Impact of Partial Root Drying and Soil Mulching on Squash Yield and Water Use Efficiency in Arid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Growth Conditions
2.2. Applied Irrigation Water
2.3. Plant Management
2.4. Soil Moisture Measurements
2.5. Physiological and Agronomic Measurements
2.6. Statistical Analysis
3. Results and Discussion
3.1. Evapotranspiration and Applied Irrigation
3.2. Soil Moisture Content
3.3. Stomatal Conductance (gs), Photosynthesis (Pn), and Transpiration (Tr)
3.4. Chlorophyll Index (SPAD Value)
3.5. Fruit Quality
3.6. Yield and Irrigation Water Use Efficiency (IWUE)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Huo, Z.; Guan, H.; Guo, P.; Qu, Z. Drip irrigation enhances shallow groundwater contribution to crop water consumption in an arid area. Hydrol. Process. 2018, 32, 747–758. [Google Scholar] [CrossRef]
- Biswas, S.K.; Akanda, A.R.; Rahman, M.S.; Hossain, M.A. Effect of drip irrigation and mulching on yield, water-use efficiency and economics of tomato. Plant Soil Environ. 2015, 61, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Woodrow, J.E.; Seiber, J.N.; Lenoir, J.S.; Krieger, R.I. Determination of methyl isothiocyanate in air downwind of fields treated with metam-sodium by subsurface drip irrigation. J. Agric. Food Chem. 2008, 56, 7373–7378. [Google Scholar] [CrossRef]
- Ayars, J.E.; Fulton, A.; Taylor, B. Subsurface drip irrigation in California—Here to stay? Agric. Water Manag. 2015, 157, 39–47. [Google Scholar] [CrossRef]
- Hashem, M.S.; Zin El-Abedin, T.; Al-Ghobari, H.M. Assessing effects of deficit irrigation techniques on water productivity of tomato for subsurface drip irrigation system. Int. J. Agric. Biol. Eng. 2018, 11, 156–167. [Google Scholar] [CrossRef]
- Abdalhi, M.A.M.; Jia, Z. Crop yield and water saving potential for AquaCrop model under full and deficit irrigation managements. Ital. J. Agron. 2018, 13, 267–278. [Google Scholar] [CrossRef]
- Khapte, P.S.; Kumar, P.; Burman, U.; Kumar, P. Deficit irrigation in tomato: Agronomical and physio-biochemical implications. Sci. Hortic. 2019, 248, 256–264. [Google Scholar] [CrossRef]
- Puértolas, J.; Albacete, A.; Dodd, I.C. Irrigation frequency transiently alters whole plant gas exchange, water and hormone status, but irrigation volume determines cumulative growth in two herbaceous crops. Environ. Exp. Bot. 2020, 176, 104101. [Google Scholar] [CrossRef]
- Abd El-Mageed, T.A.; Semida, W.M. Effect of deficit irrigation and growing seasons on plant water status, fruit yield and water use efficiency of squash under saline soil. Sci. Hortic. 2015, 186, 89–100. [Google Scholar] [CrossRef]
- Jensen, M.E. Design and Operation of Farm Irrigation Systems; ASAE: Detroit, MI, USA, 1983; pp. 108–118. [Google Scholar]
- Bacon, M.A. Water use efficiency in plant biology. In Water Use Efficiency in Plant Biology; Bacon, M.A., Ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 1–26. [Google Scholar]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J. Advances in Water Use Efficiency in Agriculture: A Bibliometric Analysis. Water 2018, 10, 377. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Zhang, J. Controlled alternate partial root-zone irrigation: Its physiological consequences and impact on water use efficiency. J. Exp. Bot. 2004, 55, 2437–2446. [Google Scholar] [CrossRef]
- Jensen, C.R.; Battilani, A.; Plauborg, F.; Psarras, G.; Chartzoulakis, K.; Janowiak, F.; Stikic, R.; Jovanovic, Z.; Li, G.; Qi, X.; et al. Deficit irrigation based on drought tolerance and root signalling in potatoes and tomatoes. Agric. Water Manag. 2010, 98, 403–413. [Google Scholar] [CrossRef]
- Jovanovic, Z.; Stikic, R. Partial root-zone drying technique: From water saving to the improvement of a fruit quality. Front. Sustain. Food Syst. 2018, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Barideh, R.; Besharat, S.; Morteza, M.; Rezaverdinejad, V. Effects of partial root-zone irrigation on the water use efficiency and root water and nitrate uptake of corn. Water 2018, 10, 526. [Google Scholar] [CrossRef] [Green Version]
- Hakim, A.; Qinyan, Z.; Khatoon, M.; Gullo, S. Impact of partial root-zone drying on growth, yield and quality of tomatoes produced in green house condition. Adv. Hortic. Sci. 2019, 33, 133–138. [Google Scholar] [CrossRef]
- Mattar, M.A.; Zin El-Abedin, T.K.; Alazba, A.A.; Al-Ghobari, H.M. Soil water status and growth of tomato with partial root-zone drying and deficit drip irrigation techniques. Irrig. Sci. 2020, 38, 163–176. [Google Scholar] [CrossRef]
- Hooshmand, M.; Albaji, M.; Boroomand nasab, S.; Alam zadeh Ansari, N. The effect of deficit irrigation on yield and yield components of greenhouse tomato (Solanum lycopersicum)in hydroponic culture in Ahvaz region, Iran. Sci. Hortic. 2019, 254, 84–90. [Google Scholar] [CrossRef]
- Qin, J.; Ramírez, D.A.; Xie, K.; Li, W.; Yactayo, W.; Jin, L.; Quiroz, R. Is Partial root-zone drying more appropriate than drip irrigation to save water in China? A preliminary comparative analysis for potato cultivation. Potato Res. 2018, 61, 391–406. [Google Scholar] [CrossRef] [Green Version]
- Jovanovic, Z.; Stikic, R.; Vucelic-Radovic, B.; Paukovic, M.; Brocic, Z.; Matovic, G.; Rovcanin, S.; Mojevic, M. Partial root-zone drying increases WUE, N and antioxidant content in field potatoes. Eur. J. Agron. 2010, 33, 124–131. [Google Scholar] [CrossRef]
- Xie, K.; Wang, X.X.; Zhang, R.; Gong, X.; Zhang, S.; Mares, V.; Gavilán, C.; Posadas, A.; Quiroz, R. Partial root-zone drying irrigation and water utilization efficiency by the potato crop in semi-arid regions in China. Sci. Hortic. 2012, 134, 20–25. [Google Scholar] [CrossRef]
- Ors, S.; Ekinci, M.; Yildirim, E.; Sahin, U. Changes in gas exchange capacity and selected physiological properties of squash seedlings (Cucurbita pepo L.) under well-watered and drought stress conditions. Arch. Agron. Soil Sci. 2016, 62, 1700–1710. [Google Scholar] [CrossRef]
- Al-Ghobari, H.M.; Dewidar, A.Z. Integrating deficit irrigation into surface and subsurface drip irrigation as a strategy to save water in arid regions. Agric. Water Manag. 2018, 209, 55–61. [Google Scholar] [CrossRef]
- Zhang, K.; Dai, Z.; Wang, W.; Dou, Z.; Wei, L.; Mao, W.; Chen, Y.; Zhao, Y.; Li, T.; Zeng, B.; et al. Effects of partial root drying on strawberry fruit. Eur. J. Hortic. Sci. 2019, 84, 39–47. [Google Scholar] [CrossRef]
- Guang-Cheng, S.; Rui-Qi, G.; Na, L.; Shuang-En, Y.; Weng-Gang, X. Photosynthetic, chlorophyll fluorescence and growth changes in hot pepper under deficit irrigation and partial root zone drying. Afr. J. Agric. Res. 2011, 6, 4671–4679. [Google Scholar] [CrossRef]
- Chakraborty, D.; Nagarajan, S.; Aggarwal, P.; Gupta, V.K.; Tomar, R.K.; Garg, R.N.; Sahoo, R.N.; Sarkar, A.; Chopra, U.K.; Sarma, K.S.S.; et al. Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment. Agric. Water Manag. 2008, 95, 1323–1334. [Google Scholar] [CrossRef]
- Sharma, R.; Bhardwaj, S. Effect of mulching on soil and water conservation: A review. Agric. Rev. 2017, 38, 311–315. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Wang, R.Y.; Ma, B.L.; Xiong, Y.C.; Qiang, S.C.; Wang, C.L.; Liu, C.A.; Li, F.M. Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem. Field Crops Res. 2014, 161, 137–148. [Google Scholar] [CrossRef]
- Mutetwa, M.; Mtaita, T. Effects of mulching and fertilizer sources on growth and yield of onion. J. Glob. Innov. Agric. Soc. Sci. 2014, 2, 102–106. [Google Scholar] [CrossRef]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent advances in mulching materials and methods for modifying soil environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Yaghi, T.; Arslan, A.; Naoum, F. Cucumber (Cucumis sativus, L.) water use efficiency (WUE) under plastic mulch and drip irrigation. Agric. Water Manag. 2013, 128, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Kumari, P.; Ojha, R.K.; Job, M. Effect of plastic mulches on soil temperature and tomatoyield inside and outside the polyhouse. Agric. Sci. Digest 2016, 36, 333–336. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Mageed, T.A.; Semida, W.M.; Abd El-wahed, M.H. Effect of mulching on plant water status, soil salinity and yield of squash under summer-fall deficit irrigation in salt affected soil. Agric. Water Manag. 2016, 173, 1–12. [Google Scholar] [CrossRef]
- Verma, V.K.; Jha, A.K.; Verma, B.C.; Nonglait, D.; Chaudhuri, P. Effect of Mulching materials on soil health, yield and quality attributes of broccoli grown under the mid-hill conditions. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 1589–1596. [Google Scholar] [CrossRef]
- Lira-Saldivar, R.H.; Méndez-Argüello, B.; Felipe-Victoriano, M.; Vera-Reyes, I.; Cardenas-Flores, A.; Méndez-Argüello, B.; Felipe-Victoriano, M.; Vera-Reyes, I.; Cardenas-Flores, A.; Méndez-Argüello, B.; et al. Gas exchange, yield and fruit quality of Cucurbita pepo cultivated with zeolite and plastic mulch. Agrochimica 2017, 61, 123–139. [Google Scholar] [CrossRef]
- Amer, K.H. Effect of irrigation method and quantity on squash yield and quality. Agric. Water Manag. 2011, 98, 1197–1206. [Google Scholar] [CrossRef]
- Silva, G.H.; Cunha, F.F.; Morais, C.V.; Freitas, A.R.J.; Silva, D.J.H.; Souza, C.M.D. Mulching materials and wetted soil percentages on zucchini cultivation. Ciênc. Agrotecnol. 2020, 44, e006720. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration–Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Buss, P. The use of capacitance based measurement of real time soil water profile dynamics for irrigation scheduling. In Proceedings of the National Conference Irrigation Association, Australia and National Committee Irrigation Drainage, Launceston, TAS, Australia, 17–19 May 1993. [Google Scholar]
- Vera, J.; Mounzer, O.; Ruiz-Sánchez, M.C.; Abrisqueta, I.; Tapia, L.M.; Abrisqueta, J.M. Soil water balance experiments utilizing capacitance and neutron probe measurements in irrigation scheduling. In Transactions of the Second International Symposium on Soil Water Measurement Using Capacitance Impedance and Time Domain Transmission (TDT); Paltineanu, I.C., Ed.; Paltin International Incorporated: Beltsville, MD, USA, 2007; p. 180. [Google Scholar]
- Li, Y.; Song, H.; Zhou, L.; Xu, Z.; Zhou, G. Tracking chlorophyll fluorescence as an indicator of drought and rewatering across the entire leaf lifespan in a maize field. Agric. Water Manag. 2019, 211, 190–201. [Google Scholar] [CrossRef]
- Helrich, K. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Caruso, G.; Conti, S.; Villari, G.; Borrelli, C.; Melchionna, G.; Minutolo, M.; Russo, G.; Amalfitano, C. Effects of transplanting time and plant density on yield, quality and antioxidant content of onion (Allium cepa L.) in southern Italy. Sci. Hortic. 2014, 166, 111–120. [Google Scholar] [CrossRef]
- Patanè, C.; Tringali, S.; Sortino, O. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Sci. Hortic. 2011, 129, 590–596. [Google Scholar] [CrossRef]
- CoStat. CoStat Version 6.451—Statistics Software; CoHort Software: Monterey, CA, USA, 2018. [Google Scholar]
- Rashid, M.A.; Zhang, X.; Andersen, M.N.; Olesen, J.E. Can mulching of maize straw complement deficit irrigation to improve water use efficiency and productivity of winter wheat in North China plain? Agric. Water Manag. 2019, 213, 1–11. [Google Scholar] [CrossRef]
- Wong, S.C.; Cowan, I.R.; Farquhar, G.D. Stomatal conductance correlates with photosynthetic capacity. Nature 1979, 282, 424–426. [Google Scholar] [CrossRef]
- Tuzet, A.; Perrier, A.; Leuning, R. A coupled model of stomatal conductance, photosynthesis and transpiration. Plant Cell Environ. 2003, 26, 1097–1116. [Google Scholar] [CrossRef]
- Liu, F.; Jensen, C.R.; Andersen, M.N. Hydraulic and chemical signals in the control of leaf expansion and stomatal conductance in soybean exposed to drought stress. Funct. Plant Biol. 2003, 30, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Parkash, V.; Singh, S. A Review on potential plant-based water stress indicators for vegetable crops. Sustainability 2020, 12, 3945. [Google Scholar] [CrossRef]
- Raghavendra, A.S.; Gonugunta, V.K.; Christmann, A.; Grill, E. ABA Perception and Signalling. Trends Plant Sci. 2010, 15, 395–401. [Google Scholar] [CrossRef]
- Sperry, J.S.; Alder, N.N.; Eastlack, S.E. The effect of reduced hydraulic conductance on stomatal conductance and xylem cavitation. J. Exp. Bot. 1993, 44, 1075–1082. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant Drought Stress: Effects, Mechanisms and Management. In Sustainable Agriculture; Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 153–188. [Google Scholar]
- Shirke, P.A. Leaf photosynthesis, dark respiration and fluorescence as influenced by leaf age in an evergreen tree. Prosop. Juliflor. 2001, 39, 305–311. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Zhang, J.; Li, F.; Hu, X. Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China. Agric. Water Manag. 2006, 84, 41–52. [Google Scholar] [CrossRef]
- Romero, P.; Dodd, I.C.; Martinez-Cutillas, A. Contrasting physiological effects of partial root zone drying in field-grown grapevine (Vitis vinifera L. cv. Monastrell) according to total soil water availability. J. Exp. Bot. 2012, 63, 4071–4083. [Google Scholar] [CrossRef] [Green Version]
- Sahin, U.; Ekinci, M.; Ors, S.; Turan, M.; Yildiz, S.; Yildirim, E. Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Sci. Hortic. 2018, 240, 196–204. [Google Scholar] [CrossRef]
- Ibarra-Jiménez, L.; Zermeño-González, A.; Munguía-López, J.; Rosario Quezada-Martín, M.A.; De La Rosa-Ibarra, M. Photosynthesis, soil temperature and yield of cucumber as affected by colored plastic mulch. Acta Agric. Scandinav. Sect. B Plant Soil Sci. 2008, 58, 372–378. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Zhang, J.; Li, W. Combined effect of different amounts of irrigation and mulch films on physiological indexes and yield of drip-irrigated maize (Zea mays L.). Water 2019, 11, 472. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Ding, J.; Zhang, Y.; Wu, J.; Zhang, J.; Pan, X.; Gao, C.; Wang, Y.; He, F. Effects of tillage and mulching measures on soil moisture and temperature, photosynthetic characteristics and yield of winter wheat. Agric. Water Manag. 2018, 201, 299–308. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, L.; Xue, X.; Kamran, M.; Ahmad, I.; Dong, Z.; Liu, T.; Jia, Z.; Zhang, P.; Han, Q. Plastic film mulching stimulates soil wet-dry alternation and stomatal behavior to improve maize yield and resource use efficiency in a semi-arid region. Field Crops Res. 2019, 233, 101–113. [Google Scholar] [CrossRef]
- Li, Q.; Shen, J.; Zhao, D. Effect of irrigation frequency on yield and leaf water use efficiency of winter wheat. Trans. Chin. Soc. Agric. Eng. 2011, 27, 33–36. [Google Scholar]
- Urban, J.; Ingwers, M.; McGuire, M.A.; Teskey, R.O. Stomatal conductance increases with rising temperature. Plant Signal. Behav. 2017, 12, e1356534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, H.G.; Serraj, R.; Loveys, B.R.; Xiong, L.; Wheaton, A.; Price, A.H. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 2009, 36, 978–989. [Google Scholar] [CrossRef] [Green Version]
- Scherrer, D.; Bader, M.K.-F.; Körner, C. Drought-sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agric. Forest Meteorol. 2011, 151, 1632–1640. [Google Scholar] [CrossRef]
- Talebi, R. Evaluation of chlorophyll content and canopy temperature as indicators for drought tolerance in durum wheat (Triticum durum Desf.). Aust. J. Basic Appl. Sci. 2011, 5, 1457–1462. [Google Scholar]
- Li, R.H.; Guo, P.G.; Michael, B.; Stefania, G.; Salvatore, C. Evaluation of Chlorophyll Content and Fluorescence Parameters as Indicators of Drought Tolerance in Barley. Agric. Sci. China 2006, 5, 751–757. [Google Scholar] [CrossRef]
- Peiguo, G.; Mingqi, L. Studies on photosynthetic characteristics in rice hybrid progenies and their parents I. Chlorophyll content, chlorophyll-Protein complex and chlorophyll fluorescence kinetics. J. Trop. Subtrop. Bot. 1996, 4, 60–65. [Google Scholar]
- Kante, M.; Revilla, P.; De La Fuente, M.; Caicedo, M.; Ordás, B. Stay-green QTLs in temperate elite maize. Euphytica 2016, 207, 463–473. [Google Scholar] [CrossRef] [Green Version]
- Hugar, A.Y.; Halemani, H.L.; Aladakatti, Y.R.; Nandagavi, R.A.; Hallikeri, S.S. Studies on the effect of polyethylene mulching on rainfed cotton genotypes: II. Influence on status of soil moisture, microbial population in soil and uptake of nutrients. Karnataka J. Agric. Sci. 2009, 22, 284–288. [Google Scholar]
- Nasrullah, M.; Khan, M.B.; Ahmad, R.; Ahmad, S.; Hanif, M.; Nazeer, W. Sustainable cotton production and water economy through different planting methods and mulching techniques. Pak. J. Bot. 2011, 43, 1971–1983. [Google Scholar]
- Iqbal, R.; Raza, M.A.S.; Saleem, M.F.; Khan, I.H.; Ahmad, S.; Zaheer, M.S.; Aslam, M.U.; Haider, I. Physiological and biochemical appraisal for mulching and partial rhizosphere drying of cotton. J. Arid Land 2019, 11, 785–794. [Google Scholar] [CrossRef] [Green Version]
- Kingston-Smith, A.H.; Foyer, C.H. Bundle sheath proteins are more sensitive to oxidative damage than those of the mesophyll in maize leaves exposed to paraquat or low temperatures. J. Exp. Bot. 2000, 51, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Amirjani, M.R.; Mahdiyeh, M. Antioxidative and biochemical responses of wheat to drought stress. J. Agric. Biol. Sci. 2013, 8, 291–301. [Google Scholar]
- Kabiri, R.; Nasibi, F.; Farahbakhsh, H. Effect of exogenous salicylic acid on some physiological parameters and alleviation of drought stress in Nigella sativa plant under hyroponic culture. Plant Protect. Sci. 2014, 50, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Kuslu, Y.; Sahin, U.; Kiziloglu, F.M.; Memis, S. Fruit yield and quality, and irrigation water use efficiency of summer squash drip-irrigated with different irrigation quantities in a semi-arid agricultural area. J. Integrat. Agric. 2014, 13, 2518–2526. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Yang, X.; Chen, H.; Cui, Q.; Yuan, G.; Han, X.; Wei, C.; Zhang, Y.; Ma, J.; Zhang, X. Water requirement characteristics and the optimal irrigation schedule for the growth, yield, and fruit quality of watermelon under plastic film mulching. Sci. Hortic. 2018, 241, 74–82. [Google Scholar] [CrossRef]
- Wan, S.; Kang, Y.; Wang, D.; Liu, S.P. Effect of saline water on cucumber (Cucumis sativus L.) yield and water use under drip irrigation in North China. Agric. Water Manag. 2010, 98, 105–113. [Google Scholar] [CrossRef]
- Khan, M.N.; Ayub, G.; Ilyas, M.; Haq, F.U.; Ali, J.; Alam, A. Effect of different mulching materials on weeds and yield of Chili cultivars. Pure Appl. Biol. 2016, 5, 1160–1170. [Google Scholar] [CrossRef]
- Zhang, H.; Xiong, Y.; Huang, G.; Xu, X.; Huang, Q. Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District. Agric. Water Manag. 2017, 179, 205–214. [Google Scholar] [CrossRef]
- Al-Omran, A.M.; Sheta, A.S.; Falatah, A.M.; Al-Harbi, A.R. Effect of drip irrigation on squash (Cucurbita pepo) yield and water-use efficiency in sandy calcareous soils amended with clay deposits. Agric. Water Manag. 2005, 73, 43–55. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Growth, yield, fruit quality and nutrient uptake of hydroponically cultivated zucchini squash as affected by irrigation systems and growing seasons. Sci. Hortic. 2005, 105, 177–195. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, S.; Zhu, Z.; Jiang, H.; Zhang, X. Assessing the effects of plant density and plastic film mulch on maize evaporation and transpiration using dual crop coefficient approach. Agric. Water Manag. 2019, 225, 105765. [Google Scholar] [CrossRef]
Depth (cm) | Particle Size (%) | Texture | FC % | WP % | ks (mm/h) | S % | ρb (g cm−3) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | |||||||||
0–10 | 82.90 | 8.80 | 8.30 | sandy loam | 22.11 | 5.53 | 48.06 | 38.15 | 1.40 | ||
10–30 | 74.35 | 16.85 | 8.80 | sandy loam | 21.30 | 4.72 | 18.10 | 35.00 | 1.51 | ||
30–50 | 70.32 | 20.8 8 | 8.80 | sandy loam | 22.44 | 4.46 | 11.39 | 33.17 | 1.57 | ||
Depth (cm) | pH | Cation (meq L−1) | Anions (meq L−1) | ||||||||
Ca2+ | Mg2+ | Na+ | K+ | HCO3− | CO3 2− | CI− | SO4 2− | ||||
0–10 | 7.56 | 2.95 | 0.95 | 1.98 | 0.39 | 1.25 | 0.00 | 2.45 | 2.35 | ||
10–30 | 7.47 | 3.73 | 0.59 | 3.85 | 0.44 | 1.28 | 0.00 | 3.10 | 3.45 | ||
30–50 | 7.35 | 4.40 | 0.98 | 4.78 | 0.73 | 1.78 | 0.00 | 4.00 | 4.48 |
Treatments | gs (mol H2O m−2 s−1) | Pn (μmol CO2 m−2 s−1) | Tr (mmol H2O m−2 s−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
35 DAS | 63 DAS | 83 DAS | 35 DAS | 63 DAS | 83 DAS | 35 DAS | 63 DAS | 83 DAS | ||
Season (S) | WS | 0.2912 b | 0.2192 b | 0.1722 b | 8.647 b | 9.335 b | 9.1668 b | 3.115 b | 2.804 b | 2.887 b |
SS | 0.3881 a | 0.3182 a | 0.2122 a | 9.657 a | 10.414 a | 10.381 a | 4.285 a | 3.952 a | 3.836 a | |
p-value | 0.0059 ** | 0.0006 ** | 0.0126 * | 0.023 * | 0.0465 * | 0.0172 * | 0.014 * | 0.0002 ** | 0.0039 ** | |
LSD0.05 | 0.032 | 0.0107 | 0.019 | 0.678 | 1.037 | 0.694 | 0.602 | 0.072 | 0.254 | |
Mulch (M) | WM | 0.3445 | 0.3004 a | 0.2257 a | 10.176 a | 9.961 b | 10.256 a | 4.046 a | 3.812 a | 3.852 a |
BM | 0.3401 | 0.2660 b | 0.1818 b | 9.778 a | 10.461 a | 10.088 a | 3.901 a | 3.359 b | 3.173 b | |
NM | 0.3262 | 0.2397 c | 0.1690 c | 7.502 b | 9.200 c | 8.976 b | 3.150 b | 2.963 c | 3.061 b | |
p-value | 0.0527 ns | 0.00001 ** | 0.0001 ** | 0.00001 ** | 0.00001 ** | 0.0001 ** | 0.00001 ** | 0.00001 ** | 0.0001 ** | |
LSD0.05 | -- | 0.014 | 0.0095 | 0.451 | 0.151 | 0.273 | 0.169 | 0.093 | 0.132 | |
Irrigation (I) | FI | 0.375 a | 0.3222 a | 0.2284 a | 10.562 a | 10.685 a | 10.333 a | 4.044 a | 3.826 a | 3.603 a |
PRD70 | 0.333 b | 0.2557 b | 0.2051 a | 9.0196 b | 9.972 b | 9.594 b | 3.792 a | 3.272 b | 3.414 b | |
PRD50 | 0.310 c | 0.2283 c | 0.1431 b | 7.875 c | 8.965 c | 9.394 b | 3.265 b | 3.036 c | 3.069 c | |
p-value | 0.0001 ** | 0.00001 ** | 0.00001 ** | 0.00001 ** | 0.00001 ** | 0.0005 ** | 0.00001 ** | 0.00001 ** | 0.00001 ** | |
LSD0.05 | 0.0149 | 0.016 | 0.028 | 0.416 | 0.313 | 0.44 | 0.261 | 0.092 | 0.142 | |
S × M | p-value | 0.9732 ns | 0.68 ns | 0.013 * | 0.99 ns | 0.971 ns | 0.936 ns | 0.664 ns | 0.404 ns | 0.0251 * |
S × I | p-value | 0.9948 ns | 0.99 ns | 0.85 ns | 0.99 ns | 0.989 ns | 0.909 ns | 0.924 ns | 0.438 ns | 0.0066 ** |
M × I | p-value | 0.4528 ns | 0.15 ns | 0.23 ns | 0.0002 ** | 0.011 * | 0.171 ns | 0.851 ns | 0.0005 ** | 0.00001 ** |
S × M × I | p-value | 0.9980 ns | 0.99 ns | 0.91 ns | 1 ns | 0.999 ns | 0.999 ns | 0.994 ns | 0.788 ns | 0.00001 ** |
Treatments | Chlorophyll Index (SPAD Value) | |||
---|---|---|---|---|
35 DAS | 63 DAS | 83 DAS | ||
Season (S) | WS | 43.88 b | 42.99 b | 41.66 b |
SS | 48.31 a | 43.88 a | 45.85 a | |
p-value | 0.0083 ** | 0.196 ns | 0.010 * | |
LSD 0.05 | 1.746 | -- | 1.81 | |
Mulch (M) | WM | 48.09 a | 45.61 a | 46.28 a |
BM | 46.75 b | 46.21 a | 45.00 b | |
NM | 43.46 c | 38.42 b | 39.98 c | |
p-value | 0.00001 ** | 0.00001 ** | 0.0001 ** | |
LSD 0.05 | 1.12 | 1.27 | 0.99 | |
Irrigation (I) | FI | 48.35 a | 45.81 a | 46.07 a |
PRD70 | 45.73 b | 43.05 b | 43.53 b | |
PRD50 | 44.22 b | 41.38 c | 41.66 c | |
p-value | 0.00001 ** | 0.00001 ** | 0.0005 ** | |
LSD 0.05 | 1.66 | 1.09 | 1.41 | |
S × M | p-value | 0.0016 ** | 0.035 * | 0.023 * |
S × I | p-value | 0.806 ns | 0.101 ns | 0.440 ns |
M × I | p-value | 0.831 ns | 0.0265 * | 0.265 ns |
S × M × I | p-value | 0.718 ns | 0.122 ns | 0.063 ns |
Treatments | TSS (%) | TA (% Citric Acid) | VC (mg/100 g FW) | |
---|---|---|---|---|
Season (S) | WS | 4.98 b | 0.311 | 0.727 |
SS | 5.52 a | 0.334 | 0.746 | |
p-value | 0.036 * | 0.1785 ns | 0.602 ns | |
LSD 0.05 | 0.149 | -- | -- | |
Mulch (M) | WM | 5.47 b | 0.340 b | 0.760 b |
BM | 5.63 a | 0.342 a | 0.775 a | |
NM | 4.71 c | 0.287 c | 0.675 c | |
p-value | 0.00001 ** | 0.0002 ** | 0.0018 ** | |
LSD 0.05 | 0.052 | 0.018 | 0.045 | |
Irrigation (I) | FI | 5.85 a | 0.373 a | 0.813 a |
PRD70 | 5.63 b | 0.313 b | 0.733 b | |
PRD50 | 4.86 c | 0.281 c | 0.663 c | |
p-value | 0.0001 ** | 0.00001 ** | 0.00001 ** | |
LSD 0.05 | 0.048 | 0.017 | 0.043 | |
S × M | p-value | 0.0003 ** | 0.0457 * | 0.036 * |
S × I | p-value | 0.00001 ** | 0.0047 ** | 0.182 ns |
M × I | p-value | 0.357 ns | 0.958 ns | 0.908 ns |
S × M × I | p-value | 0.635 ns | 0.917 ns | 0.906 ns |
Treatments | Fresh Fruit Yield (Mg ha−1) | IWUE (kg m−3) | |
---|---|---|---|
Season (S) | WS | 72.12 b | 26.71 a |
SS | 85.88 a | 12.92 b | |
p-value | 0.0118 * | 0.0005 ** | |
LSD 0.05 | 6.49 | 1.35 | |
Mulch (M) | WM | 87.46 a | 22.51 a |
BM | 85.30 a | 21.74 b | |
NM | 64.23 c | 15.20 c | |
p-value | 0.00001 ** | 0.0001 ** | |
LSD 0.05 | 3.41 | 0.45 | |
Irrigation (I) | FI | 80.62 a | 15.07 c |
PRD70 | 82.53 a | 20.48 b | |
PRD50 | 73.85 c | 23.90 a | |
p-value | 0.0001 ** | 0.0001 ** | |
LSD 0.05 | 2.51 | 0.52 | |
S × M | p-value | 0.0001 ** | 0.0001 ** |
S × I | p-value | 0.0003 ** | 0.0001 ** |
M × I | p-value | 0.474 ns | 0.0001 ** |
S × M × I | p-value | 0.773 ns | 0.0001 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farah, A.H.; Al-Ghobari, H.M.; Zin El-Abedin, T.K.; Alrasasimah, M.S.; El-Shafei, A.A. Impact of Partial Root Drying and Soil Mulching on Squash Yield and Water Use Efficiency in Arid. Agronomy 2021, 11, 706. https://doi.org/10.3390/agronomy11040706
Farah AH, Al-Ghobari HM, Zin El-Abedin TK, Alrasasimah MS, El-Shafei AA. Impact of Partial Root Drying and Soil Mulching on Squash Yield and Water Use Efficiency in Arid. Agronomy. 2021; 11(4):706. https://doi.org/10.3390/agronomy11040706
Chicago/Turabian StyleFarah, Abdulhalim H., Hussein M. Al-Ghobari, Tarek K. Zin El-Abedin, Mohammed S. Alrasasimah, and Ahmed A. El-Shafei. 2021. "Impact of Partial Root Drying and Soil Mulching on Squash Yield and Water Use Efficiency in Arid" Agronomy 11, no. 4: 706. https://doi.org/10.3390/agronomy11040706
APA StyleFarah, A. H., Al-Ghobari, H. M., Zin El-Abedin, T. K., Alrasasimah, M. S., & El-Shafei, A. A. (2021). Impact of Partial Root Drying and Soil Mulching on Squash Yield and Water Use Efficiency in Arid. Agronomy, 11(4), 706. https://doi.org/10.3390/agronomy11040706