models and the Status of Ex Situ and In Situ Conservation
- SRSex = Sampling Representativeness Score ex situ, an indicator of the existing gaps in the ex situ collections, which compares the total records in the gene banks (G) in relation to the total herbarium records (H). Values range from 0 to 100, with 0 indicating no ex situ conservation and 100 indicating full conservation status.
- GRSex = Geographical Representativeness Score ex situ. For this score, buffers of a 50 km radius (CA50) are created for each collection location as an estimate of the area covered by the gene banks considering the SDM.
- ERSex = Ecological Representativeness Score ex situ. This score compares the ecological diversity included in the ex situ collections with the ecological diversity represented in the SDMs. Ecological diversity is defined here by the concept of ecoregions as land units containing distinct biological communities, within borders that are close to the original extent (biogeographic realms and biomes) of these communities, prior to changes in land use patterns [29]. The CA50 buffer for germplasm collections is used here as an area to calculate the number of ecoregions represented in the collections in relation to the total number of ecoregions within the SDM [3,27].
- FCSex = Final Conservation Score for ex situ, considering the average of the three scores (SRSex, GRSex and ERSex).
- GRSin = Geographical Representativeness Score in situ, which compares the area of the SDM within protected areas in relation to the total area of the SDM. The protected areas were generated from the World Database of Protected Areas (WDPA), International Union for Conservation of Nature [30] using information from terrestrial and coastal areas designated as proposed and/or established.
- ERSin = Ecological Representativeness Score in situ for the potential area of distribution of species within protected areas in relation to the total area of the SDM. This score considers the number of ecoregions as a proxy for the ecological representativeness (variation) of the species.
- FCSin = Final Conservation Score for in situ, considering the average of the two scores (GRSin and ERSIn).
- FCSc-mean = Combined Final Conservation Score, considering the average of FCSex and FCSin scores.
2.3. Collecting Expeditions
2.4. Seed Evaluation
3. Results
3.1. CWR Species Distribution Models and the Status of Ex Situ and In Situ Conservation
3.2. Collection Expeditions
3.3. Seed Evaluation
4. Discussion
4.1. Previous Status of Ex Situ Conservation
4.2. Status of In Situ Conservation
4.3. Collection Expeditions: Filling the Gaps
4.4. Seed Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dempewolf, H.; Baute, G.; Anderson, J.; Kilian, B.; Smith, C.; Guarino, L. Past and future of wild relatives in crop breeding. Crop. Sci. 2017, 57, 1070–1082. [Google Scholar] [CrossRef]
- Vincent, H.; Amri, A.; Castañeda-Álvarez, N.P.; Dempewolf, H.; Duloo, E.; Guarino, L.; Hole, D.; Mba, C.; Toledo, A.; Maxted, N. Modeling crop wild relative species identifies areas globally for in situ conservation. Commun. Biol. 2019, 2, 136. [Google Scholar] [CrossRef] [Green Version]
- Castañeda-Álvarez, N.P.; Khoury, C.K.; Achicanoy, H.A.; Bernau, V.; Dempewolf, H.; Eastwood, R.J.; Guarino, L.; Harker, R.H.; Jarvis, A.; Maxted, N.; et al. Global conservation priorities for crop wild relatives. Nat. Plants 2016, 2, 16022. [Google Scholar] [CrossRef]
- Dempewolf, H.; Eastwood, R.J.; Guarino, L.; Khoury, C.K.; Muller, J.V.; Toll, J. Adapting agriculture to climate change: A global initiative to collect, conserve and use crop wild relatives. Agroecol. Sustain. Food Syst. 2014, 38, 369–377. [Google Scholar] [CrossRef] [Green Version]
- FAO. The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture; FAO: Rome, Italy, 2010. [Google Scholar]
- Walter, B.M.T.; Cavalcanti, T.B. Fundamentos Para a Coleta de Germoplasma Vegetal, 1st ed.; Embrapa Recursos Genéticos e Biotecnologia: Brasília, Brazil, 2005; p. 778. [Google Scholar]
- Simon, M.F.; Reis, T.S.; Mendoza, F.J.M.; Arquelão, T.K.M.; Bringel, J.B.A., Jr.; Noronha, S.E.; Martins, M.L.L.; Ledo, C.A.S.; Silva, M.J.; Sampaio, A.B.; et al. Conservation assessment of cassava wild relatives in central Brazil. Biodivers. Conserv. 2020, 29, 1589–1612. [Google Scholar] [CrossRef]
- Castro, C.M.; Pereira, A.S.; Costa, D.M.; Choer, E.; Augusti, E.; Gomes, C.B.; Campos, A.D.; Pedroso, R.; Garrastazú, M.C.; Barbieri, R.L.; et al. Wild potato genetic resources conserved in southern brazil: Current knowledge and future perspectives. Acta Hortic. 2007, 745, 323–330. [Google Scholar] [CrossRef]
- Alelo. Available online: http://alelobag.cenargen.embrapa.br/AleloConsultas/Home/index.do (accessed on 26 February 2021).
- Maxted, N.; Kell, S. Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs; FAO: Rome, Italy, 2009. [Google Scholar]
- Harlan, J.; de Wet, J. Towards a rational classification of cultivated plants. Taxon 1971, 20, 509–517. [Google Scholar] [CrossRef]
- Rangel, P.H.N.; Buso, G.S.C.; Brondani, C.; Guimarães, E.P.; Rangel, P.N.; Ferreira, M.E. Coleta, caracterização e uso de germoplasma silvestre de arroz diplóide e tetraplóide (Oryza spp.) nativo do Brasil no melhoramento genético. In Fundamentos Para a Coleta de Germoplasma Vegetal, 1st ed.; Walter, B.M.T., Cavalcanti, T.B., Eds.; Embrapa Recursos Genéticos e Biotecnologia: Brasília, Brazil, 2005; pp. 585–631. [Google Scholar]
- Vaughan, D.A.; Morishima, H.; Kadowaki, K. Diversity in the genus Oryza. Curr. Opin. Plant Biol. 2003, 6, 139–146. [Google Scholar] [CrossRef]
- Brondani, C.; Rangel, P.H.N.; Brondani, R.P.V.; Ferreira, M.E. QTL mapping and introgression of yield-related traits from O. glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor. Appl. Genet. 2002, 104, 1192–1203. [Google Scholar] [CrossRef]
- Brazil Flora Group. Brazilian Flora 2020 Project; Instituto de Pesquisas Jardim Botânico do Rio de Janeiro: Rio de Janeiro, Brazil, 2021. [CrossRef]
- de Oliveira, G.T. Diversidade e Estrutura Genética de Populações de Batata da Serra (Ipomoea serrana Sim.-Bianch. & L.V. Vasconcelos) da Chapada Diamantina, Bahia, Utilizando Marcadores ISSR. Master’s Thesis, Escola Superior de Agricultura Luiz de Queiroz—Universidade de São Paulo, São Paulo, Piracicaba, 2016. [Google Scholar] [CrossRef]
- Gonçalves, C.N.; Azevêdo-Gonçalves, C.F. Batata da serra: Uma espécie nativa que fazia parte da dieta garimpeira. In Aspectos Botânicos e Ecológicos em Comunidades da Chapada Diamantina; Gonçalves, C.N., Azevedo-Gonçalves, C.F., Eds.; Novas Edições Acadêmicas: Saarbrücken, Germany, 2016. [Google Scholar]
- GBIF: Global Biodiversity Information Facility. Available online: https://www.gbif.org/ (accessed on 26 February 2021).
- Species Link. Available online: http://www.splink.org.br/index (accessed on 26 February 2021).
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudik, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Costa, G.C.; Nogueira, C.; Machado, R.B.; Colli, G.R. Sampling bias and the use of ecological niche modeling in conservation planning: A field evaluation in a biodiversity hotspot. Biodivers. Conserv. 2010, 19, 883–899. [Google Scholar] [CrossRef]
- Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Peterson, A.T. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2007, 34, 102–117. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.; Parra, J.; Jones, P.G.; Jarvis, A. WorldClim, version 1.3; University of California: Berkeley, CA, USA, 2005. [Google Scholar]
- Warren, D.L.; Wright, A.N.; Seifert, S.N.; Shaffer, H.B. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Divers. Distrib. 2014, 20, 334–343. [Google Scholar] [CrossRef]
- Ramirez-Villegas, J.; Khoury, C.K.; Jarvis, A.; Debouck, D.G.; Guarino, L. A gap analysis methodology for collecting crop genepools: A case study with Phaseolus beans. PLoS ONE 2010, 5, e13497. [Google Scholar] [CrossRef] [Green Version]
- Khoury, C.K.; Castañeda-Alvarez, N.P.; Achicanoy, H.A.; Sosa, C.C.; Bernau, V.M.T.; Kassa, M.T. Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: Distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance. Biol. Conserv. 2015, 184, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Khoury, C.K.; Amariles, D.; Soto, J.S.; Diaz, M.V.; Sotelo, S.; Sosa, C.C.; Ramírez-Villegas, J.; Achicanoy, H.A.; Velásquez-Tibatá, J.; Guarino, L.; et al. Comprehensiveness of conservation of useful wild plants: An operational indicator for biodiversity and sustainable development targets. Ecol. Indic. 2019, 98, 420–429. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C. Terrestrial ecoregions of the world: A new map of life on earth. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- International Union for Conservation of Nature. World Database on Protected Areas. Protected Planet. 2014. Available online: https://protectedplanet.net/ (accessed on 26 February 2021).
- CIAT. GapAnalysis: An R Package to Calculate Conservation Indicators Using Spatial Information; R Package 1.0.1; CIAT: Cali, Colombia, 2020; Available online: https://cran.r-project.org/web/packages/GapAnalysis/index.html (accessed on 15 January 2020).
- Hijmans, R.J.; van Etten, J. Raster: Geographic Data Analysis and Modeling; R Package. Version 3.4-5; 2014; Available online: https://cran.r-project.org/web/packages/raster/index.html (accessed on 26 February 2020).
- Bivand, R.; Keitt, T.; Rowlingson, B.; Pebesma, E. Rgdal: Bindings for the Geospatial Data Abstraction LIBRARY; R package. Version 1.5-9; Available online: https://cran.r-project.org/web/packages/rgdal/index.html (accessed on 26 February 2020).
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R. Vegan: Community Ecology Package; R package Version 2.0-8; 2013; Available online: http://CRANR-projectorg/package=vegan (accessed on 2 March 2020).
- Xie, Y. Knitr: A General-Purpose Package for Dynamic Report Generation in R; R Package Version 1.30; 2020; Available online: https://cran.r-project.org/web/packages/knitr/index.html (accessed on 9 August 2020).
- Bivand, R.; Rundel, C. Rgeos: Interface to Geometry Engine-Open Source (GEOS), R package Version 0.2-2; Available online: https://rdrr.io/cran/rgeos/ (accessed on 23 August 2020).
- Zhu, H. KableExtra: Construct Complex Table with ‘kable’ and Pipe Syntax. R Package. 2020. Available online: https://rdrr.io/cran/kableExtra/ (accessed on 23 August 2020).
- Xie, Y. DT: A Wrapper of the JavaScript Library ‘DataTables’. R Package Version 0.17. 2020. Available online: https://rdrr.io/cran/DT/ (accessed on 15 October 2020).
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012. [Google Scholar]
- QGIS.org. QGIS Geographic Information System. QGIS Association. v. 3.10.0. 2019. Available online: http://www.qgis.org (accessed on 9 September 2019).
- Instituto Brasileiro de Geografia e Estatística—IBGE. Mapa de Biomas do Brasil: Primeira Aproximação (escala 1:5,000,000); IBGE: Rio de Janeiro, Brazil, 2004. Available online: Ftp://ftp.ibge.gov.br/Cartas_e_Mapas/Mapas_Murais/biomas_pdf.zip (accessed on 26 February 2021).
- Reflora—Herbário Virtual. Available online: http://reflora.jbrj.gov.br/reflora/herbarioVirtual/ (accessed on 26 February 2021).
- Ferreira, B.E.; Cavalcanti, P.P.; Nogueira, D.A. ExpDes: Experimental Designs. R Package. Available online: https://cran.r-project.org/web/packages/ExpDes/index.html (accessed on 26 February 2019).
- Brasil—Ministério da Agricultura, Pecuária e Abastecimento. Regras Para Análises de Sementes; MAPA/SDA/ACS: Brasília, Brazil, 2009; p. 399.
- Xiao, J.; Grandillo, S.; Ahn, S.N.; McCouch, S.R.; Tanksley, S.D. Genes from wild rice improve yield. Nature 1996, 384, 356–358. [Google Scholar] [CrossRef]
- Castaneda-Alvarez, N.P.; de Haan, S.; Juarez, H.; Khoury, C.K.; Achicanoy, H.A.; Sosa, C.C.; Bernau, V.; Salas, A.; Heider, B.; Simon, R.; et al. Ex situ conservation priorities for the wild relatives of potato (solanum L. Section petota). PLoS ONE 2015. [Google Scholar] [CrossRef]
- Khoury, C.K.; Heider, B.; Castaneda-Alvarez, N.P.; Achicanoy, H.A.; Sosa, C.C.R.E.; Miller, R.E. Distributions, ex situ conservation priorities, and genetic resource potential of crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. series Batatas]. Front Plant Sci. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Sano, E.E.; Rodrigues, A.A.; Martins, E.S.; Bettiol, G.M.; Bustamante, M.M.C.; Bezerra, A.S.; Couto, A.F., Jr.; Vasconcelos, V.; Schuler, J.; Bolfe, E.L. Cerrado ecoregions: A spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation. J. Environ. Manag. 2019, 232, 818–828. [Google Scholar] [CrossRef]
- Ribeiro, M.C.; Martensen, A.C.; Metzger, J.P.; Tabarelli, M.; Scarano, F.; Fortin, M. The Brazilian Atlantic Forest: A Shrinking Biodiversity Hotspot. In Biodiversity Hotspots. Distribution and Protection of Conservation Priority Areas; Zachos, F.E., Habel, J.C., Eds.; Springer: New York, NY, USA, 2011; pp. 405–434. [Google Scholar]
- Carranza, C.T.; Balmford, A.; Kapos, V.; Manica, A. Protected area effectiveness in reducing conversion in a rapidly vanishing ecosystem: The Brazilian Cerrado. Cons. Lett. 2013, 7, 1–8. [Google Scholar] [CrossRef]
- Françoso, R.D.; Brandão, R.; Nogueira, C.C.; Salmona, Y.B.; Machado, R.B.; Colli, G.R. Habitat loss and the effectiveness of protected areas in the Cerrado Biodiversity Hotspot. Nat. Conserv. 2015, 13, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Irigaray, C.T.G.H.; Braun, A. Marco Regulatório. In Pantanal à Margem da Lei: Panorama das Ameaças e Perspectivas à Conservação; Cunha, C.N., Junk, W.J., Eds.; Wetlands International: Cuiabá, Brazil, 2020. [Google Scholar]
- Kamenya, S.N.; Mikwa, E.O.; Song, B.; Odeny, D.A. Genetics and breeding for climate change in Orphan crops. Theor. Appl. Genet. 2021, 3. [Google Scholar] [CrossRef]
- Ismail, B.S.; Chuah, T.S.; Salmijah, S.; Teng, Y.T.; Schumacher, R.W. Germination and seedling emergence of glyphosate-resistant and susceptible biotypes of goosegrass (Eleusine indica [L.] Gaertn.). Weed Biol. Manag. 2002, 2, 177–185. [Google Scholar] [CrossRef]
- Nishimoto, R.K.; McCarty, L.B. Fluctuating Temperature and Light Influence Seed Germination of Goosegrass (Eleusine indica). Weed Sci. 1997, 45, 426–429. [Google Scholar] [CrossRef]
- Kalimashe, M. Germination on the grass weed Eleusine indica (L.) Gaertn Population as Affected by Temperature, Light, and Its Response to Glyphosate. Master’s Thesis, University Pretoria, Pretoria, South Africa, 2019. [Google Scholar]
- Amaral, R.S.S.; Pereira, L.L.; Guimarães, V.R.; Antunes Neto, A.; Passos, A.M.A. Germinação de Sementes de Eleusine Indica e E. tristachya: Fotoblastia; Embrapa Milho e Sorgo: Sete Lagoas, Brazil, 2020; p. 10. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1126608/1/Circ-Tec-269.pdf (accessed on 26 February 2021).
- Azania, A.A.P.M.; Azania, C.A.M.; Pavani, M.C.M.D.; Cunha, M.C.S. Métodos de superação de dormência em sementes de Ipomoea e Merremia. Planta Daninha 2003, 21, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Chaves, I.S.; Silva, N.C.Q.; Ribeiro, D.M. Effect of the seed coat on dormancy ena Germination in Stylosanthes humilis H. B. K. seeds. J. Seed Sci. 2017, 39, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Pazuch, D.; Trezzi, M.M.; Diesel, F.; Barancelli, M.V.J.; Batistel, S.C.; Pasini, R. Superação de dormência em sementes de três espécies de Ipomoea. Ciência Rural. 2015, 45, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Ogunwenmo, K.; Ugborogho, R.E. Effects of chemical and mechanical scarification on seeds germination of five species of Ipomoea (Convolvulaceae). Boletim Soc. Broteriana 1999, 69, 147–162. [Google Scholar]
- Cardoso, V.J.M. Dormência: Estabelecimento do processo. In Germinação: Do básico ao Aplicado; Ferreira, A.G., Borghetti, F., Eds.; Artmed Editora: Porto Alegre, Brazil, 2004. [Google Scholar]
- Taiz, L.; Zeiger, E. Fisiologia Vegetal, 3rd ed.; Artmed: Porto Alegre, Brazil, 2004; p. 719. [Google Scholar]
Species | Genepool | No. of Germplasm Accessions | No. of Herbarium Records |
---|---|---|---|
Eleusine indica (L.) Gaertn. | Primary | 1 | 835 |
Eleusine tristachya (Lam.) Lam. | Secondary | 26 | 175 |
Oryza alta Swallen | Secondary | 17 | 7 |
Oryza glumaepatula Steud. | Primary | 73 | 24 |
Oryza grandiglumis (Dӧll) Prod. | Secondary | 25 | 22 |
Oryza latifolia Desv. | Secondary | 15 | 59 |
Solanum chacoense Bitter | Secondary | 3 | 54 |
Solanum commersonii Dunal | Tertiary | 37 | 191 |
Ipomoea cynanchifolia Meisn. | Tertiary | 0 | 49 |
Ipomoea grandifolia (Dammer) O’Donell | Tertiary | 0 | 230 |
Ipomoea ramosissima (Poir.) Choisy | Tertiary | 0 | 187 |
Ipomoea tiliacea (Willd.) Choisy | Tertiary | 0 | 190 |
Ipomoea triloba L. | Tertiary | 0 | 154 |
Total | 204 | 2184 |
Species | SRSex | GRSex | ERSex | FCSex | FCSex Class | SRSin | GRSin | ERSin | FCSin | FCSin Class | FCSc Mean | FCSc Mean Class |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Eleusine indica (L.) Gaertn. | 0.2 | 0.6 | 12.5 | 4.5 | HP | 7.1 | 9.1 | 81.3 | 45.2 | MP | 29.4 | MP |
Eleusine tristachya (Lam.) Lam. | 14.9 | 34.3 | 42.9 | 30.7 | MP | 0.0 | 4.1 | 85.7 | 44.9 | MP | 33.1 | MP |
Oryza alta Swallen | 100.0 | 6.9 | 23.8 | 43.6 | MP | 0.0 | 28.6 | 90.5 | 59.5 | LP | 44.4 | MP |
Oryza glumaepatula Steud. | 100.0 | 27.5 | 37.5 | 55.0 | LP | 24.6 | 25.2 | 62.5 | 43.8 | MP | 42.2 | MP |
Oryza grandiglumis (Döll) Prod. | 100.0 | 18.9 | 35.3 | 51.4 | LP | 3.4 | 29.3 | 64.7 | 47.0 | MP | 39.2 | MP |
Oryza latifolia Desv. | 25.4 | 23.7 | 28.6 | 25.9 | MP | 0.0 | 11.1 | 57.1 | 34.1 | MP | 25.6 | MP |
Solanum chacoense Bitter | 5.6 | 10.9 | 66.7 | 27.7 | MP | 6.5 | 4.9 | 100.0 | 52.5 | LP | 38.3 | MP |
Solanum commersonii Dunal | 19.4 | 71.1 | 80.0 | 56.8 | LP | 6.5 | 4.9 | 100.0 | 52.5 | LP | 44.1 | MP |
Ipomoea cynanchifolia Meisn. | 2.5 | 0.9 | 15.0 | 6.1 | HP | 37.9 | 9.6 | 90.0 | 49.8 | MP | 38.7 | MP |
Ipomoea grandifolia (Dammer) O’Donell | 1.1 | 1.3 | 17.6 | 6.7 | HP | 5.4 | 7.0 | 52.9 | 30.0 | MP | 20.4 | HP |
Ipomoea ramosissima (Poir.) Choisy | 0.7 | 1.0 | 13.0 | 4.9 | HP | 40.6 | 11.9 | 73.9 | 42.9 | MP | 34.8 | MP |
Ipomoea tiliacea (Willd.) Choisy | 0.8 | 2.4 | 21.4 | 8.2 | HP | 12.7 | 16.3 | 85.7 | 51.0 | LP | 34.8 | MP |
Ipomoea triloba L. | 0.8 | 1.0 | 6.7 | 2.8 | HP | 13.9 | 11.3 | 86.7 | 49.0 | MP | 32.7 | MP |
Genus | Surveyed Sites |
---|---|
Oryza | Five expeditions: Marajó Island (state of Pará), Pantanal (state of Mato Grosso do Sul), Tapajós river (state of Pará), Solimões, Amazonas, and Negro rivers (state of Amazonas) |
Eleusine | Three expeditions: Pantanal biome (state of Mato Grosso do Sul), Atlantic Forest biome (Santa Catarina, Paraná and Rio Grande do Sul states) |
Solanum | Four expeditions: Atlantic Forest biome (Minas Gerais, Paraná, Santa Catarina and Rio Grande do Sul states), and Pampas |
Ipomoea | Four expeditions: Cerrado and Atlantic Forest biomes, from Minas Gerais to Rio Grande do Sul states |
Project Target Taxa | No. of Accessions |
---|---|
Eleusine indica (L.) Gaertn. | 25 |
Eleusine tristachya (Lam.) Lam. | 40 |
Ipomoea grandifolia (Dammer) O’Donell * | 2 |
Ipomoea ramosissima (Poir.) Choisy | 6 |
Ipomoea tiliacea (Willd.) Choisy | 21 |
Ipomoea cynanchifolia Meisn. | 5 |
Ipomoea triloba L. | 4 |
Oryza glumaepatula Steud. | 19 |
Oryza alta Swallen * | 20 |
Oryza grandiglumis (Döll) Prod. | 8 |
Oryza latifolia Desv. | 0 |
Solanum chacoense Bitter | 13 |
Solanum commersonii subsp. commersonii Dunal | 10 |
Solanum commersonii Bitter subsp. malmeanum | 1 |
Total | 174 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medeiros, M.B.; Valls, J.F.M.; Abreu, A.G.; Heiden, G.; Ribeiro-Silva, S.; José, S.C.B.R.; Santos, I.R.I.; Passos, A.M.A.; Burle, M.L. Status of the Ex Situ and In Situ Conservation of Brazilian Crop Wild Relatives of Rice, Potato, Sweet Potato, and Finger Millet: Filling the Gaps of Germplasm Collections. Agronomy 2021, 11, 638. https://doi.org/10.3390/agronomy11040638
Medeiros MB, Valls JFM, Abreu AG, Heiden G, Ribeiro-Silva S, José SCBR, Santos IRI, Passos AMA, Burle ML. Status of the Ex Situ and In Situ Conservation of Brazilian Crop Wild Relatives of Rice, Potato, Sweet Potato, and Finger Millet: Filling the Gaps of Germplasm Collections. Agronomy. 2021; 11(4):638. https://doi.org/10.3390/agronomy11040638
Chicago/Turabian StyleMedeiros, Marcelo B., José F. M. Valls, Aluana G. Abreu, Gustavo Heiden, Suelma Ribeiro-Silva, Solange C. B. R. José, Izulmé R. I. Santos, Alexandre M. A. Passos, and Marília L. Burle. 2021. "Status of the Ex Situ and In Situ Conservation of Brazilian Crop Wild Relatives of Rice, Potato, Sweet Potato, and Finger Millet: Filling the Gaps of Germplasm Collections" Agronomy 11, no. 4: 638. https://doi.org/10.3390/agronomy11040638
APA StyleMedeiros, M. B., Valls, J. F. M., Abreu, A. G., Heiden, G., Ribeiro-Silva, S., José, S. C. B. R., Santos, I. R. I., Passos, A. M. A., & Burle, M. L. (2021). Status of the Ex Situ and In Situ Conservation of Brazilian Crop Wild Relatives of Rice, Potato, Sweet Potato, and Finger Millet: Filling the Gaps of Germplasm Collections. Agronomy, 11(4), 638. https://doi.org/10.3390/agronomy11040638