Predicting the Lime Demand of Arable Soils from pH Value, Soil Texture and Soil Organic Matter Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Guidelines to Predict the Soil’s Lime Demand as Recommended by VDLUFA
2.1.1. Description of the Guidelines
- Classification according to the lime supply statuses
- ii.
- Classification according to the soil texture
- iii.
- Classification according to the SOM
2.1.2. Dependency of the Lime Supply Status and of the Soil Lime Demand on Soil Texture, SOM Content and Soil pH
- With an increasing clay content (TEX1 → TEX5), the ranges of the lime supply statuses (A–E) shift towards higher pH values and
- With an increasing SOM content (SOM1 → SOM4), the ranges of the lime supply statuses (A–E) shift towards lower pH values.
- Lime supply statuses A and B: the linear relationships between pH and the CaO demand as per each soil texture and SOM combination (Figure 2),
- Lime supply statuses D and E: no lime demand
2.2. From the Stepwise, Class-Based VDLUFA Approach to a Stepless, Continuously Scaled Approach
2.3. Models and Statistics
3. Results
3.1. Predicting the Lime Supply Status of Soil
3.2. Predicting the Lime Demand of Soils for Different Lime Supply Statuses
3.3. Model Validation
4. Discussion
- The finger texturing method is usually applied for agricultural purposes because the exact estimation of the soil texture by sieving and sedimentation analyses is time- and cost-intensive. However, Stocker and Walthert [29] reported that solely 68%, 31% and 56% of clay, silt and sand variability, respectively, could be explained by the finger texturing method (predicted by sieving and sedimentation analyses). They took more than 11,000 soil samples from approximately 90 Swiss forest sites from six depth levels down to 1.5 m. This rather imprecise soil texture determination can lead to unrealistic and severe differences in the lime application recommendations of management units [19].
- In the past, management zones of 3 to 5 ha with assumed homogenous soil were chosen, since equal zones generally require the same liming rates and provide reasonable sizes in terms of the application equipment and sampling rates [30]. However, the creation of those management zones neglects the variation in the soil texture, SOM and the actual pH within the management units. To provide reliable soil parameters for lime management at a higher spatial resolution and low costs, on-the-go soil sensor systems, such as the Geophilus [31] and the Veris pH manager [32], are appropriate solutions. Meyer et al. [19] used the mentioned sensor systems in combination with targeted soil samples that were taken for sensor calibrations by analyzing the soil pH, SOM and soil texture with standardized laboratory methods. Finally, they produced 2 × 2 m maps of the actual soil acidity (pH), SOM and soil texture (clay, silt, and sand). Bönecke et al. [17] used these generated soil maps and the stepless algorithm to successfully produce variable rate lime application maps. They compared the variable liming rates with a standard uniform liming approach and found that 63% of the field would be over-fertilized by approximately 12 Mg of lime, 6% would receive approximately 6 Mg too little lime and 31% would still be adequately limed under the uniform liming approach.
- As mentioned above, reference or targeted soil sampling is necessary to calibrate sensor data that are not causally related to the agronomic parameters used to make management decisions. In practice, the determination of sampling locations is almost subjective. According to Adamchuk et al. [33], three criteria should be considered: (a) targeted samples have to cover the entire range of the sensor data, (b) within a radius of 30 m around the reference sampling point, the soil should be spatially homogeneous and (c) the targeted sampling locations should be well distributed throughout the area of investigation. To the best of our knowledge, a reliable automated approach to determine the targeted sampling locations built up on these three criteria is still missing.
- Regarding fertilizer applicators, Lawrence [21,34,35] reported that, although variable rate technologies have been demonstrated to satisfactorily operate the actual performance of the fertilizer, spreading machinery is often shown to be inadequate. A similar assessment was given by Holmes and Jiang [36] who argued that the current fertilizer spreading equipment does not provide the accuracy needed to undertake variable rate liming trials. This problem is further aggravated because the two main variable rate fertilizer application techniques are the application of liquid and granulose products. Granular lime fertilizers are available, but are more expensive and therefore usually less applied.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pierce, F.J.; Nowak, P. Aspects of Precision Agriculture. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 1999; Volume 67, pp. 1–85. [Google Scholar]
- Basso, B.; Cammarano, D.; Fiorentino, C.; Ritchie, J.T. Wheat yield response to spatially variable nitrogen fertilizer in Mediterranean environment. Eur. J. Agron. 2013, 51, 65–70. [Google Scholar] [CrossRef]
- Robertson, M.J.; Llewellyn, R.S.; Mandel, R.; Lawes, R.; Bramley, R.G.V.; Swift, L.; Metz, N.; O’Callaghan, C. Adoption of variable rate fertiliser application in the Australian grains industry: Status, issues and prospects. Precis. Agric. 2012, 13, 181–199. [Google Scholar] [CrossRef]
- Robert, P.C. Precision agriculture: A challenge for crop nutrition management. In Progress in Plant Nutrition: Plenary Lec-Tures of the XIV International Plant Nutrition Colloquium: Food Security and Sustainability of Agro-ecosystems through Basic and Applied Research; Horst, W.J., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2010; pp. 143–149. ISBN 978-90-481-6191-1. [Google Scholar]
- Moharana, P.C.; Jena, R.K.; Pradhan, U.K.; Nogiya, M.; Tailor, B.L.; Singh, R.S.; Singh, S.K. Geostatistical and fuzzy clustering approach for delineation of site-specific management zones and yield-limiting factors in irrigated hot arid environment of India. Precis. Agric. 2019, 21, 426–448. [Google Scholar] [CrossRef]
- Moral, F.J.; Rebollo, F.J.; Serrano, J.M. Delineating site-specific management zones on pasture soil using a probabilistic and objective model and geostatistical techniques. Precis. Agric. 2019, 21, 620–636. [Google Scholar] [CrossRef]
- Wang, X.; Miao, Y.; Dong, R.; Chen, Z.; Kusnierek, K.; Mi, G.; Mulla, D.J. Economic Optimal Nitrogen Rate Variability of Maize in Response to Soil and Weather Conditions: Implications for Site-Specific Nitrogen Management. Agronomy 2020, 10, 1237. [Google Scholar] [CrossRef]
- Basso, B.; Dumont, B.; Cammarano, D.; Pezzuolo, A.; Marinello, F.; Sartori, L. Environmental and economic benefits of variable rate nitrogen fertilization in a nitrate vulnerable zone. Sci. Total Environ. 2016, 545–546, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Nawar, S.; Corstanje, R.; Halcro, G.; Mulla, D.; Mouazen, A.M. Delineation of Soil Management Zones for Variable-Rate Fertilization. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2017; pp. 175–245. [Google Scholar]
- Vogel, S.; Bönecke, E.; Kling, C.; Kramer, E.; Lück, K.; Nagel, A.; Philipp, G.; Rühlmann, J.; Schröter, I.; Gebbers, R. Base Neutralizing Capacity of Agricultural Soils in a Quaternary Landscape of North-East Germany and Its Relationship to Best Management Practices in Lime Requirement Determination. Agronomy 2020, 10, 877. [Google Scholar] [CrossRef]
- Schilling, G.; Ansorge, H. Pflanzenernährung und Düngung: 164 Tabellen (Plant Nutrition and Fertilization: 164 Tables); VEB Deutscher Landwirtschaftsverlag: Berlin, Germany, 1982. (In German) [Google Scholar]
- Blume, H.-P.; Brümmer, G.W.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.-M.; Thiele-Bruhn, S.; Welp, G. Scheffer/Schachtschabel: Lehrbuch der Bodenkunde (Scheffer/Schachtschabel: Textbook of Soil Science); Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Goulding, K.W.T. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. 2016, 32, 390–399. [Google Scholar] [CrossRef]
- Kerschberger, M.; Deller, B.; Hege, U.; Heyn, J.; Kape, H.E.; Krause, O.; Pollehn, J.; Rex, M.J.; Severin, K. Bestimmung des Kalkbedarfs von Acker-Und Grünlandböden (Determination of the Lime Requirement of Arable and Grassland Soils); VDLUFA-Verlag: Speyer, Germany, 2000. [Google Scholar]
- Kerschberger, M.; Marks, G. Einstellung und Erhaltung eines standorttypischen optimalen pH-Wertes im Boden-Grundvoraussetzung fur eine effektive und umweltvertragliche Pflanzenproduktion (Setting and maintaining a site-specific optimum pH value in the soil-a basic requirement for effective and environmentally compatible plant production). Berichte über Landwirtschaft 2007, 85, 56–77. [Google Scholar]
- Von Wulffen, U.; Roschke, M.; Kape, H.-E. Richtwerte für die Untersuchung und Beratung Sowie zur Fachlichen Umsetzung der Düngeverordnung (DüV): Gemeinsame Hinweise der Länder Brandenburg, Mecklenburg-Vorpommern und Sachsen-Anhalt (Guide values for the Examination and Advice as Well as for the Professional Implementation of the Fertilizer Ordinance (DüV): Joint Information from the States of Brandenburg, Mecklenburg-Western Pomerania and Saxony-Anhalt); LLFG: Güterfelde, Germany, 2008. [Google Scholar]
- Bönecke, E.; Meyer, S.; Vogel, S.; Schröter, I.; Gebbers, R.; Kling, C.; Kramer, E.; Lück, K.; Nagel, A.; Philipp, G.; et al. Guidelines for precise lime management based on high-resolution soil pH, texture and SOM maps generated from proximal soil sensing data. Precis. Agric. 2020, 1–31. [Google Scholar] [CrossRef]
- Boenecke, E.; Lueck, E.; Ruehlmann, J.; Gruendling, R.; Franko, U. Determining the within-field yield variability from seasonally changing soil conditions. Precis. Agric. 2018, 19, 750–769. [Google Scholar] [CrossRef]
- Meyer, S.; Kling, C.; Vogel, S.; Schröter, I.; Nagel, A.; Kramer, E.; Gebbers, R.; Philipp, G.; Lück, K.; Gerlach, F.; et al. Creating soil texture maps for precision liming using electrical resistivity and gamma ray mapping. In Precision Agriculture’19; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019. [Google Scholar]
- Haynes, R.; Naidu, R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutr. Cycl. Agroecosyst. 1998, 51, 123–137. [Google Scholar] [CrossRef]
- Lawrence, H.G. Adoption of Precision Agriculture Technologies for Fertiliser Placement in New Zealand. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2007. [Google Scholar]
- Fulton, J.P.; Shearer, S.A.; Chabra, G.; Higgins, S.F. Performance Assessment and Model Development of A Variable–Rate, Spinner–Disc Fertilizer Applicator. Trans. ASAE 2001, 44, 1071. [Google Scholar] [CrossRef]
- Voon Wulffen, H.-U.; Horn, D.; Lorenz, F.; Müller, R.; Müller, T.; Münchhoff, K.; Pihl, U.; Weber, A. DLG-Merkblatt 456—Hinweise zur Kalkdüngung (DLG-Leaflet 456—Notes on Lime Fertilization), 1st ed.; DLG e. V.: Frankfurt am Main, Germany, 2020. [Google Scholar]
- Shiozawa, S.; Campbell, G.S. On The Calculation of Mean Particle Diameter and Standard Deviation from Sand, Silt, and Clay Fractions. Soil Sci. 1991, 152, 427–431. [Google Scholar] [CrossRef]
- Shirazi, M.A.; Boersma, L.; Hart, J.W. A Unifying Quantitative Analysis of Soil Texture: Improvement of Precision and Extension of Scale. Soil Sci. Soc. Am. J. 1988, 52, 181–190. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org (accessed on 17 August 2020).
- Baumgarten, A.; Berthold, H.; Buchgraber, K.; Dersch, G.; Egger, H.; Egger, R.; Eigner, H.; Frank, P.; Gerzabek, M.; Hölzl, F.X. Richtlinie für die Sachgerechte Düngung im Ackerbau und Grünland (Guideline for Appropriate Fertilization in Arable Farming and Grassland); BMLFUW: Wien, Austria, 2017. [Google Scholar]
- Vitosh, M.L.; Johnson, J.W.; Mengel, D.B. Tri-State Fertilizer Recommendations for Corn, Soybean, Wheat and Alfalfa; Extension Bulletin; Ohio State University: Columbus, OH, USA, 1995; E-2567; Available online: http://ohioline.osu.edu/e2567/ (accessed on 23 January 2021).
- Stocker, N.; Walthert, L. Böden und Wasserhaushalt von Wäldern und Waldstandorten der Schweiz unter heutigem und zukünftigem Klima (BOWA-CH)—Datengrundlage und Datenharmonisierung. (Soils and Water Balance of Forests and Forest Locations in Switzerland under Current and Future Climates—Data Basis and Data Harmonization) Projektinterner Bericht (Internal Project Report); ETH-Zurich: Zurich, Switzerland, 2013. [Google Scholar]
- Borgelt, S.C.; Searcy, S.; Stout, B.A.; Mulla, D.J. Spatially Variable Liming Rates: A Method for Determination. Trans. ASAE 1994, 37, 1499–1507. [Google Scholar] [CrossRef]
- Lueck, E.; Ruehlmann, J. Resistivity mapping with GEOPHILUS ELECTRICUS—Information about lateral and vertical soil heterogeneity. Geoderma 2013, 199, 2–11. [Google Scholar] [CrossRef]
- Schirrmann, M.; Gebbers, R.; Kramer, E.; Seidel, J. Soil pH Mapping with an On-The-Go Sensor. Sensors 2011, 11, 573–598. [Google Scholar] [CrossRef]
- Adamchuk, V.I.; Rossel, R.A.V.; Marx, D.B.; Samal, A.K. Using targeted sampling to process multivariate soil sensing data. Geoderma 2011, 163, 63–73. [Google Scholar] [CrossRef]
- Lawrence, H.G.; Yule, I.J. A GIS Methodology to Calculate In-Field Dispersion of Fertilizer from a Spinning-Disc Spreader. Trans. ASABE 2007, 50, 379–387. [Google Scholar] [CrossRef]
- Lawrence, H.G.; Yule, I.J.; Coetzee, M.G. Development of an Image-Processing Method to Assess Spreader Performance. Trans. ASABE 2007, 50, 397–407. [Google Scholar] [CrossRef]
- Holmes, A.W.; Jiang, G. Effect of variable rate lime application on autumn sown barley performance. Agron. N. Z. 2017, 47, 37–45. [Google Scholar]
pH Class/Lime Supply Status | Description | Lime Requirement |
---|---|---|
A—very low | Conditions: Significant impairment of soil structure and nutrient availability, very high lime requirement, significant yield losses in almost all crops up to complete yield loss, strongly increased plant availability of heavy metals in the soil. Action: Liming takes precedence over other fertilization measures regardless of the crop. | high |
B—low | Conditions: Still sub-optimal conditions for soil structure and nutrient availability, high lime requirement, mostly still significant yield losses in lime-demanding crops, increased plant availability of heavy metals in the soil. Action: Within the crop rotation, preferential liming for lime-demanding crops. | medium |
C—optimal | Conditions: Optimal conditions for soil structure and nutrient availability, low lime requirement, hardly or no additional yield through liming. Action: Within the crop rotation, liming for lime-demanding crops. | low |
D—high | Conditions: The soil pH status is higher than intended, no lime requirement. Action: Omission of lime application | no liming |
E—very high | Conditions: The soil pH status is much higher than intended and can negatively affect nutrient availability as well as crop yield and quality. Action: No liming or use of fertilizers that, as a result of physiochemical or chemical reactions, acidify the soil. | no liming and no use of fertilizers that react to alkaline conditions |
Soil Texture | Coordinate Centers of the Polygons | |||
---|---|---|---|---|
Classes | Clay | Silt | Sand | MPD |
Tt | 0.766 | 0.117 | 0.117 | 0.0006 |
Tu2 | 0.550 | 0.375 | 0.075 | 0.0013 |
Tl | 0.550 | 0.225 | 0.225 | 0.0022 |
Tu3 | 0.363 | 0.563 | 0.074 | 0.0030 |
Tu4 | 0.284 | 0.683 | 0.033 | 0.0036 |
Ts2 | 0.550 | 0.075 | 0.375 | 0.0037 |
Lt3 | 0.400 | 0.400 | 0.200 | 0.0039 |
Ut4 | 0.210 | 0.720 | 0.070 | 0.0057 |
Lu | 0.235 | 0.575 | 0.190 | 0.0077 |
Ut3 | 0.144 | 0.753 | 0.103 | 0.0085 |
Lt2 | 0.300 | 0.400 | 0.300 | 0.0085 |
Lts | 0.350 | 0.225 | 0.425 | 0.0105 |
Ut2 | 0.100 | 0.775 | 0.125 | 0.0112 |
Uu | 0.040 | 0.880 | 0.080 | 0.0124 |
Ts3 | 0.400 | 0.075 | 0.525 | 0.0120 |
Ls2 | 0.210 | 0.450 | 0.340 | 0.0145 |
Uls | 0.125 | 0.575 | 0.300 | 0.0183 |
Ls3 | 0.210 | 0.350 | 0.440 | 0.0205 |
Ts4 | 0.300 | 0.075 | 0.625 | 0.0262 |
Us | 0.040 | 0.650 | 0.310 | 0.0275 |
Slu | 0.125 | 0.450 | 0.425 | 0.0282 |
Ls4 | 0.210 | 0.225 | 0.565 | 0.0315 |
Sl4 | 0.145 | 0.250 | 0.605 | 0.0481 |
St3 | 0.210 | 0.075 | 0.715 | 0.0529 |
Su4 | 0.040 | 0.450 | 0.510 | 0.0549 |
Sl3 | 0.100 | 0.250 | 0.650 | 0.0684 |
Su3 | 0.040 | 0.325 | 0.635 | 0.0845 |
Sl2 | 0.065 | 0.175 | 0.760 | 0.1166 |
St2 | 0.110 | 0.050 | 0.840 | 0.1262 |
Su2 | 0.025 | 0.175 | 0.800 | 0.1595 |
Ss | 0.025 | 0.050 | 0.925 | 0.2456 |
Fitted | Dependent Variable | |||
---|---|---|---|---|
Coefficient | pHmax_A 1 | pHmax_B 1 | pHmax_C 1 | pHmax_D 1 |
a | 4.13 | 6.69 | 7.64 | 4.87 |
(1.85 × 10−1) | (2.19 × 10−2) | (2.22 × 10−2) | (1.38 × 10−1) | |
b | −2.37 × 10−1 | −1.17 × 10 | 1.08 × 10 | −1.15 |
(1.75 × 10−1) | (7.19 × 10−1) | (5.58) | (1.30 × 10−1) | |
c | −5.17 × 10−3 | −1.81 × 10−2 | −1.03 × 10 | −8.26 × 10−3 |
(1.90 × 10−3) | (8.02 × 10−4) | (1.66 × 10) | (1.41 × 10−3) | |
d | 7.34 × 10−2 | 6.31 × 10 | −3.04 × 10−2 | −1.33 × 10−1 |
(5.32 × 10−2) | (9.56) | (3.28 × 10−3) | (3.96 × 10−2) | |
e | 5.31 × 10−6 | 7.94 × 10−5 | 1.05 × 10−4 | 9.51 × 10−6 |
(1.69 × 10−5) | (8.53 × 10−6) | (1.02 × 10−5) | (1.26 × 10−5) | |
f | 1.72 × 10−3 | 1.74 × 10−2 | −1.95 × 10−7 | 1.46 × 10−3 |
(5.06 × 10−4) | (3.77 × 10−3) | (2.55 × 10−8) | (3.77 × 10−4) | |
g | 1.34 × 10−2 | −1.63 × 10−2 | 4.28 | −4.79 × 10−3 |
(5.09 × 10−3) | (3.22 × 10) | (7.76 × 10−1) | (3.79 × 10−3) | |
h | 3.00 × 10−8 | −1.39 × 10−7 | −1.49 × 10 | 3.54 × 10−8 |
(4.66 × 10−8) | (2.41 × 10−8) | (1.97) | (3.47 × 10−8) | |
i | −9.94 × 10−8 | −5.60 × 10−5 | 3.62 × 10 | −1.83 × 10−6 |
(1.15 × 10−6) | (1.08 × 10−5) | (7.56) | (8.60 × 10−7) | |
j | 1.78 × 10−4 | 7.68 × 10−3 | −1.55 × 10−3 | 9.13 × 10−5 |
(5.87 × 10−5) | (1.20 × 10−2) | (4.00 × 10−4) | (4.38 × 10−5) |
Fitted | Dependent Variable | |
---|---|---|
Coefficient | Intercept 1 | Slope 1 |
a | −1.32 | 4.69 × 10−1 |
(8.96 × 10−2) | (2.93 × 10−2) | |
b | 1.01 × 10−1 | 8.20 × 10−2 |
(1.80 × 10−3) | (4.64 × 10−3) | |
c | −8.64 | −1.12 |
(7.29 × 10−2) | (2.72 × 10−2) | |
d | 4.39 × 10−4 | −1.75 × 10−3 |
(5.96 × 10−5) | (1.57 × 10−4) | |
e | 1.45 × 10−1 | 2.24 × 10−2 |
(1.50 × 10−3) | (6.35 × 10−4) | |
f | 1.70 × 10−2 | 1.44 × 10−2 |
(1.50 × 10−4) | (3.83 × 10−4) | |
g | 3.71 × 10−2 | 1.28 × 10−2 |
(4.79 × 10−3) | (1.59 × 10−3) | |
h | −7.33 × 10−7 | 7.71 × 10−6 |
(1.47 × 10−7) | (5.18 × 10−7) | |
i | −5.18 × 10−4 | −8.45 × 10−5 |
(5.22 × 10−6) | (2.40 × 10−6) | |
j | 2.22 × 10−4 | 2.08 × 10−4 |
(5.89 × 10−6) | (1.20 × 10−5) | |
k | 3.64 × 10−2 | 5.02 × 10−3 |
(2.73 × 10−4) | (9.57 × 10−5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruehlmann, J.; Bönecke, E.; Meyer, S. Predicting the Lime Demand of Arable Soils from pH Value, Soil Texture and Soil Organic Matter Content. Agronomy 2021, 11, 785. https://doi.org/10.3390/agronomy11040785
Ruehlmann J, Bönecke E, Meyer S. Predicting the Lime Demand of Arable Soils from pH Value, Soil Texture and Soil Organic Matter Content. Agronomy. 2021; 11(4):785. https://doi.org/10.3390/agronomy11040785
Chicago/Turabian StyleRuehlmann, Joerg, Eric Bönecke, and Swen Meyer. 2021. "Predicting the Lime Demand of Arable Soils from pH Value, Soil Texture and Soil Organic Matter Content" Agronomy 11, no. 4: 785. https://doi.org/10.3390/agronomy11040785
APA StyleRuehlmann, J., Bönecke, E., & Meyer, S. (2021). Predicting the Lime Demand of Arable Soils from pH Value, Soil Texture and Soil Organic Matter Content. Agronomy, 11(4), 785. https://doi.org/10.3390/agronomy11040785