Effects of Irrigation Management on Chipping Potato (Solanum tuberosum L.) Production in the Upper Midwest of the U.S.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Agronomic Practices
2.2. Harvest Practices
2.3. Storage Management
2.4. Fry Color Analysis
2.5. Sugar Analysis
2.6. Data Analysis
3. Results
3.1. In-Season Weather, Irrigation, and Soil Moisture
3.2. Yield and Tuber Size
4. Tuber Quality at Harvest
5. Water Use
6. Storage Quality
7. Discussion
7.1. Deficit Irrigation Applied during Late Season Provides Potential for Water-Use Sustainability
7.2. Over-Irrigation Is Not Beneficial for Potato Yield, Quality, and Storage Quality
7.3. Extreme Weather Conditions Increase Year-to-Year Potato Crop Production Variation
7.4. Increased Understanding of the Difference of Agronomic Performance between Chipping Varieties
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Evapotranspiration | (ET) |
Variable Rate Irrigation | (VRI) |
Water Content Reflectometer | (WCR) |
Volumetric Water Content | (VWC) |
Irrigation Efficiency | (IE) |
Water-Use Efficiency | (WUE) |
Fresh Weight | (FW) |
References
- Ati, A.; Lyada, A.; Najim, S. Water use efficiency of potato (Solanum tuberosum L.) under different irrigation methods and potassium fertilizer rates. Ann. Agric. Sci. 2012, 57, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Misra, A.K. Climate change and challenges of water and food security. Int. J. Sustain. Built Environ. 2014, 3, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Keene, A.A.; Mitchell, P.D. Economic Impact of Specialty Crop Production and Processing in Wisconsin; University of Wisconsin—Extension, Cooperative Extension: Madison, WI, USA, 2010. [Google Scholar]
- National Potato Council. Potato Statistical Yearbook; NPC: Washington, DC, USA, 2018. [Google Scholar]
- Kniffin, M.; Potter, K.; Bussan, A.J.; Colquhoun, J.; Bradbury, K. Sustaining Central Sands Water Resources: State of the Science 2014; University of Wisconsin—Extension, Cooperative Extension: Madison, WI, USA, 2014; p. 45. Available online: https://learningstore.uwex.edu/Assets/pdfs/G4058.pdf (accessed on 1 July 2020).
- Luczaj, J.; Masarik, K. Groundwater quantity and quality issues in a water-rich region: Examples from Wisconsin, USA. Resources 2015, 4, 323–357. [Google Scholar] [CrossRef]
- Kraft, G.J.; Clancy, K.; Mechenich, D.J.; Haucke, J. Irrigation effects in the northern lake states: Wisconsin central sands revisited. Groundwater 2012, 50, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Jefferies, R.A.; Heilbronn, T.D. Water stress as a constraint on growth in the potato crop. 1. Model development. Agric. For. Meteorol. 1991, 53, 185–196. [Google Scholar] [CrossRef]
- Fabeiro, C.; de Santa Olalla, F.M.; de Juan, J.A. Yield and size of deficit irrigated potatoes. Agric. Water Manag. 2001, 48, 255–266. [Google Scholar] [CrossRef]
- Trippensee, A.; Byrne, P.; Boggess, W.; Smajstrla, A. Management Effect on Irrigation Water Use for Potato Farms of North Florida; Food and Resource Economics Department, Institute of Food and Agricultural Sciences, University of Florida: Gainesville, FL, USA, 1996. [Google Scholar]
- Shock, C.C.; Pereira, A.B.; Eldredge, E.P. Irrigation best management practices for potato. Am. J. Potato Res. 2007, 84, 29–37. [Google Scholar] [CrossRef]
- MacKerron, D.K.L.; Jefferies, R.A. The influence of early soil moisture stress on tuber numbers in potato. Potato Res. 1986, 29, 299–312. [Google Scholar] [CrossRef]
- Holder, C.B.; Cary, J.W. Soil oxygen and moisture in relation to Russet Burbank potato yield and quality. Am. Potato J. 1984, 61, 67–75. [Google Scholar] [CrossRef]
- English, M. Deficit irrigation. I. Analytical framework. J. Irrig. Drain. Eng. 1990, 116, 400–402. [Google Scholar] [CrossRef]
- Stark, J.C.; Love, S.L. Potato Production Systems; University of Idaho Agricultural Communications: Moscow, ID, USA, 2003. [Google Scholar]
- Mihovilovich, E.; Carli, C.; de Hualla, M.F.V.; Bonierbale, M.W. Tuber Bulking Maturity Assessment of Elite and Advanced Potato Clones Protocol; International Potato Center (CIP): Lima, Peru, 2014. [Google Scholar]
- Dwyer, L.M.; Boisvert, J.B. Response to irrigation of two potato cultivars (Solanum tuberosum L.’Kennebec’and’Superior’). Can. Agric. Eng. 1990, 32, 197–203. [Google Scholar]
- Walworth, J.L.; Carling, D.E. Tuber initiation and development in irrigated and non-irrigated potatoes. Am. J. Potato Res. 2002, 79, 387–395. [Google Scholar] [CrossRef]
- Ojala, J.C.; Stark, J.C.; Kleinkopf, G.E. Influence of irrigation and nitrogen management on potato yield and quality. Am. Potato J. 1990, 67, 29–43. [Google Scholar] [CrossRef]
- Yost, J.L. Soil Carbon and Soil Moisture Variation in Cropped Fields of the Central Sands in Wisconsin. Ph.D. Thesis, University of Wisconsin—Madison, Madison, WI, USA, 2016. [Google Scholar]
- Bohman, B.J.; Rosen, C.J.; Mulla, D.J. Evaluation of variable rate nitrogen and reduced irrigation management for potato production. Agron. J. 2019, 111, 2005–2017. [Google Scholar] [CrossRef]
- Colquhoun, J.B.; Chapman, S.A.; Gevens, A.J.; Groves, R.L.; Heider, D.J.; Jensen, B.M.; Nice, G.R.W.; Ruark, M.D. Commercial Vegetable Production in Wisconsin; University of Wisconsin Extension: Madison, WI, USA, 2019. [Google Scholar]
- Sowokinos, J.R.; Shock, C.C.; Stieber, T.D.; Eldredge, E.P. Compositional and enzymatic changes associated with the sugar-end defect in Russet Burbank potatoes. Am. J. Potato Res. 2000, 77, 47–56. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2019. Available online: http://www.r-project.org/ (accessed on 10 July 2020).
- De Mendiburu, F.; Yaseen, M. Agricolae: Statistical Procedures for Agricultural Research, R Package Version 1.4.0. 2020. Available online: https://myaseen208.github.io/agricolae/https://cran.r-project.org/package=agricolae (accessed on 10 July 2020).
- SAS Institute Inc. SAS/ACCESS® 9.4 Interface; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Bussan, A.J. Growth of Chipping Potatoes as Influenced by Reduced Irrigation. Unpublished work; 2013. [Google Scholar]
- Hassan, A.A.; Sarkar, A.A.; Ali, M.H.; Karim, N.N. Effect of deficit irrigation at different growth stages on the yield of potato. Pak. J. Biol. Sci. 2002, 5, 128–134. [Google Scholar] [CrossRef]
- Badr, M.A.; El-Tohamy, W.A.; Zaghloul, A.M. Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agric. Water Manag. 2012, 110, 9–15. [Google Scholar] [CrossRef]
- Roberts, S.; Qubrosi, R.N.; Rhee, J.K. Uptake and mobility of nutrients as influenced by potato irrigation. In Proceedings of the Annual Washington State Potato Conference and Trade Fair, Moses Lake, WA, USA, 5–7 February 1991; pp. 57–63. [Google Scholar]
- Waddell, J.T.; Gupta, S.C.; Moncrief, J.F.; Rosen, C.J.; Steele, D.D. Irrigation-and nitrogen-management impacts on nitrate leaching under potato. J. Environ. Qual. 2000, 29, 251–261. [Google Scholar] [CrossRef]
- Sexton, B.T.; Moncrief, J.F.; Rosen, C.J.; Gupta, S.C.; Cheng, C.C. Optimizing Nitrogen and Irrigation Inputs for Corn Based on Nitrate Leaching and Yield on a Coarse—Textured Soil; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America: Madison, WI, USA, 1996; Volume 25. [Google Scholar]
- Saffigna, P.G.; Keeney, D.R.; Tanner, C.B. Nitrogen, Chloride, and Water Balance with Irrigated Russet Burbank Potatoes in a Sandy Soil 1. Agron. J. 1977, 69, 251–257. [Google Scholar] [CrossRef]
- Timm, H.; Flocker, W.J. Responses of Potato Plants to Fertilization and Soil Moisture Tension Under Induced Soil Compaction 1. Agron. J. 1966, 58, 153–157. [Google Scholar] [CrossRef]
- Bradley, G.A.; Pratt, A.J. The effect of different combinations of soil moisture and nitrogen levels on early plant development and tuber set of the potato. Am. Potato J. 1955, 32, 254–258. [Google Scholar] [CrossRef]
- Hill, H.M. Irrigation-The option for economic development. In Proceedings of the Irrigation on the Prairies: Proceedings of the 4th Annual Western Provincial Conference Rationalization of Water and Soil Research and Management, Saskatoon, SK, Canada, 25–27 November 1985; pp. 233–245. [Google Scholar]
- Colquhoun, J.B.; Chapman, S.A.; Gevens, A.J.; Groves, R.L.; Heider, D.J.; Jensen, B.M.; Nice, G.R.W.; Ruark, M.D.; Wang, Y. Commercial Vegetable Production in Wisconsin 2020; Madison Extension Publication A3422; University of Wisconsin—Extension, Cooperative Extension: Madison, WI, USA, 2020. [Google Scholar]
- Wang, Y.; Naber, M.R.; Crosby, T.W. Effects of wound healing management on potato postharvest storability. Agronomy 2020, 10, 512. [Google Scholar] [CrossRef] [Green Version]
- Vogel, E.; Donat, M.G.; Alexander, L.V.; Meinshausen, M.; Ray, D.K.; Karoly, D.; Frieler, K. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 2019, 14, 054010. [Google Scholar] [CrossRef]
- Urban, D.; Roberts, M.J.; Schlenker, W.; Lobell, D.B. Projected temperature changes indicate significant increase in interannual variability of US maize yields. Clim. Chang. 2012, 112, 525–533. [Google Scholar] [CrossRef]
- Lobell, D.B.; Hammer, G.L.; McLean, G.; Messina, C.; Roberts, M.J.; Schlenker, W. The critical role of extreme heat for maize production in the United States. Nat. Clim. Chang. 2013, 3, 497–501. [Google Scholar] [CrossRef]
- Varela-Ortega, C.; Blanco-Gutiérrez, I.; Esteve, P.; Bharwani, S.; Fronzek, S.; Downing, T.E. How can irrigated agriculture adapt to climate change? Insights from the Guadiana Basin in Spain. Reg. Environ. Chang. 2016, 16, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Evans, R.G.; LaRue, J.; Stone, K.C.; King, B.A. Adoption of site-specific variable rate sprinkler irrigation systems. Irrig. Sci. 2013, 31, 871–887. [Google Scholar] [CrossRef] [Green Version]
- Hedley, C.B.; Yule, I.J.; Bradbury, S. Analysis of Potential Benefits of Precision Irrigation for Variable Soils at Five Pastoral and Arable Production Sites in New Zealand. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 1–6. Available online: https://iuss.org/19th%20WCSS/Symposium/pdf/1104.pdf (accessed on 10 July 2020).
- Perea, R.G.; Daccache, A.; Díaz, J.R.; Poyato, E.C.; Knox, J.W. Modelling impacts of precision irrigation on crop yield and in-field water management. Precis. Agric. 2018, 19, 497–512. [Google Scholar] [CrossRef]
- O’Shaughnessy, S.A.; Evett, S.R.; Colaizzi, P.D.; Andrade, M.A.; Marek, T.H.; Heeren, D.M.; Lamm, F.R.; LaRue, J.L. Identifying advantages and disadvantages of variable rate irrigation: An updated review. Appl. Eng. Agric. 2019, 35, 837–852. [Google Scholar] [CrossRef]
- Wiberley-Bradford, A.E.; Bethke, P.C. Suppression of the vacuolar invertase gene delays senescent sweetening in chipping potatoes. J. Sci. Food Agric. 2017, 98, 354–360. [Google Scholar] [CrossRef]
Irrigation Rate | Treatments |
---|---|
1—over irrigation | Irrigation at 125% of adjusted evapotranspiration (ET) |
2—standard irrigation | Irrigation at 100%ET, standard treatment |
3—deficit irrigation 1 | Irrigation at 75%ET |
4—deficit irrigation 2 | Irrigation at 50%ET |
5 *—deficit irrigation 3 | Irrigation at 75%ET starting on 25 July, and then at 50% ET starting on 20 August |
Source | Total Yield | Marketable Yield | Hollow Heart Incidence | Specific Gravity | Irrigation Efficiency | Water-Use Efficiency | ||
---|---|---|---|---|---|---|---|---|
Total Yield | Marketable Yield | Total Yield | Marketable Yield | |||||
2018 | ||||||||
Irrigation Rate | - | - | - | - | 0.002 | 0.025 | 0.025 | 0.002 |
Variety | <0.001 | <0.001 | <0.001 | 0.035 | - | - | - | - |
Rate × Variety | - | - | - | - | - | - | - | - |
2019 | ||||||||
Irrigation Rate | - | - | - | - | 0.038 | - | 0.022 | - |
Variety | <0.001 | <0.001 | <0.001 | 0.013 | <0.001 | - | <0.001 | - |
Rate × Variety | - | - | - | - | - | - | - | - |
Variety | Total Yield (Mg ha−1) | Marketable Yield (Mg ha−1) | Hollow Heart Incidence | Specific Gravity | ||||
---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |
Hodag | 75.2 b | 61.4 a | 54.0 a | 27.2 a | 18% a | 6% a | 1.076 a | 1.083 a |
Lamoka | 52.0 c | 51.6 b | 34.1 c | 9.0 b | 3% b | 0% b | 1.072 b | 1.080 b |
Snowden | 81.3 a | 61.2 a | 48.1 b | 10.9 b | 3% b | 0% b | 1.075 a | 1.082 ab |
Treatment | Irrigation Efficiency (Mg ha−1 cm−1 of Water) | Water-Use Efficiency (Mg ha−1 cm−1 of Water) |
---|---|---|
2018 | ||
Rate 1 (125%ET) | 1.23 c | 0.59 b |
Rate 2 (100%ET) | 1.68 b | 0.77 a |
Rate 3 (75%ET) | 1.84 ab | 0.80 a |
Rate 4 (50%ET) | 1.96 a | 0.81 a |
2019 | ||
Rate 1 (125%ET) | 1.38 c | 0.63 b |
Rate 2 (100%ET) | 1.56 bc | 0.66 ab |
Rate 3 (75%ET) | 1.64 b | 0.67 ab |
Rate 4 (50%ET) | 1.83 a | 0.70 a |
Rate 5 (75–50%ET) | 1.74 ab | 0.69 a |
Treatment | Irrigation Efficiency (Mg ha−1 cm−1 of Water) | Water-Use Efficiency (Mg ha−1 cm−1 of Water) |
---|---|---|
Rate 1 | 0.82 c | 0.39 b |
Rate 2 | 1.14 b | 0.52 a |
Rate 3 | 1.33 a | 0.58 a |
Rate 4 | 1.32 a | 0.54 a |
Variety | Total Yield | |
---|---|---|
IE (Mg ha−1 cm−1 of Water) | WUE (Mg ha−1 cm−1 of Water) | |
Hodag | 1.72 a | 0.71 a |
Lamoka | 1.45 b | 0.60 b |
Snowden | 1.71 a | 0.71 a |
Source | Sucrose Concentration (mg g−1 FW) | Glucose Concentration (mg g−1 FW) | Fry Color |
---|---|---|---|
2018 | |||
Irrigation Rate (R) | - | - | - |
Variety (V) | <0.001 | <0.001 | <0.001 |
R × V | - | - | - |
Storage Length (S) | <0.001 | <0.001 | <0.001 |
R × S | - | - | - |
V × S | <0.001 | <0.001 | - |
R × V × S | - | - | - |
2019 | |||
Irrigation Rate (R) | - | - | - |
Variety (V) | 0.024 | <0.001 | - |
R × V | - | - | - |
Storage Length (S) | - | <0.001 | <0.001 |
R × S | - | - | - |
V × S | <0.001 | <0.001 | <0.001 |
R × V × S | - | - | - |
Storage Length | Sucrose Concentration (mg g−1 FW) | Glucose Concentration (mg g−1 FW) |
---|---|---|
Hodag | ||
0 Months | 0.499 cd | 0.041 bc |
4 Months | 0.625 bc | 0.081 b |
8 Months | 0.628 bc | 0.025 c |
Lamoka | ||
0 Months | 0.656 b | 0.039 bc |
4 Months | 0.580 bc | 0.036 bc |
8 Months | 0.524 c | 0.003 d |
Snowden | ||
0 Months | 0.575 bc | 0.061 b |
4 Months | 0.433 d | 0.040 bc |
8 Months | 1.43 a | 0.366 a |
Storage Length |
Sucrose Concentration (mg g−1 FW) |
Glucose Concentration (mg g−1 FW) |
---|---|---|
Hodag | ||
4 Months | 0.612 b | 0.149 ab |
8 Months | 0.298 c | 0.032 c |
Lamoka | ||
4 Months | 0.527 bc | 0.136 ab |
8 Months | 0.296 c | 0.012 c |
Snowden | ||
4 Months | 0.343 c | 0.104 b |
8 Months | 0.822 a | 0.196 a |
Storage Length | Hunter-L Value |
---|---|
Hodag | |
0 Months | 60.2 ab |
4 Months | 56.8 c |
8 Months | 60.5 ab |
Lamoka | |
0 Months | 61.0 ab |
4 Months | 57.5 c |
8 Months | 62.4 a |
Snowden | |
0 Months | 59.7 b |
4 Months | 59.5 bc |
8 Months | 51.7 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crosby, T.W.; Wang, Y. Effects of Irrigation Management on Chipping Potato (Solanum tuberosum L.) Production in the Upper Midwest of the U.S. Agronomy 2021, 11, 768. https://doi.org/10.3390/agronomy11040768
Crosby TW, Wang Y. Effects of Irrigation Management on Chipping Potato (Solanum tuberosum L.) Production in the Upper Midwest of the U.S. Agronomy. 2021; 11(4):768. https://doi.org/10.3390/agronomy11040768
Chicago/Turabian StyleCrosby, Trevor W., and Yi Wang. 2021. "Effects of Irrigation Management on Chipping Potato (Solanum tuberosum L.) Production in the Upper Midwest of the U.S." Agronomy 11, no. 4: 768. https://doi.org/10.3390/agronomy11040768
APA StyleCrosby, T. W., & Wang, Y. (2021). Effects of Irrigation Management on Chipping Potato (Solanum tuberosum L.) Production in the Upper Midwest of the U.S. Agronomy, 11(4), 768. https://doi.org/10.3390/agronomy11040768