Yield and Quality of Inflorescences in the Zantedeschia albomaculata (Hook.) Baill. ‘Albomaculata’ after the Treatment with AMF and GA3
Abstract
:1. Introduction
2. Material and Methods
2.1. Plants
2.2. Cultivation
2.3. Chemical Analysis
2.4. Root Colonisation
2.5. Data Analysis
3. Results and Discussion
3.1. Root Colonisation
3.2. Yield and Quality of Flowers
3.3. Content of Macroelements
3.4. Content of Microelements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Funnell, K.A.; Tjia, B.O. Effect of storage temperature, duration and gibberellic acid on the flowering of Zantedeschia elliottiana and Z. ‘Pink Satin’. J. Am. Soc. Hort. Sci. 1988, 113, 860–863. [Google Scholar]
- Corr, B.E.; Widmer, R.E. Paclobutrazol, gibberellic acid and rhizome size affect growth and flowering of Zantedeschia. HortScience 1991, 26, 133–135. [Google Scholar] [CrossRef] [Green Version]
- Funnell, K.A.; Mackay, B.R.; Lawoko, C.R.O. Comparative effects of promalin and ga3 on flowering and development of Zantedeschia ‘galaxy’. Acta Hort. 1992, 292, 173–179. [Google Scholar] [CrossRef]
- Dennis, D.; Doreen, D.J.; Ohteki, T. Effect of a gibberellic acid ‘quick-dip’ and storage on the yield and quality of blooms from hybrid Zantedeschia tubers. Sci. Hortic. 1994, 57, 133–142. [Google Scholar] [CrossRef]
- Janowska, B.; Andrzejak, R. Effect of gibberellic acid spraying and soaking of rhizomes on the growth and flowering of calla lily (Zantedeschia Spreng.). Acta Agrob. 2010, 63, 155–160. [Google Scholar] [CrossRef]
- Janowska, B. Effect of growth regulators on flower and leaf yield of the Calla lily (Zantedeschia Spreng.). Hort. Sci. 2013, 40, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Ravensdale, M.; Blom, T.J.; Gracia-Garza, J.A.; Svirce, A.M.; Smith, R.J. Bacteriophages and the control of Erwinia carotovora subsp. Carotovora. Can. J. Plant Pathol. 2007, 29, 121–130. [Google Scholar] [CrossRef]
- Matysiak, B. Effect of endomycorrhizal inocula during propagation on the growth following transplanting of Ilex x meserveae ‘Blue Boy’ cutting. Zesz. Probl. Post. Nauk Roln. 2009, 539, 499–506. [Google Scholar]
- Feijen, F.A.A.; Vos, R.A.; Nuytinck, J.; Merckx, V.S.F.T. Evolutionary dynamics of mycorrhizal symbiosis in land plant diversification. Sci. Rep. 2018, 8, 10698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianinazzi, S.; Gollotte, A.; Binet, M.N.; van Tuinen, D.; Redecker, D.; Wipf, D. Agroecology the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 2010, 20, 519–530. [Google Scholar] [CrossRef]
- Sbrana, C.; Avio, L.; Giovannetti, M. Beneficial mycorrhizal symbionts affecting the production of health-promoting phytochemicals. Electrophoresis 2014, 35, 1535–1546. [Google Scholar] [CrossRef]
- Avio, L.; Turrini, A.; Giovannetti, M.; Sbrana, C. Designing the ideotype mycorrhizal symbionts for the production of healthy food. Front. Plant Sci. 2018, 9, 1089. [Google Scholar] [CrossRef]
- Giovannetti, M.; Sbrana, C.; Avio, L.; Citernesi, A.S.; Logi, C. Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages. New Phytol. 1993, 125, 587–593. [Google Scholar] [CrossRef]
- Akiyama, K.; Matsuzaki, K.I.; Hayashi, H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 2005, 435, 824–827. [Google Scholar] [CrossRef] [PubMed]
- Sbrana, C.; Giovannetti, M. Chemotropism in the arbuscular mycorrhizal fungus Glomus mosseae. Mycorrhiza 2005, 15, 539–545. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, W.; Xie, Q.; Liu, N.; Liu, L.; Wang, D.; Zhang, X.; Yang, C.; Chen, X.; Tang, D.; et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 2017, 356, 1172–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luginbuehl, L.H.; Menard, G.N.; Kurup, S.; Van Erp, H.; Radhakrishnan, G.V.; Breakspear, A.; Oldroyd, G.E.D.; Eastmond, P.J. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 2017, 356, 1175–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maillet, F.; Poinsot, V.; André, O.; Puech-Pagès, V.; Haouy, A.; Gueunier, M.; Cromer, L.; Giraudet, D.; Formey, D.; Niebel, A.; et al. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 2011, 469, 58–63. [Google Scholar] [CrossRef]
- Janowska, B.; Schroeter, A. The influence of gibberellic acid on flowering of Zantedeschia elliottiana (W. Wats.) Engl. ‘Black Magic’. Zesz. Probl. Post. Nauk Roln. 2002, 483, 93–99. [Google Scholar]
- Kozłowska, M.; Rybus-Zając, M.; Stachowiak, J.; Janowska, B. Changes in carbohydrate contents of Zantedeschia leaves under gibberellin-stimulated flowering. Acta Physiol. Plant. 2007, 29, 27–32. [Google Scholar] [CrossRef]
- Kamińska, W.; Kardasz, T.; Strahl, A.; Bałucka, T.; Walczak, K.; Filipek, P. The Methods of Analisis in Chemical-Agricultural Station. Part II. Analisis of Plants; IUNG: Puławy, Poland, 1972. [Google Scholar]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Bethlenfalvay, G.J.; Ames, R.N. Comparison of two methods for quantifying extraradical mycelium of vesicular arbuscular mycorrhizal fungi. Soil Sci. Soc. Am. J. 1987, 51, 834–837. [Google Scholar] [CrossRef]
- Eloise, F.; Ross, J.J.; Jones, W.T.; Reid, J.B. Plant hormones in arbuscular mycorrhizal symbioses: An emerging role for gibberellins. Ann. Bot. 2013, 111, 769–779. [Google Scholar] [CrossRef]
- Janowska, B.; Krause, J. The influences of tuber treatment by gibberellic acid on the flowering of Zantedeschia. Rocz. AR Pozn. Ogrodn. 2001, 33, 61–67. [Google Scholar]
- Janowska, B.; Andrzejak, R.; Kosiada, T.; Trelka, T.; Frąszczak, B. Effect of mycorrhization on the flowering of the Zantedeschia albomaculata /Hook./ Baill. cv. Albomaculata. Hort. Sci. 2013, 40, 126–130. [Google Scholar] [CrossRef] [Green Version]
- Janowska, B.; Rybus-Zając, M.; Horojdko, M.; Andrzejak, R.; Siejak, D. The effect of mycorrhization on the growth, flowering, content of chloroplast pigments, saccharides and protein in leaves of Sinningia speciosa (Lodd.) Hiern. Acta Agroph. 2016, 23, 213–223. [Google Scholar]
- Nowak, J. Effects of mycorrhization and phosphorus nutrition on nutrient uptake, growth and flowering of China aster (Callistephus chinensis /L./ Nees) cultivated on ebb-and-flow benczes. Acta Agrob. 2009, 62, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Lovato, P.E.; Gianinazzi-Pearson, V.; Trouvelot, A.; Gianinzzi, S. The state of art of mycorrhizas and micropropagation. Adv. Hort. Sci. 1996, 10, 46–52. [Google Scholar]
- Janowska, B.; Andrzejak, R. Effect of mycorrhizal inoculation on development and flowering of Tagetes patula L. ‘Yellow Boy’ and Salvia splendens Buc’hoz ex Etl. ‘Saluti Red’. Acta Agrob. 2017, 70, 1703. [Google Scholar] [CrossRef] [Green Version]
- Janowska, B.; Zakrzewski, P. The effect of gibberellic acid and rhizome treatment on flowering of calla lily (Zantedeschia Spreng.). Zesz. Probl. Post. Nauk Roln. 2006, 510, 223–233. [Google Scholar]
- Nowak, J.; Nowak, J.S. CO2 enrichment and mycorrhizal effects on cutting growth and some physiological traits of cuttings during rooting. Acta Sci. Pol. Hort. Cult. 2013, 12, 67–75. [Google Scholar]
- Medaj, A.; Piechura, K.; Skrobot, K.; Sokulski, S. Determination of assimilable calcium for plants in the soil of the Kluczwoda Valley by atomic absorption spectrometry. Analit 2017, 3, 50–55. [Google Scholar]
- Janowska, B.; Andrzejak, R.; Kosiada, T.; Kwiatkowska, M.; Smolińska, D. The flowering and nutritional status of Gladiolus hybridus ‘Black Velvet’ following gibberellin treatment. Hortic. Sci. 2018, 45, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Janowska, B.; Andrzejak, R.; Kosiada, T.; Kwiatkowska, M.; Smolińska, D. The flowering and nutritional status of Gladiolus hybridus cv. Black Velvet following a cytokinin treatment. J. Element. 2018, 23, 1119–1128. [Google Scholar] [CrossRef]
- Spiak, Z. Microelements in agriculture. Zesz. Probl. Post. Nauk Roln. 2000, 471, 29–34. [Google Scholar]
- Walker, R.F.; Mclaughlin, S.B.; Amundsen, C.C. Interactive Effects of mycorrhization and fertilization on growth, nutrition and water relation of Sweet Birch. J. Sustain. Forest. 2003, 17, 55–80. [Google Scholar] [CrossRef]
Year | Mycorrhization | GA3 (150 mg·mg−3) | Mean for Mycorrhization | |
---|---|---|---|---|
No | Yes | |||
Yield of flowers | ||||
I | no | 2.2 a | 3.5 b | 2.8 a |
II | 1.9 a | 4.0 b | ||
III | 2.1 a | 3.0 b | ||
I | yes | 5.8 c | 5.0 c | 5.6 b |
II | 6.2 c | 5.8 c | ||
III | 5.4 c | 5.2 c | ||
Mean for GA3 | 3.9 a | 4.4 a | ||
Flower peduncle length (cm) | ||||
I | no | 36.0 a | 40.7 b | 39.0 a |
II | 38.0 a | 41.3 b | ||
III | 37.8 a | 40.0 b | ||
I | yes | 43.2 c | 45.5 d | 44.3 b |
II | 44.0 c | 43.7 c | ||
III | 43.2 c | 46.0 d | ||
Mean for GA3 | 40.4 a | 42.9 b | ||
Spathe length (cm) | ||||
I | no | 10.0 a | 10.0 a | 10.3 a |
II | 10.4 a | 10.6 a | ||
III | 10.2 a | 10.4 a | ||
I | yes | 12.2 b | 11.5 b | 11.7 b |
II | 12.0 b | 12.0 b | ||
III | 11.6 b | 11.0 b | ||
Mean for GA3 | 11.0 a | 10.9 a |
Year | Mycorrhization | GA3 (150 mg·mg−3) | Mean for Mycorrhization | |
---|---|---|---|---|
No | Yes | |||
N | ||||
I | no | 5.19 a | 4.79 a | 4.93 a |
II | 4.90 a | 4.70 a | ||
III | 5.00 a | 4.99 a | ||
I | yes | 4.77 a | 5.11 a | 4.92 a |
II | 4.91 a | 4.99 a | ||
III | 4.71 a | 5.00 a | ||
Mean for GA3 | 4.91 a | 4.93 a | ||
P | ||||
I | no | 0.43 a | 0.42 a | 0.43 a |
II | 0.44 a | 0.40 a | ||
III | 0.45 a | 0.44 a | ||
I | yes | 0.42 a | 0.42 a | 0.41 a |
II | 0.39 a | 0.41 a | ||
III | 0.43 a | 0.39 a | ||
Mean for GA3 | 0.43 a | 0.41 a | ||
K | ||||
I | no | 3.91 a | 3.96 a | 3.91 a |
II | 3.87 a | 4.00 a | ||
III | 3.84 a | 3.86 a | ||
I | yes | 3.68 a | 4.15 a | 3.88 a |
II | 3.76 a | 3.97 a | ||
III | 3.80 a | 3.92 a | ||
Mean for GA3 | 3.81 a | 3.98 a | ||
Ca | ||||
I | no | 0.76 b | 0.66 a | 0.70 a |
II | 0.75 b | 0.64 a | ||
III | 0.76 b | 0.62 a | ||
I | yes | 0.73 b | 0.85 c | 0.80 b |
II | 0.75 b | 0.90 c | ||
III | 0.71 b | 0.87 c | ||
Mean for GA3 | 0.74 a | 0.76 a | ||
Mg | ||||
I | no | 0.22 a | 0.24 a | 0.23 a |
II | 0.25 a | 0.22 a | ||
III | 0.24 a | 0.26 a | ||
I | yes | 0.25 a | 0.30 a | 0.28 a |
II | 0.27 a | 0.26 a | ||
III | 0.24 a | 0.29 a | ||
Mean for GA3 | 0.25 a | 026 a |
Year | Mycorrhization | GA3 (150 mg∙dm−3) | Mean for Mycorrhization | |
---|---|---|---|---|
No | Yes | |||
Fe | ||||
I | non | 43.68 a | 42.20 a | 43.14 a |
II | 43.56 a | 43.42 a | ||
III | 42.99 a | 43.01 a | ||
I | yes | 43.88 a | 42.75 a | 43.36 a |
II | 43.85 a | 43.21 a | ||
III | 42.89 a | 43.56 a | ||
Mean for GA3 | 43.48 a | 43.03 a | ||
Mn | ||||
I | non | 61.00 a | 60.15 a | 60.66 a |
II | 60.88 a | 61.26 a | ||
III | 59.79 a | 60.88 a | ||
I | yes | 70.53 c | 65.15 b | 67.62 b |
II | 69.73 c | 64.83 b | ||
III | 69.99 c | 65.51 b | ||
Mean for GA3 | 65.32 a | 62.96 a | ||
Zn | ||||
I | non | 31.60 a | 30.05 a | 30.85 a |
II | 30.99 a | 31.16 a | ||
III | 30.56 a | 30.78 a | ||
I | yes | 35.13 b | 34.28 b | 35.04 b |
II | 34.87 b | 35.56 b | ||
III | 35.15 b | 35.26 b | ||
Mean for GA3 | 33.05 a | 32.84 a | ||
Cu | ||||
I | non | 6.73 a | 6.91 a | 6.54 a |
II | 6.36 a | 6.71 a | ||
III | 6.16 a | 6.36 a | ||
I | yes | 7.24 b | 7.10 b | 7.25 b |
II | 7.31 b | 7.53 b | ||
III | 7.41 a | 7.29 b | ||
Mean for GA3 | 6.80 a | 6.98 a | ||
Na | ||||
I | non | 0.05 a | 0.04 a | 0.05 a |
II | 0.05 a | 0.06 a | ||
III | 0.04 a | 0.05 a | ||
I | yes | 0.05 a | 0.06 a | 0.05 a |
II | 0.05 a | 0.04 a | ||
III | 0.05 a | 0.05 a | ||
Mean for GA3 | 0.05 a | 0.05 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrzejak, R.; Janowska, B. Yield and Quality of Inflorescences in the Zantedeschia albomaculata (Hook.) Baill. ‘Albomaculata’ after the Treatment with AMF and GA3. Agronomy 2021, 11, 644. https://doi.org/10.3390/agronomy11040644
Andrzejak R, Janowska B. Yield and Quality of Inflorescences in the Zantedeschia albomaculata (Hook.) Baill. ‘Albomaculata’ after the Treatment with AMF and GA3. Agronomy. 2021; 11(4):644. https://doi.org/10.3390/agronomy11040644
Chicago/Turabian StyleAndrzejak, Roman, and Beata Janowska. 2021. "Yield and Quality of Inflorescences in the Zantedeschia albomaculata (Hook.) Baill. ‘Albomaculata’ after the Treatment with AMF and GA3" Agronomy 11, no. 4: 644. https://doi.org/10.3390/agronomy11040644
APA StyleAndrzejak, R., & Janowska, B. (2021). Yield and Quality of Inflorescences in the Zantedeschia albomaculata (Hook.) Baill. ‘Albomaculata’ after the Treatment with AMF and GA3. Agronomy, 11(4), 644. https://doi.org/10.3390/agronomy11040644