Organo-Mineral Interactions Involved in Herbicide Sorption on Soil Amended with Peats of Different Maturity Degree
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Soil, Peat and Soil-Peat Systems
2.3. Analytical Characterization of Peat Samples
2.4. Herbicide Sorption Measurements
2.5. Statistical Procedures
3. Results
3.1. Simple Regressions
3.1.1. Peat–Herbicide System
3.1.2. Herbicide–Peat–Soil System
3.2. Multiple Regression Models
3.2.1. Herbicide–Peat System
3.2.2. Herbicide-Peat-Soil System
3.2.3. Changes in the Peat Reactivity after its Interaction with Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bartha, R. Pesticide residues in humus. ASM News 1980, 46, 356–360. [Google Scholar]
- Koskinen, W.C.; Harper, S.S. The Retention Process: Mechanisms. In Pesticides in the Soil Environment: Processes Impacts and Modelling; Chapter 3, SSSA Book Series, no. 2; Cheng, H.H., Ed.; Soil Science Society of America: Madison, WI, USA, 1990; pp. 51–76. [Google Scholar]
- Gerke, J. Concepts and misconceptions of humic substances as the stable part of soil organic matter: A review. Agronomy 2018, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- Jindo, K.; Canellas, L.P.; Albacete, A.; Dos Santos, L.F.; Frinhani Rocha, R.L.; Baia, D.C.; Aguiar Canellas, N.O.; Goron, T.L.; Olivares, F.L. Interaction between humic substances and plant hormones for phosphorous acquisition. Agronomy 2020, 10, 640. [Google Scholar] [CrossRef]
- Chowdhury, I.F.; Doran, G.S.; Stodart, B.J.; Chen, C.; Wu, H. Trifluralin and atrazine sensitivity to selected cereal and legume crops. Agronomy 2020, 10, 587. [Google Scholar] [CrossRef]
- Mudhoo, A.; Garg, V.K. Sorption, transport and transformation of atrazine in soils, minerals and composts: A review. Pedosphere 2011, 21, 11–25. [Google Scholar] [CrossRef]
- Novotny, E.H.; Turetta, A.P.D.; Resende, M.F.; Rebello, C.M. The quality of soil organic matter, accessed by 13C solid state nuclear magnetic resonance, is just as important as its content concerning pesticide sorption. Environ. Pollut. 2020, 266, 115298. [Google Scholar] [CrossRef]
- Senesi, N.; Testini, C. The Environment Fate of Herbicides: The Role of Humic Substances, in R. Hallberg: Environmental Biogeochemistry. Ecol. Bull. 1983, 35, 477–490. [Google Scholar]
- Chang, C.-Y.; Zheng, Y.-T.; Lü, Y.-Z. Adsorption characteristics and mechanism of atrazine on three types of humic acid. Guang Pu Xue Yu Guang Pu Fen Xi/Spectrosc. Spectr. Anal. 2010, 30, 2641–2645. [Google Scholar] [CrossRef]
- Tsui, L.; Roy, W.R. The potential applications of using compost chars for removing the hydrophobic herbicide atrazine from solution. Bioresour. Technol. 2008, 99, 5673–5678. [Google Scholar] [CrossRef]
- Zhu, L.-J.; Zhao, Y.; Chen, Y.-N.; Cui, H.-Y.; Wei, Y.-Q.; Liu, H.-L.; Chen, X.-M.; Wei, Z.-M. Characterization of atrazine binding to dissolved organic matter of soil under different types of land use. Ecotoxicol. Environ. Saf. 2018, 147, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Yang, Q.; Zhou, W.; Zhu, L. Sorption characteristics and contribution of organic matter fractions for atrazine in soil. J. Soils Sediments 2015, 15, 2210–2219. [Google Scholar] [CrossRef]
- Dorado, J.; Almendros, G. Assessment of molecular descriptors involved in the sorptive interactions of phenoxy-carboxylic herbicides in soil treated with different concentrations of humic acid. Toxicol. Environ. Chem. 2001, 84, 21–32. [Google Scholar] [CrossRef]
- Dorado, J.; López-Fando, C.; Zancada, M.-C.; Almendros, G. Sorption-desorption of alachlor and linuron in a semiarid soil as influenced by organic matter properties after 16 years of periodic inputs. J. Agric. Food Chem. 2005, 53, 5359–5365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azzouzi, E.E.L.; Fekhaoui, M. Disposal of pesticides into the environment by adsorption: Case of atrazine. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 2590–2596. [Google Scholar]
- Almendros, G. Sorptive interactions of pesticides in soils treated with modified humic acids. Eur. J. Soil Sci. 1995, 46, 287–301. [Google Scholar] [CrossRef]
- Kunlanit, B.; Butnan, S.; Vityakon, P. Land-use changes influencing C sequestration and quality in topsoil and subsoil. Agronomy 2019, 9, 520. [Google Scholar] [CrossRef] [Green Version]
- Almendros, G.; Dorado, J. Molecular characteristics related to the biodegradability of humic acid preparations. Eur. J. Soil Sci. 1999, 50, 227–236. [Google Scholar] [CrossRef]
- Jindo, K.; Sánchez-Monedero, M.A.; Matsumoto, K.; Sonoki, T. The efficiency of a low dose of biochar in enhancing the aromaticity of humic-like substance extracted from poultry manure compost. Agronomy 2019, 9, 248. [Google Scholar] [CrossRef] [Green Version]
- Stipičević, S.; Fingler, S.; Drevenkar, V. Effect of organic and mineral soil fractions on sorption behaviour of chlorophenol and triazine micropollutants. Arh. Hig. Rada. Toksikol. 2009, 60, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Cruz, M.S.; Valderrábano, M.; Del Hoyo, C.; Sánchez-Martín, M.J. Physicochemical study of the sorption of pesticides by wood components. J. Environ. Qual. 2009, 38, 719–728. [Google Scholar] [CrossRef]
- Plakas, K.V.; Karabelas, A.J. A systematic study on triazine retention by fouled with humic substances NF/ULPRO membranes. Sep. Purif. Technol. 2011, 802, 246–261. [Google Scholar] [CrossRef]
- Radwan, E.K.; Abdel Ghafar, H.H.; Moursy, A.S.; Langford, C.H.; Bedair, A.H.; Achari, G. Adsorptive removal of hazardous organic water pollutants by humic acid–carbon hybrid materials: Kinetics and isotherm study. Desalin. Water Treat. 2017, 80, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Chokejaroenrat, C.; Watcharenwong, A.; Sakulthaew, C.; Rittirat, A. Immobilization of atrazine using oxidized lignite amendments in agricultural soils. Water Air Soil Pollut. 2020, 231, 249. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, W.; Li, H.; Fu, H.; Qu, X.; Zhu, D. Micropore clogging by leachable pyrogenic organic carbon: A new perspective on sorption irreversibility and kinetics of hydrophobic organic contaminants to black carbon. Environ. Pollut. 2017, 220, 1349–1358. [Google Scholar] [CrossRef] [Green Version]
- Mendes, K.F.; Hall, K.E.; Spokas, K.A.; Koskinen, W.C.; Tornisielo, V.L. Evaluating agricultural management effects on alachlor availability: Tillage, green manure, and biochar. Agronomy 2017, 7, 64. [Google Scholar] [CrossRef] [Green Version]
- Kulikova, N.A.; Perminova, I.V. Sorption-desorption of atrazine on mineral-bound humic substances related to their structure. Fresenius Environ. Bull. 2007, 16, 1061–1068. [Google Scholar]
- Dutta, A.; Mandal, A.; Manna, S.; Singh, S.B.; Berns, A.E.; Singh, N. Effect of organic carbon chemistry on sorption of atrazine and metsulfuron-methyl as determined by 13C-NMR and IR spectroscopy. Environ. Monit. Assess. 2015, 187, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Erny, G.L.; Gonçalves, B.M.; Esteves, V.I. Immobilized humic substances and immobilized aggregates of humic substances as sorbent for solid phase extraction. J. Chromatogr. A 2013, 1306, 104–108. [Google Scholar] [CrossRef]
- Besse-Hoggan, P.; Alekseeva, T.; Sancelme, M.; Delort, A.-M.; Forano, C. Trazine biodegradation modulated by clays and clay/humic acid complexes. Environ. Pollut. 2009, 157, 2837–2844. [Google Scholar] [CrossRef] [PubMed]
- D’Orazio, V.; Miano, T. Fluorescence properties of humic acid interaction products with s-triazine and bipyridilium herbicides and their Cu complexes: A multivariate approach. J. Soils Sediments 2018, 18, 1347–1354. [Google Scholar] [CrossRef]
- Hong, R.; Zhang, L.; Zhu, W.; Gu, C. Photo-transformation of atrazine in aqueous solution in the presence of Fe3+-montmorillonite clay and humic substances. Sci. Total Environ. 2019, 652, 224–233. [Google Scholar] [CrossRef]
- Prado, B.; Duwig, C.; Hidalgo, C.; Müller, K.; Mora, L.; Raymundo, E.; Etchevers, J.D. Transport, sorption and degradation of atrazine in two clay soils from Mexico: Andosol and Vertisol. Geoderma 2014, 232, 628–639. [Google Scholar] [CrossRef]
- González-Márquez, L.C.; Hansen, A.M.; González-Farias, F.A. Effect of mono and divalent salts on the conformation and composition of a humic acid and on atrazine adsorption. Environ Sci. Pollut. Res. 2018, 25, 17509–17518. [Google Scholar] [CrossRef] [PubMed]
- Wershaw, R.L.; Burcar, P.J.; Goldberg, M.C. Interaction of pesticides with natural organic material. Environ. Sci. Technol. 1969, 3, 271–273. [Google Scholar] [CrossRef]
- Sims, G.K.; Radosevich, M.; He, X.T.; Traina, S.J. The Effects of Sorption on the Bioavailability of Pesticides. In Biodegradation. Natural and Synthetic Materials; Betts, W.B., Ed.; Springer: New York, NY, USA, 1991; pp. 119–137. [Google Scholar]
- Hesketh, N.; Jones, M.N.; Tipping, E. The interaction of some pesticides and herbicides with humic substances. Anal. Chim. Acta 1996, 327, 191–201. [Google Scholar] [CrossRef]
- Morita, H. Linuron adsorption and the degree of decomposition of peats as measured by rubbed fibre content and pyrophosphate index. Can. J. Soil Sci. 1976, 56, 105–109. [Google Scholar] [CrossRef]
- Singh, R.; Gerritse, R.G.; Aylmore, L.A.G. Adsorption-desorption behaviour of selected pesticides in some Western Australian soils. Aust. J. Soil Res. 1989, 28, 227–243. [Google Scholar] [CrossRef]
- Dorado, J.; González-Vila, F.J.; Zancada, M.C.; Almendros, G.; López-Fando, C. Pyrolytic descriptors responsive to changes in humic acid characteristics after long-term sustainable management in dryland farming system in Central Spain. J. Anal. Appl. Pyrolysis 2003, 68/69, 299–314. [Google Scholar] [CrossRef] [Green Version]
- Almendros, G. Composición y Propiedades de la Materia Orgánica en las Principales Turberas Españolas. Ph.D. Thesis, Complutense University of Madrid, Madrid, Spain, 1981. Available online: https://eprints.ucm.es/id/eprint/52481/1/5309856078.pdf (accessed on 27 April 2021).
- Almendros, G.; Dorado, E.; Polo, A. Contribución al estudio analítico de la turbera de Padul (Granada). Anal. Edafol. Agrobiol. 1981, 40, 163–178. [Google Scholar]
- Almendros, G.; Polo, A.; Dorado, E. Características de la materia orgánica en las formaciones turbosas litorales de Torreblanca (Castellón). Anal. Edafol. Agrobiol. 1981, 40, 223–235. [Google Scholar]
- Almendros, G.; Polo, A.; Dorado, E. Fraccionamiento y caracterización de la materia orgánica de la turbera de Mazagón. An. INIA Ser. Agric. 1982, 18, 29–42. [Google Scholar]
- Almendros, G.; Polo, A.; Dorado, E. Composición y propiedades de la materia orgánica de las formaciones turbosas eutróficas de la zona de los Ojos del Guadiana. Bol. Real Soc. Esp. Hist. Nat. Biol. 1982, 80, 23–35. [Google Scholar]
- Walkley, A.; Black, A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Mehlich, A. Determination of cation- and anion-exchange properties of soils. Soil Sci. 1948, 66, 429–445. [Google Scholar] [CrossRef]
- Dabin, B. Etude d’une méthode d’extraction de la matière humique du sol. Sci. Sol. 1971, 1, 47–63. [Google Scholar]
- Duchaufour, P.H.; Jacquin, F. Comparaison des procesus d’humification dans les principaux types d’humus forestiers. Bull. AFES. 1975, 1, 29–36. [Google Scholar]
- Dorado, E.; Polo, A. Fraccionamiento de ácidos fúlvicos. Anal. Edafol. Agrobiol. 1976, 35, 723–732. [Google Scholar]
- Varnero, M.T.; Schaefer, R. Étude écologique de la degradation et de l´humification de feuilles de hetre (Fagus sylvatica). Effet des conditions de l´incubation (oxybiose et anoxybiose) sur le bilan chimique. In Biodegradation et Humification; Kilbertus, G., Ed.; Laboratoire de Botanique et de Microbiologie: Nancy, France, 1975; pp. 340–361. [Google Scholar]
- Brink, R.H.; Dubach, P.; Lynch, D.L. Measurement of carbohydrates in soil hydrolyzates with anthrone. Soil Sci. 1960, 89, 157–166. [Google Scholar] [CrossRef]
- Kononova, M.M. Soil Organic Matter: Its Nature, Its Role in Soil Formation and in Soil Fertility; Oxford: Pergamon, UK, 1966. [Google Scholar]
- Ekman, E. A Chromatographic analysis of the wax components of peat and peat-forming plants. In International Workshop on Properties of Organic Peat Components and Their Effect on Metabolism; International Peat Society, Ed.; FAL: Braunschweig, Germany, 1977; pp. 1–22. [Google Scholar]
- Dorado, J.; Tinoco, P.; Almendros, G. Soil parameters related with the sorption of 2,4-D and atrazine. Commun. Soil Sci. Plant Anal. 2003, 34, 1119–1133. [Google Scholar] [CrossRef]
- Institut Technique des Céréales et des Fourrages STAT-ITCF. Manuel d’Utilisation; Institut Technique des Céréales et des Fourrages STAT-ITCF, Impressions Atelier: Paris, France, 1988. [Google Scholar]
- Khan, S.U. Distribution and characteristics of bound residues of prometryn in an organic soil. J. Agric. Food Chem. 1982, 30, 175–179. [Google Scholar] [CrossRef]
- Otalvaro, J.O.; Brigante, M. Interaction of pesticides with natural and synthetic solids. Evaluation in dynamic and equilibrium conditions. Environ. Sci. Pollut. Res. 2018, 25, 6707–6719. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liu, Z.; Li, Y.; Wei, L.; Yang, S. Effects of humic acids and minerals on adsorption-desorption of atrazine in soil. Acta Pedol. Sin. 2016, 53, 155–165. [Google Scholar] [CrossRef]
- Yu, Z.; Sharma, S.; Huang, W. Differential roles of humic acid and particulate organic matter in the equilibrium sorption of atrazine by soils. Environ. Toxicol. Chem. 2006, 25, 1975–1983. [Google Scholar] [CrossRef] [PubMed]
Daimiel Peat | Mazagón Peat | Neuhaus Peat | Padul Peat | Torreblanca Peat | Vivero Peat | |
---|---|---|---|---|---|---|
Fibers (0.5–1.0 mm) (g 100 g−1) | 0.5 | 1.3 | 6.9 | 0.4 | 2.3 | 4.6 |
Fibers (0.25–0.50 mm) (g 100 g−1) | 1.0 | 1.6 | 6.6 | 0.4 | 4.6 | 5.6 |
Total fibers (g 100 g−1) | 55.6 | 7.0 | 93.8 | 1.8 | 15.5 | 52.5 |
Peat type | Hemic | Sapric | Fibric | Sapric | Sapric | Hemic |
Porosity (mL L−1) | 962 | 827 | 881 | 909 | 923 | 900 |
Water holding capacity (g 100 g−1) | 839 | 124 | 1297 | 865 | 914 | 588 |
Wet bulk density (g mL−1) | 0.09 | 0.32 | 0.05 | 0.18 | 0.12 | 0.13 |
Dry bulk density (g mL−1) | 0.71 | 0.43 | 0.13 | 0.38 | 0.44 | 0.36 |
Wet-to-dry bulk density ratio | 0.12 | 0.74 | 0.69 | 0.47 | 0.27 | 0.37 |
Particle density (g mL−1) | 2.4 | 1.8 | 0.4 | 2.0 | 1.6 | 2.2 |
pH | 7.4 | 2.4 | 3.5 | 5.5 | 6.4 | 3.6 |
Oxidizable C (g 100 g−1) | 15.0 | 20.7 | 58.6 | 47.2 | 36.7 | 57.5 |
C/N ratio | 24.3 | 19.5 | 78.1 | 27.3 | 20.4 | 33.6 |
Total exchange capacity, T (cmolc kg−1) | 109.0 | 55.5 | 63.9 | 61.7 | 143.4 | 131.6 |
Exchangeable bases, S (cmolc kg−1) | 89.2 | 12.8 | 12.3 | 27.4 | 124.5 | 7.7 |
Base saturation (V = 100 S/T) | 81.8 | 23.0 | 19.2 | 44.5 | 86.9 | 5.8 |
Total ash (g 100 g−1) | 68.3 | 63.2 | 1.5 | 16.7 | 28.1 | 3.4 |
Cu (mg kg−1 ash) | 0.04 | 0.02 | 0.30 | 0.05 | 0.12 | 0.21 |
Daimiel Peat | Mazagón Peat | Neuhaus Peat | Padul Peat | Torreblanca Peat | Vivero Peat | |
---|---|---|---|---|---|---|
Total humic extract | 8.8 a | 14.6 | 19.2 | 26.7 | 20.0 | 26.2 |
58.9 b | 70.7 | 32.8 | 53.6 | 54.6 | 45.6 | |
Humic acid | 6.8 a | 10.6 | 12.3 | 17.2 | 15.2 | 15.0 |
45.2 b | 51.0 | 20.9 | 36.4 | 41.4 | 26.0 | |
Hymatomelanic acid | 2.0 c | 9.3 | 15.7 | 13.5 | 0.1 | 7.9 |
Fulvic acid | 2.1 a | 4.1 | 7.0 | 9.5 | 4.8 | 11.3 |
13.8 b | 19.6 | 11.9 | 22.5 | 13.1 | 19.6 | |
Total bitumen | 0.9 a | 3.3 | 7.5 | 1.5 | 2.0 | 4.7 |
6.0 b | 15.9 | 12.8 | 3.2 | 5.5 | 8.3 | |
Total wax | 0.6 a | 1.9 | 2.5 | 1.0 | 1.0 | 1.7 |
69.9 d | 58.2 | 33.2 | 68.7 | 49.2 | 36.2 | |
Hydrocarbon | 0.2 a | 0.4 | 0.9 | 0.4 | 0.3 | 0.6 |
24.1e | 13.5 | 12.4 | 24.0 | 13.3 | 35.3 | |
Ester | 0.3 a | 1.1 | 0.7 | 0.4 | 0.5 | 0.9 |
31.3 e | 34.8 | 9.4 | 29.2 | 24.1 | 52.9 | |
Acid | 0.1 a | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 |
8.4 e | 5.8 | 3.2 | 6.0 | 3.1 | 11.8 | |
Total resin | 0.3 a | 1.4 | 5.0 | 0.5 | 1.0 | 3.0 |
30.1 c | 41.9 | 66.8 | 31.3 | 50.8 | 63.8 | |
Cellulose | 0.5 a | 1.2 | 10.0 | 0.9 | 0.6 | 5.3 |
3.0 b | 5.7 | 17.0 | 2.0 | 1.7 | 9.2 | |
Hemicellulose | 0.5 a | 0.4 | 4.3 | 0.7 | 1.8 | 3.0 |
3.5 b | 1.8 | 7.3 | 1.4 | 4.9 | 5.3 | |
Lignin | 3.8 a | 3.3 | 16.6 | 17.0 | 9.1 | 31.3 |
25.7 b | 15.9 | 28.4 | 32.0 | 24.7 | 54.4 |
Daimiel Peat | Mazagón Peat | Neuhaus Peat | Padul Peat | Torreblanca Peat | Vivero Peat | |
---|---|---|---|---|---|---|
Total peat | ||||||
3400/2920 intensity ratio in IR spectra | 0.1 | 2.9 | 0.4 | 1.0 | 0.6 | 0.5 |
Humic acid | ||||||
Optical density at 465 nm (AU) | 1.5 | 1.2 | 1.0 | 1.8 | 1.1 | 1.2 |
3400/2920 intensity ratio in IR spectra | 0.9 | 0.9 | 1.9 | 0.8 | 0.9 | 1.4 |
1720/2920 intensity ratio in IR spectra | 0.4 | 0.3 | 0.4 | 0.4 | 0.4 | 0.5 |
Fulvic acid | ||||||
C (elementary composition) (g 100 g−1) | 37.2 | 43.3 | 23.4 | 43.3 | 37.9 | 30.6 |
O (elementary composition) (g 100 g−1) | 58.5 | 49.8 | 72.2 | 49.3 | 53.1 | 62.6 |
H/C atomic ratio | 0.06 | 0.09 | 0.13 | 0.11 | 0.13 | 0.13 |
3400/2920 intensity ratio in IR spectra | 0.8 | 0.9 | 1.2 | 1.2 | 0.9 | 1.9 |
1720/2920 intensity ratio in IR spectra | 0.3 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 |
Alachlor Sorption | Atrazine Sorption | Linuron Sorption | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil or Peat Alone | Peat- Treated Soil (1:1 by wt) | Sorption Enhancement a | Soil or Peat Alone | Peat- Treated Soil (1:1 by wt) | Sorption Enhancement a | Soil or Peat Alone | Peat- Treated Soil (1:1 by wt) | Sorption Enhancement a | |||||||
(mg kg−1 Sample) | (mg kg−1 Sample) | (mg kg−1 Sample) | |||||||||||||
Soil | 100 | 28 | 135 | ||||||||||||
Daimiel | 255 | d | 185 | e | 104 | 76 | d | 48 | e | 93 | 398 | d | 257 | e | 97 |
Mazagón | 616 | c | 376 | d | 105 | 309 | c | 198 | cd | 117 | 953 | c | 643 | cd | 118 |
Neuhaus | 1444 | a | 1112 | a | 149 | 664 | a | 485 | a | 143 | 1588 | a | 1324 | a | 160 |
Padul | 605 | c | 337 | d | 96 | 323 | c | 190 | d | 108 | 931 | c | 542 | d | 102 |
Torreblanca | 1018 | b | 663 | c | 119 | 448 | b | 228 | c | 96 | 1287 | b | 757 | c | 107 |
Vivero | 1432 | a | 839 | b | 110 | 664 | a | 324 | b | 94 | 1544 | a | 1057 | b | 126 |
LSD b | 145 | 87 | 61 | 38 | 116 | 181 |
Alachlor Sorption | Atrazine Sorption | Linuron Sorption | ||||
---|---|---|---|---|---|---|
Peat Alone | Peat- Treated Soil | Peat Alone | Peat- Treated Soil | Peat Alone | Peat- Treated Soil | |
Peat properties | ||||||
Fibers (0.5–1.0 mm) | 0.86 | 0.93 * | ns | ns | ns | 0.91 |
Fibers (0.25–0.50 mm) | 0.88 | 0.92 | ns | ns | ns | 0.83 |
Dry bulk density | −0.81 | −0.85 | −0.86 | −0.95 * | −0.87 | −0.91 |
Actual density | −0.93 * | −0.95 * | −0.92 * | −0.96 * | −0.87 | −0.97* |
Total ash | −0.85 | ns | −0.87 | ns | −0.85 | ns |
Cu in ash | 0.86 | 0.92 * | ns | ns | ns | 0.86 |
Oxidizable C | 0.86 | 0.81 | 0.89 | 0.84 | 0.85 | 0.83 |
Humic acid C in peat (%) | −0.83 | −0.84 | −0.82 | −0.83 | ns | −0.82 |
Total bitumen in peat (%) | 0.81 | 0.83 | 0.81 | 0.90 | ns | 0.89 |
Wax C in total bitumen (%) | −0.92 * | −0.94 * | −0.87 | −0.87 | −0.85 | −0.91 |
Total hydrocarbon in peat (%) | ns | ns | ns | 0.89 | ns | 0.85 |
Wax acid C in total wax (%) | −0.88 | ns | −0.88 | ns | −0.93 * | ns |
Total resin in peat (%) | ns | 0.87 | ns | 0.90 | ns | 0.90 |
Resin C in total bitumen (%) | 0.92 * | 0.94 * | 0.87 | 0.87 | 0.85 | 0.91 |
Hemicellulose in peat (%) | 0.87 | 0.93 * | 0.81 | 0.86 | ns | 0.87 |
3400/2920 intensity ratio in IR spectra | ns | ns | −0.82 | −0.93 * | ns | −0.90 |
Humic acid properties | ||||||
3400/2920 IR intensity ratio | −0.89 | −0.81 | −0.91 | −0.81 | −0.88 | −0.83 |
1720/2920 IR intensity ratio | −0.88 | −0.82 | −0.92 * | −0.88 | −0.90 | −0.91 |
Fulvic acid properties | ||||||
H/C atomic ratio | 0.82 | ns | 0.85 | ns | 0.89 | ns |
3400/2920 IR intensity ratio | −0.85 | ns | −0.89 | ns | −0.93 * | −0.81 |
Alachlor Sorption | Atrazine Sorption | Linuron Sorption | |||||||
---|---|---|---|---|---|---|---|---|---|
Peat Alone | Peat- Treated Soil | Sorption Enhancement | Peat Alone | Peat- Treated Soil | Sorption Enhancement | Peat Alone | Peat- Treated Soil | Sorption Enhancement | |
Peat properties | |||||||||
Fibers (0.25–0.50 mm) | ns | ns | 0.52 | ns | ns | ns | ns | ns | ns |
Oxidizable C | 0.19 | ns | ns | ns | ns | ns | 0.23 | ns | ns |
Percentage of total humic extract C | ns | −0.16 | ns | ns | ns | ns | ns | ns | ns |
Percentage of humic acid C in peat | ns | ns | ns | −0.30 | −0.36 | ns | ns | −0.11 | ns |
Percentage of total bitumen in peat | ns | ns | 0.28 | 0.17 | ns | ns | ns | ns | ns |
Percentage of wax C in total bitumen | −0.67 | ns | ns | ns | ns | ns | ns | ns | ns |
Percentage of acid fraction in wax | ns | ns | ns | ns | ns | 0.37 | ns | ns | ns |
Percentage of total resin in peat | ns | ns | ns | ns | ns | ns | ns | 0.57 | ns |
Percentage of resin C in total bitumen | ns | 0.76 | ns | ns | 0.31 | ns | 0.28 | ns | 0.17 |
Percentage of cellulose C in peat | ns | ns | ns | ns | ns | ns | ns | ns | 0.67 |
3400/2920 intensity IR intensity ratio | ns | ns | ns | ns | ns | −0.53 | ns | ns | ns |
Humic acid properties | |||||||||
% Hymatomelanic acid in humic acid | ns | ns | ns | ns | ns | 0.16 | ns | ns | ns |
3400/2920 IR intensity ratio | ns | −0.17 | ns | ns | ns | ns | ns | ns | ns |
1720/2920 IR intensity ratio | ns | ns | ns | ns | −0.45 | ns | ns | ns | −0.23 |
Fulvic acid properties | |||||||||
H/C atomic ratio | 0.23 | ns | ns | ns | ns | ns | ns | ns | ns |
3400/2920 IR intensity ratio | ns | ns | ns | −0.66 | ns | ns | −0.58 | −0.44 | ns |
1720/2920 IR intensity ratio | ns | ns | −0.28 | ns | ns | ns | ns | ns | ns |
p-value | 0.007 | 0.004 | 0.001 | 0.006 | 0.007 | 0.023 | 0.010 | 0.001 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorado, J.; Almendros, G. Organo-Mineral Interactions Involved in Herbicide Sorption on Soil Amended with Peats of Different Maturity Degree. Agronomy 2021, 11, 869. https://doi.org/10.3390/agronomy11050869
Dorado J, Almendros G. Organo-Mineral Interactions Involved in Herbicide Sorption on Soil Amended with Peats of Different Maturity Degree. Agronomy. 2021; 11(5):869. https://doi.org/10.3390/agronomy11050869
Chicago/Turabian StyleDorado, José, and Gonzalo Almendros. 2021. "Organo-Mineral Interactions Involved in Herbicide Sorption on Soil Amended with Peats of Different Maturity Degree" Agronomy 11, no. 5: 869. https://doi.org/10.3390/agronomy11050869
APA StyleDorado, J., & Almendros, G. (2021). Organo-Mineral Interactions Involved in Herbicide Sorption on Soil Amended with Peats of Different Maturity Degree. Agronomy, 11(5), 869. https://doi.org/10.3390/agronomy11050869