Effects of Semiarid Wheat Agriculture Management Practices on Soil Microbial Properties: A Review
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Tillage and Residue Management
3.2. Cropping Systems
3.3. Fertilization and Amendment
3.4. Microbes as Sensitive Indicators
3.5. Recommendations for Sampling and Analyses
4. Conclusions
4.1. Summary of Findings
4.2. Future Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- FAO. World Food and Agriculture: Statistical Pocketbook 2018; FAO: Rome, Italy, 2018; ISBN 978-92-5-131012-0. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Shiferaw, B.; Smale, M.; Braun, H.-J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops That Feed the World 10. Past Successes and Future Challenges to the Role Played by Wheat in Global Food Security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.; Sebastian, K.; Scherr, S.J. Pilot Analysis of Global Ecosystems: Agroecosystems; World Resources Institute: Washington, DC, USA, 2000; ISBN 978-1-56973-457-5. [Google Scholar]
- Pimentel, D.; Burgess, M. Soil erosion threatens food production. Agriculture 2013, 3, 443–463. [Google Scholar] [CrossRef] [Green Version]
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Fischer, T.; Byerlee, D.; Edmeades, G. Crop yields and food security: Will yield increases continue to feed the world? Capturing oppor. Overcoming obstacles Australian agronomy. In Proceedings of the 16th Australian Agronomy Conference 2012, Armidale, NSW, Australia, 14–18 October 2012. [Google Scholar]
- O’Leary, G.J.; Aggarwal, P.K.; Calderini, D.F.; Connor, D.J.; Craufurd, P.; Eigenbrode, S.D.; Han, X.; Hatfield, J.L. Challenges and responses to ongoing and projected climate change for dryland cereal production systems throughout the world. Agronomy 2018, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Adhya, T.K.; Kumar, N.; Reddy, G.; Podile, A.R.; Bee, H.; Samantaray, B. Microbial mobilization of soil phosphorus and sustainable p management in agricultural soils. Curr. Sci. 2015, 108, 1280–1287. [Google Scholar]
- Bender, S.F.; Wagg, C.; van der Heijden, M.G.A. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 2016, 31, 440–452. [Google Scholar] [CrossRef]
- Bhattacharyya, P.N.; Goswami, M.P.; Bhattacharyya, L.H. Perspective of beneficial microbes in agriculture under changing climatic scenario: A review. J. Phytol. 2016, 26–41. [Google Scholar] [CrossRef] [Green Version]
- Reali, C.; Pilz Júnior, H.L.; Meile, J.C.; Galindo, S.S.; Fiuza, L.M.; Reali, C.; Pilz Júnior, H.L.; Meile, J.C.; Galindo, S.S.; Fiuza, L.M. Functional genes of microorganisms, comprehending the dynamics of agricultural ecosystems. Braz. Arch. Biol. Technol. 2017, 60. [Google Scholar] [CrossRef] [Green Version]
- de Vries, F.T.; Wallenstein, M.D. Below-ground connections underlying above-ground food production: A framework for optimising ecological connections in the rhizosphere. J. Ecol. 2017, 105, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013, 37, 634–663. [Google Scholar] [CrossRef]
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2013, 2, 587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fierer, N.; Wood, S.A.; de Mesquita, C.P.B. How microbes can, and cannot, be used to assess soil health. Soil Biol. Biochem. 2021, 153, 108111. [Google Scholar] [CrossRef]
- Stott, D. Recommended Soil Health Indicators and Associated Laboratory Procedures; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2019; p. 76.
- Huang, J.; Ji, M.; Xie, Y.; Wang, S.; He, Y.; Ran, J. Global semi-arid climate change over last 60 years. Clim. Dyn. 2016, 3–4, 1131–1150. [Google Scholar] [CrossRef] [Green Version]
- Derpsch, R.; Friedrich, T.; Kassam, A.; Li, H. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agric. Biol. Eng. 2010, 3, 1–25. [Google Scholar] [CrossRef]
- Ghimire, R.; Norton, J.B.; Norton, U.; Ritten, J.P.; Stahl, P.D.; Krall, J.M. Long-term farming systems research in the central high plains. Renew. Agric. Food Syst. 2013, 28, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Varner, B.T.; Epplin, F.M.; Strickland, G.L. Economics of no-till versus tilled dryland cotton, grain sorghum, and wheat. Agron. J. 2011, 103, 1329–1338. [Google Scholar] [CrossRef]
- Sharratt, B.S.; Kennedy, A.C.; Hansen, J.C.; Schillinger, W.F. Soil carbon loss by wind erosion of summer fallow fields in washington’s dryland wheat region. Soil Sci. Soc. Am. J. 2018, 82, 1551–1558. [Google Scholar] [CrossRef] [Green Version]
- Norton, J.; Mukhwana, E.; Norton, U. Loss and recovery of soil organic carbon and nitrogen in a semiarid agroecosystem. Soil Sci. Soc. Am. J. 2012, 76, 505. [Google Scholar] [CrossRef]
- Chen, H.; Bai, Y.; Wang, Q.; Chen, F.; Li, H.; Tullberg, J.N.; Murray, J.R.; Gao, H.; Gong, Y. Traffic and tillage effects on wheat production on the loess plateau of china: 1. crop yield and som. Soil Res. 2008, 46, 645–651. [Google Scholar] [CrossRef]
- Hoyle, F.C.; Murphy, D.V. Influence of organic residues and soil incorporation on temporal measures of microbial biomass and plant available nitrogen. Plant Soil 2011, 347, 53. [Google Scholar] [CrossRef]
- Mohammadi, K.; Rokhzadi, A.; Saberali, S.F.; Byzedi, M.; Nezhad, M.T.K. Tillage effects on soil properties and wheat cultivars traits. Arch. Agron. Soil Sci. 2013, 59, 1625–1641. [Google Scholar] [CrossRef]
- Sainju, U.M.; Caesar-Tonthat, T.; Lenssen, A.W.; Evans, R.G.; Kolberg, R. Tillage and cropping sequence impacts on nitrogen cycling in dryland farming in eastern Montana, USA. Soil Tillage Res. 2009, 103, 332–341. [Google Scholar] [CrossRef]
- Liu, E.; Teclemariam, S.G.; Yan, C.; Yu, J.; Gu, R.; Liu, S.; He, W.; Liu, Q. Long-term effects of no-tillage management practice on soil organic carbon and its fractions in the northern China. Geoderma 2014, 213, 379–384. [Google Scholar] [CrossRef]
- Liu, E.K.; Zhao, B.Q.; Mei, X.R.; So, H.B.; Li, J.; Li, X.Y. Effects of no-tillage management on soil biochemical characteristics in northern China. J. Agric. Sci. 2010, 148, 217. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yang, L.; Gu, D.; Wu, W.; Wen, X.; Liao, Y. Influence of tillage practice on soil CO2 emission rate and soil characteristics in a dryland wheat field. Int. J. Agric. Biol. Pak. 2013, 15, 680–686. [Google Scholar]
- Wang, Q.; Bai, Y.; Gao, H.; He, J.; Chen, H.; Chesney, R.C.; Kuhn, N.J.; Li, H. Soil chemical properties and microbial biomass after 16 years of no-tillage farming on the loess plateau, China. Geoderma 2008, 144, 502–508. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Yan, C.; Liu, E.; Chen, B. Soil Nitrogen and its fractions between long-term conventional and no-tillage systems with straw retention in dryland farming in northern China. Geoderma 2016, 269, 138–144. [Google Scholar] [CrossRef]
- Araya, T.; Nyssen, J.; Govaerts, B.; Deckers, J.; Sommer, R.; Bauer, H.; Gebrehiwot, K.; Cornelis, W.M. seven years resource-conserving agriculture effect on soil quality and crop productivity in the ethiopian drylands. Soil Tillage Res. 2016, 163, 99–109. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, R.; Luo, Z.; Li, L.; Cai, L.; Li, G.; Xie, J. Contributions of Long-Term Tillage systems on crop production and soil properties in the semi-arid loess plateau of China. J. Sci. Food Agric. 2016, 96, 2650–2659. [Google Scholar] [CrossRef]
- Yeboah, S.; Zhang, R.; Cai, L.; Li, L.; Xie, J.; Luo, Z.; Liu, J.; Wu, J. tillage effect on soil organic carbon, microbial biomass carbon and crop yield in spring wheat-field pea rotation. Plant Soil Environ. 2016, 62, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Yin, C.; Mueth, N.; Hulbert, S.; Schlatter, D.; Paulitz, T.C.; Schroeder, K.; Prescott, A.; Dhingra, A. Bacterial communities on wheat grown under long-term conventional tillage and no-till in the pacific northwest of the United States. Phytobiomes J. 2017, 1, 83–90. [Google Scholar] [CrossRef]
- Xia, Q.; Liu, X.; Gao, Z.; Wang, J.; Yang, Z. Responses of rhizosphere soil bacteria to 2-year tillage rotation treatments during fallow period in semiarid southeastern loess plateau. PeerJ 2020, 8, e8853. [Google Scholar] [CrossRef] [PubMed]
- Bissett, A.; Richardson, A.E.; Baker, G.; Kirkegaard, J.; Thrall, P.H. Bacterial community response to tillage and nutrient additions in a long-term wheat cropping experiment. Soil Biol. Biochem. 2013, 58, 281–292. [Google Scholar] [CrossRef]
- Jackson, L.E.; Calderon, F.J.; Steenwerth, K.L.; Scow, K.M.; Rolston, D.E. Responses of soil microbial processes and community structure to tillage events and implications for soil quality. Geoderma 2003, 114, 305–317. [Google Scholar] [CrossRef]
- Coolman, R.M.; Hoyt, G.D. The effects of reduced tillage on the soil environment. HortTechnology 1993, 3, 143–145. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, K.; Wang, W.; Khan, A.; Ren, G.; Zaheer, S.; Sial, T.A.; Feng, Y.; Yang, G. Straw mulching with fertilizer nitrogen: An approach for improving crop yield, soil nutrients and enzyme activities. Soil Use Manag. 2019, 35, 526–535. [Google Scholar] [CrossRef]
- Hoyle, F.C.; Murphy, D.V.; Fillery, I.R.P. Temperature and stubble management influence microbial CO2–C evolution and gross n transformation rates. Soil Biol. Biochem. 2006, 38, 71–80. [Google Scholar] [CrossRef]
- Soon, Y.K.; Lupwayi, N.Z. Straw management in a cold semi-arid region: Impact on soil quality and crop productivity. Field Crop. Res. 2012, 139, 39–46. [Google Scholar] [CrossRef]
- Wang, J.; Fu, X.; Sainju, U.M.; Zhao, F. Soil carbon fractions in response to straw mulching in the loess plateau of China. Biol. Fertil. Soils 2018, 54, 423–436. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, P.; Li, J.; Chen, Y.; Ying, X.; Liu, S. The effects of two organic manures on soil properties and crop yields on a temperate calcareous soil under a wheat–maize cropping system. Eur. J. Agron. 2009, 31, 36–42. [Google Scholar] [CrossRef]
- Huang, F.; Liu, Z.; Mou, H.; Li, J.; Zhang, P.; Jia, Z. Impact of farmland mulching practices on the soil bacterial community structure in the semiarid area of the loess plateau in China. Eur. J. Soil Biol. 2019, 92, 8–15. [Google Scholar] [CrossRef]
- Liu, Y.; Mao, L.; He, X.; Cheng, G.; Ma, X.; An, L.; Feng, H. Rapid change of am fungal community in a rain-fed wheat field with short-term plastic film mulching practice. Mycorrhiza 2012, 22, 31–39. [Google Scholar] [CrossRef]
- Melero, S.; López-Bellido, R.J.; López-Bellido, L.; Muñoz-Romero, V.; Moreno, F.; Murillo, J.M.; Franzluebbers, A.J. Stratification ratios in a rainfed mediterranean vertisol in wheat under different tillage, rotation and n fertilisation rates. Soil Tillage Res. 2012, 119, 7–12. [Google Scholar] [CrossRef]
- Madejón, E.; Moreno, F.; Murillo, J.M.; Pelegrín, F. Soil biochemical response to long-term conservation tillage under semi-arid mediterranean conditions. Soil Tillage Res. 2007, 94, 346–352. [Google Scholar] [CrossRef]
- Schlatter, D.C.; Kahl, K.; Carlson, B.; Huggins, D.R.; Paulitz, T. Fungal community composition and diversity vary with soil depth and landscape position in a no-till wheat-based cropping system. FEMS Microbiol. Ecol. 2018, 94. [Google Scholar] [CrossRef] [Green Version]
- Schlatter, D.C.; Schillinger, W.F.; Bary, A.I.; Sharratt, B.; Paulitz, T.C. Biosolids and conservation tillage: Impacts on soil fungal communities in dryland wheat-fallow cropping systems. Soil Biol. Biochem. 2017, 115, 556–567. [Google Scholar] [CrossRef]
- Schlatter, D.C.; Paul, N.C.; Shah, D.H.; Schillinger, W.F.; Bary, A.I.; Sharratt, B.; Paulitz, T.C. Biosolids and tillage practices influence soil bacterial communities in dryland wheat. Microb. Ecol. 2019, 78, 737–752. [Google Scholar] [CrossRef]
- Caesar-TonThat, T.; Sainju, U.M.; Wright, S.F.; Shelver, W.L.; Kolberg, R.L.; West, M. Long-term tillage and cropping effects on microbiological properties associated with aggregation in a semi-arid soil. Biol. Fertil. Soils 2011, 47, 157–165. [Google Scholar] [CrossRef]
- Sharma-Poudyal, D.; Schlatter, D.; Yin, C.; Hulbert, S.; Paulitz, T. Long-term no-till: A major driver of fungal communities in dryland wheat cropping systems. PLoS ONE 2017, 12, e0184611. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Li, W.; Dong, W.; Tian, Y.; Hu, C.; Liu, B. Tillage changes vertical distribution of soil bacterial and fungal communities. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef]
- Kaur, G.; Garcia, A.G.Y.; Norton, U.; Persson, T.; Kelleners, T. Effects of cropping practices on water-use and water productivity of dryland winter wheat in the high plains ecoregion of wyoming. J. Crop Improv. 2015, 29, 491–517. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Vigil, M.F. Precipitation storage efficiency during fallow in wheat-fallow systems. Agron. J. 2010, 102, 537–543. [Google Scholar] [CrossRef] [Green Version]
- Norton, J.B. No-till Grain Production in Wyoming: Status and Potential. In Proceedings of the Western Nutrient Management Conference, Salt Lake City, UT, USA, 8–9 March 2007; Volume 7, p. 6. [Google Scholar]
- Calderón, F.J.; Nielsen, D.; Acosta-martínez, V.; Vigil, M.F.; Lyon, D. Cover crop and irrigation effects on soil microbial communities and enzymes in semiarid agroecosystems of the central great plains of north America. Pedosphere 2016, 26, 192–205. [Google Scholar] [CrossRef]
- Frank, A.B.; Liebig, M.A.; Tanaka, D.L. Management effects on soil CO2 efflux in northern Semiarid grassland and cropland. Soil Tillage Res. 2006, 89, 78–85. [Google Scholar] [CrossRef]
- Liu, J.; Dai, J.; Wang, Z.; Zhai, B. Effects of fallow or planting wheat (Triticum Aestivum L.) and fertilizing p or fertilizing p and n practices on soil carbon and nitrogen in a low-organic-matter Soil. Soil Sci. Plant Nutr. 2016, 62, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Sherrod, L.A.; Peterson, G.A.; Westfall, D.G.; Ahuja, L.R. Soil organic carbon pools after 12 years in no-till dryland agroecosystems. Soil Sci. Soc. Am. J. 2005, 69, 1600–1608. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Martínez, V.; Mikha, M.M.; Vigil, M.F. Microbial communities and enzyme activities in soils under alternative crop rotations compared to wheat–fallow for the central great plains. Appl. Soil Ecol. 2007, 37, 41–52. [Google Scholar] [CrossRef]
- Sainju, U.M.; Lenssen, A.; Caesar-Thonthat, T.; Waddell, J. Dryland plant biomass and soil carbon and nitrogen fractions on transient land as influenced by tillage and crop rotation. Soil Tillage Res. 2007, 93, 452–461. [Google Scholar] [CrossRef]
- Rosenzweig, S.T.; Fonte, S.J.; Schipanski, M.E. Intensifying rotations increases soil carbon, fungi, and aggregation in semi-arid agroecosystems. Agric. Ecosyst. Environ. 2018, 258, 14–22. [Google Scholar] [CrossRef]
- Doolette, A.; Armstrong, R.; Tang, C.; Guppy, C.; Mason, S.; McNeill, A. Phosphorus uptake benefit for wheat following legume break crops in semi-arid Australian farming systems. Nutr. Cycl. Agroecosystems 2019, 113, 247–266. [Google Scholar] [CrossRef]
- O’Dea, J.K.; Jones, C.A.; Zabinski, C.A.; Miller, P.R.; Keren, I.N. Legume, cropping intensity, and n-fertilization effects on soil attributes and processes from an eight-year-old semiarid wheat system. Nutr. Cycl. Agroecosystems 2015, 102, 179–194. [Google Scholar] [CrossRef] [Green Version]
- Wachter, J.M.; Painter, K.M.; Carpenter-Boggs, L.A.; Huggins, D.R.; Reganold, J.P. Productivity, economic performance, and soil quality of conventional, mixed, and organic dryland farming systems in eastern Washington State. Agric. Ecosyst. Environ. 2019, 286, UNSP 106665. [Google Scholar] [CrossRef]
- Biederbeck, V.O.; Zentner, R.P.; Campbell, C.A. Soil microbial populations and activities as influenced by legume green fallow in a semiarid climate. Soil Biol. Biochem. 2005, 37, 1775–1784. [Google Scholar] [CrossRef]
- Bainard, L.D.; Hamel, C.; Gan, Y. Edaphic properties override the influence of crops on the composition of the soil bacterial community in a semiarid agroecosystem. Appl. Soil Ecol. 2016, 105, 160–168. [Google Scholar] [CrossRef]
- Hamel, C.; Gan, Y.; Sokolski, S.; Bainard, L.D. High frequency cropping of pulses modifies soil nitrogen level and the rhizosphere bacterial microbiome in 4-year rotation systems of the semiarid prairie. Appl. Soil Ecol. 2018, 126, 47–56. [Google Scholar] [CrossRef]
- Yang, C.; Hamel, C.; Gan, Y.; Vujanovic, V. Pyrosequencing reveals how pulses influence rhizobacterial communities with feedback on wheat growth in the semiarid prairie. Plant Soil 2013, 367, 493. [Google Scholar] [CrossRef]
- Kirkegaard, J.A.; Ryan, M.H. Magnitude and mechanisms of persistent crop sequence effects on wheat. Field Crop. Res. 2014, 164, 154–165. [Google Scholar] [CrossRef]
- McBeath, T.M.; Gupta, V.V.S.R.; Llewellyn, R.S.; Davoren, C.W.; Whitbread, A.M. Break-crop effects on wheat production across soils and seasons in a semi-arid environment. Crop Pasture Sci. 2015, 66, 566–579. [Google Scholar] [CrossRef] [Green Version]
- de Vries, F.T.; Liiri, M.E.; Bjørnlund, L.; Bowker, M.A.; Christensen, S.; Setälä, H.M.; Bardgett, R.D. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Chang. 2012, 2, 276–280. [Google Scholar] [CrossRef]
- McKenna, T.P.; Crews, T.E.; Kemp, L.; Sikes, B.A. Community structure of soil fungi in a novel perennial crop monoculture, annual agriculture, and native prairie reconstruction. PLoS ONE 2020, 15, e0228202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The State of Kernza®. Kernza®. 2020. Available online: https://kernza.org/watch-the-2020-kernza-meeting/ (accessed on 26 April 2021).
- Zentner, R.P.; Basnyat, P.; Brandt, S.A.; Thomas, A.G.; Ulrich, D.; Campbell, C.A.; Nagy, C.N.; Frick, B.; Lemke, R.; Malhi, S.S.; et al. Effects of input management and crop diversity on economic returns and riskiness of cropping systems in the semi-arid canadian prairie. Renew. Agric. Food Syst. 2011, 26, 208–223. [Google Scholar] [CrossRef]
- Qiu, W.; Liu, J.; Li, B.; Wang, Z. N2O and CO2 emissions from a dryland wheat cropping system with long-term n fertilization and their relationships with soil C, N, and bacterial community. Environ. Sci. Pollut. Res. 2020, 27, 8673–8683. [Google Scholar] [CrossRef]
- Wang, R.; Hu, Y.; Wang, Y.; Ali, S.; Liu, Q.; Guo, S. Nitrogen application increases soil respiration but decreases temperature sensitivity: Combined effects of crop and soil properties in a semiarid agroecosystem. Geoderma 2019, 353, 320–330. [Google Scholar] [CrossRef]
- Strickland, M.S.; Rousk, J. Considering fungal:bacterial dominance in soils—Methods, controls, and ecosystem implications. Soil Biol. Biochem. 2010, 42, 1385–1395. [Google Scholar] [CrossRef]
- Liao, H.; Zhang, Y.; Zuo, Q.; Du, B.; Chen, W.; Wei, D.; Huang, Q. Contrasting responses of bacterial and fungal communities to aggregate-size fractions and long-term fertilizations in soils of northeastern China. Sci. Total Environ. 2018, 635, 784–792. [Google Scholar] [CrossRef]
- Hamel, C.; Hanson, K.; Selles, F.; Cruz, A.F.; Lemke, R.; McConkey, B.; Zentner, R. Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the canadian prairie. Soil Biol. Biochem. 2006, 38, 2104–2116. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, M.; Song, W.; Wen, S.; Wang, B.; Zhu, C.; Shen, R. Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in southern China. Soil Biol. Biochem. 2017, 113, 240–249. [Google Scholar] [CrossRef]
- Reardon, C.L.; Gollany, H.T.; Wuest, S.B. Diazotroph community structure and abundance in wheat–fallow and wheat–pea crop rotations. Soil Biol. Biochem. 2014, 69, 406–412. [Google Scholar] [CrossRef]
- Ishaq, S.L.; Seipel, T.; Yeoman, C.J.; Menalled, F.D. Soil Bacterial communities of wheat vary across the growing season and among dryland farming systems. Geoderma 2020, 358, 113989. [Google Scholar] [CrossRef]
- Tautges, N.E.; Sullivan, T.S.; Reardon, C.L.; Burke, I.C. Soil microbial diversity and activity linked to crop yield and quality in a dryland organic wheat production system. Appl. Soil Ecol. 2016, 108, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Calderón, F.J.; Vigil, M.F.; Benjamin, J. Compost input effect on dryland wheat and forage yields and soil quality. Pedosphere 2018, 28, 451–462. [Google Scholar] [CrossRef]
- Reeve, J.R.; Endelman, J.B.; Miller, B.E.; Hole, D.J. Residual effects of compost on soil quality and dryland wheat yield sixteen years after compost application. Soil Sci. Soc. Am. J. 2012, 76, 278–285. [Google Scholar] [CrossRef]
- Bouzaiane, O.; Cherif, H.; Saidi, N.; Jedidi, N.; Hassen, A. Effects of municipal solid waste compost application on the microbial biomass of cultivated and non-cultivated soil in a semi-arid zone. Waste Manag. Res. 2007, 25, 334–342. [Google Scholar] [CrossRef]
- Cogger, C.G.; Bary, A.I.; Kennedy, A.C.; Fortuna, A.-M. Long-term crop and soil response to biosolids applications in dryland wheat. J. Environ. Qual. 2013, 42, 1872–1880. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Dong, M.; Liu, Y.; Ma, X.; An, L.; Young, J.P.W.; Feng, H. Effects of long-term fertilization on am fungal community structure and glomalin-related soil protein in the loess plateau of China. Plant Soil 2011, 342, 233–247. [Google Scholar] [CrossRef]
- Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 2017, 15, 579–590. [Google Scholar] [CrossRef]
- Hannula, S.E.; Kielak, A.M.; Steinauer, K.; Huberty, M.; Jongen, R.; Long, J.R.D.; Heinen, R.; Bezemer, T.M. Time after time: Temporal variation in the effects of grass and forb species on soil bacterial and fungal communities. Microbiology 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Frey, S.D. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 2019, 50, 237–259. [Google Scholar] [CrossRef]
- Ai, C.; Zhang, S.; Zhang, X.; Guo, D.; Zhou, W.; Huang, S. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma 2018, 319, 156–166. [Google Scholar] [CrossRef]
- Cassman, N.A.; Leite, M.F.A.; Pan, Y.; de Hollander, M.; van Veen, J.A.; Kuramae, E.E. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland. Sci. Rep. 2016, 6, 23680. [Google Scholar] [CrossRef] [Green Version]
Study Type | Sampling Recommendation |
---|---|
Tillage and Residue Management | Sample at multiple depths to detect changes in microbial stratification. Changes in tillage may only affect surface (0–5, 10, or 15 cm) soil layers, or may affect stratification but not overall microbial abundance or activity. |
Cropping System | Analyze fungi for a more reliable indicator of increasing soil organic carbon (SOC). Fungi are more sensitive to plant dynamics than bacteria and mediate increases in SOC due to changes in cropping. Monitor soil moisture, as increased cropping intensity may not have the desired effect if soil water is depleted. |
Fertilization and Amendment | Analyze fungi and bacteria separately. Bacteria are more sensitive to nutrient status than fungi, but a brief abundance in N-cycling bacteria and reduction in F:B does not indicate long-term soil health improvement. |
General | Avoid sampling immediately after a disturbance that may cause a short-term spikes in microbial activity, such as fertilization or tillage. Whenever possible, microbial properties should be considered in relation to a nearby reference system considered “healthy” based on the research objectives, to account for seasonal and year-to-year variations in microbial activity due to short-term changes in soil moisture or other factors. Longer-term experiments or when SOC change is particularly relevant may choose to focus on fungal properties as more reliable, stable soil health indicators, whereas experiments less than five years or based mostly on soil nutrient differences may need to rely on bacterial properties and labile C pools. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodgers, H.R.; Norton, J.B.; van Diepen, L.T.A. Effects of Semiarid Wheat Agriculture Management Practices on Soil Microbial Properties: A Review. Agronomy 2021, 11, 852. https://doi.org/10.3390/agronomy11050852
Rodgers HR, Norton JB, van Diepen LTA. Effects of Semiarid Wheat Agriculture Management Practices on Soil Microbial Properties: A Review. Agronomy. 2021; 11(5):852. https://doi.org/10.3390/agronomy11050852
Chicago/Turabian StyleRodgers, Hannah R., Jay B. Norton, and Linda T. A. van Diepen. 2021. "Effects of Semiarid Wheat Agriculture Management Practices on Soil Microbial Properties: A Review" Agronomy 11, no. 5: 852. https://doi.org/10.3390/agronomy11050852
APA StyleRodgers, H. R., Norton, J. B., & van Diepen, L. T. A. (2021). Effects of Semiarid Wheat Agriculture Management Practices on Soil Microbial Properties: A Review. Agronomy, 11(5), 852. https://doi.org/10.3390/agronomy11050852