Soil Enzymatic Activities and Microbial Community Structure in Soils Polluted with Tetracycline Antibiotics
Abstract
:1. Introduction
2. Material and Methods
2.1. Soil Samples and General Characterization
2.2. Experiment Design
2.3. Soil Enzymatic Activities
2.4. Microbial Community Structure (PLFA Pattern)
2.5. Statistics
3. Results
3.1. Enzymatic Activity
3.2. Microbial Community Structure (PLFA Pattern)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Conde-Cid, M.; Álvarez-Esmorías, C.; Paradelo-Nuñez, R.; Nóvoa-Muñoz, J.C.; Arias-Estéve, M.; Álvarez-Rodríguez, E.; Fernández-SanJurjo, M.J.; Nuñez-Delgado, A. Ocurrence of tetracyclines and sulfonamides in manures, agricultural soils and crops from different areas in Galicia (NW Spain). J. Clean. Prod. 2018, 197, 491–500. [Google Scholar] [CrossRef]
- Cycon, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotic in the soil environment-Degradation an their impact on microbial activity and diversity: A review. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef]
- Archundia, D.; Duwig, C.; Lehembre, F.; Chiron, S.; Morel, M.C.; Prado, B.; Bourdat-Deschamps, M.; Vince, E.; Flores-Aviles, G.; Martins, J.M.F. Antibiotic pollution in the Katari subcatchment of Titicaca Lake: Major transformation products and ocurrence of resistence genes. Sci. Total Environ. 2017, 576, 671–682. [Google Scholar] [CrossRef]
- Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistence. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [Green Version]
- Bansal, O.P. A laboratory study on degradation studies of tetracycline and tetracycline in soils of Aligarh district as influenced by temperature, water content, concentrations of farm yield manure and tetracyclines. Proc. Natl. Acad. India Sect B Biol. Sci. 2012, 85, 503–509. [Google Scholar] [CrossRef]
- Caracciolo, A.B.; Topp, E.; Grenni, P. Pharmaceuticals in the environment: Biodegradation and effects on microbial communities. A review. J. Pharm. Biomed. Anal. 2015, 106, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Frankling, A.M.; Williams, C.F.; Andrews, D.M.; Woodward, E.E.; Watson, J.E. Uptake of three antibiotics and an antiepileptic drug by heat crops spray irrigated with wastewater treatment plant effluent. J. Environ. Qual. 2016, 45, 546–554. [Google Scholar] [CrossRef]
- Samuelsen, O.B.; Torsky, V.; Ervick, A. Long-range changes in oxytetracycline concentration and bacterial resistence toward oxytetracycline in a fish farm sediment after medication. Sci. Total Environ. 1992, 114, 25–36. [Google Scholar] [CrossRef]
- Hamscher, G.; Sczesny, S.; Höper, H.; Nau, H. Determination of persistent tetracycline residues in soils fertilized with liquid manure by high performance liquid chromatography with electrospray ionization tandem mass spectometry. Anal. Chem. 2002, 74, 1509–1518. [Google Scholar] [CrossRef] [PubMed]
- Nannipieri, P.; Ascher, J.; Cecccherini, M.T.; Landi, L.; Pietramellara, G.; Renella, G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003, 54, 655–670. [Google Scholar] [CrossRef]
- Santás-Miguel, V.; Fernández-Sanjurjo, M.J.; Núñez-Delgado, A.; Álvarez-Rodríguez, E.; Díaz-Raviña, M.; Arias-Estévez, M.; Fernandez-Calviño, D. Interactions between soil properties and tetracycline toxicity affecting to bacterial community growth in agriculture soils. Appl. Soil Ecol. 2020, 147, 103437. [Google Scholar] [CrossRef]
- Santás-Miguel, V.; Arias-Estévez, M.; Díaz-Raviña, M.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A.; Fernández-Calviño, D. Effect of oxytetracycline and chlortetraclycine on bacterial community growth in agricultural soils. Agronomy 2020, 10, 1011. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2105 International Soil Clasification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Santás-Miguel, V.; Díaz-Raviña, M.; Martín, A.; García-Campos, E.; Barreiro, A.; Núñez-Delgado, A.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Arias-Estévez, M.; Fernández-Calviño, D. Medium-term influence of tetracyclines on total and specific microbial biomass in cultivated soils of Galicia (NW Spain). Span. J. Soil Sci. 2020, 10, 217–232. [Google Scholar]
- Meisner, A.; Bååth, E.; Rousk, J. Microbial growth responses upon rewetting soil dried for four days or one year. Soil Biol. Biochem. 2013, 66, 188–192. [Google Scholar] [CrossRef]
- Fox, D.R.; Landis, W.G. Don’t be fooled—A no-observed-effect concentration is no substitute for a poor concentration–response experiment. Environ. Toxicol. Chem. 2016, 35, 2141–2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rousk, J.; Demoling, A.; Bahr, A.; Bååth, E. Examining the fungal and bacterial niche overlap using selective inhibitors in soil. FEMS Microbiol. Ecol. 2008, 63, 350–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eivazi, F.; Tabatabai, M.A. Glucosidases and galactosidases in soils. Soil Biol. Biochem. 1988, 20, 601–606. [Google Scholar] [CrossRef]
- Kandeler, E.; Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils. 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Trasar-Cepeda, M.C.; Gil Sotres, F.; Guitián Ojea, F. Determinación de la actividad de la fosfatasa en suelos gallegos. Precisiones al método de Saratchandra y Perrott. Anal. Edafol. Agrobiol. 1985, 44, 987–991. [Google Scholar]
- Frostegård, Å.; Tunlid, A.; Bååth, E. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipids fatty acid analysis. Soil Biol. Biochem. 1993, 25, 723–730. [Google Scholar] [CrossRef]
- Mahía, J.; Martín, A.; Bååth, E.; González-Prieto, S.J.; Díaz-Raviña, M. Biochemical properties and community structure of five different incubated soils untreated and treated with atrazine. Biol. Fertil. Soils 2011, 47, 577–584. [Google Scholar] [CrossRef]
- Fernández-Calviño, D.; Soler-Rovira, P.; Polo, A.; Arias-Estévez, M. Enzyme activities in vineyard soils long-term treatments with copper-based fungicides. Soil Biol. Biochem. 2010, 42, 2119–2127. [Google Scholar] [CrossRef]
- González-Prieto, S.J.; Díaz-Raviña, M.; Martín, A.; López-Fando, C. Effects of agricultural management on chemical and biochemical properties of a semiarid soil from Central Spain. Soil Tillage Res. 2013, 134, 49–54. [Google Scholar] [CrossRef]
- Trasar-Cepeda, C.; Leiros, M.C.; Gil-Sotres, F. Biochemical properties of acid soils under climax vegetation (Atlantic oakwood) in an area of the European temperate–humid zone (Galicia, NW Spain): Specific parameters. Biol. Fertil. Soils 2000, 32, 747–755. [Google Scholar] [CrossRef]
- Unger, I.; Goyne, K.; Kennedy, A.; Kemer, R.J.; McLain, J.E.T.; Williams, C.F. Antibiotic effects on microbial community characteristics in soils under conservation management practices. Soil Sci. Soc. Characteristics in soils under conservation management practices. Soil Sci. Soc. Am. J. 2013, 77, 100–112. [Google Scholar] [CrossRef]
- Chen, W.; Liu, W.; Pan, N.; Jiao, W.; Wang, M. Oxytetracycline on functions and structure of soi microbial community. J. Soil Sci. Plant Nutr. 2013, 13, 967–975. [Google Scholar]
- Liu, F.; Ying, G.G.; Tao, R.; Zhao, J.L.; Yang, J.F.; Zhao, L.F. Effect of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ. Pollut. 2009, 157, 1636–1642. [Google Scholar] [CrossRef]
- Wei, X.; Wu, S.C.; Nie, X.P.; Yediler, A.; Wong, M.H. The effects of residual tetracycline on soil enzymatic activities and plant growth. J. Environ. Sci. Health Part B Pestic. Contam. Agric. Wastes. 2009, 44, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Pan, X.; Liu, W.; Christie, P.; Luo, Y.; Wu, L. Effects of different concentrations and application frequencies of oxytetracycline on soil enzyme activities and microbial community diversity. Eur. J. Soil Biol. 2016, 76, 53–60. [Google Scholar] [CrossRef]
- Thiele-Bruhn, S.; Beck, I.-C. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 2005, 59, 457–465. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.; Zhang, X.; Wang, J.; Gao, M. Effects of tetracycline on soil microbial communities: Comparisons of enzyme activities to the functional diversity via Biolog Ecoplates. Eur. J. Soil Biol. 2015, 68, 60–76. [Google Scholar] [CrossRef]
- Marx, M.C.; Kandeler, E.; Wood, M.; Wermbter, N.; Jarvis, S.C. Exploring the enzymatic landscape: Distribution and kinetics of hydrolitic enzymes in soil particle-sizes fractions. Soil Biol. Biochem. 2005, 37, 35–48. [Google Scholar] [CrossRef]
- Dantas, G.; Sommer, M.O.A.; Oluwasegun, R.D.; Church, G.M. Bacterial subsisting on antibiotics. Science 2008, 320, 100–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westergaard, K.; Müller, A.K.; Christensen, S.; Bloem, J.; Sørensen, S.J. Effects of tylosin as a distrubance on the soil microbial community. Soil Biol. Biochem. 2001, 33, 2061–2071. [Google Scholar] [CrossRef]
- Brandt, K.K.; Amézquita, A.; Backhaus, T.; Boxall, A.; Coors, A.; Heberer, T.; Lawrence, J.R.; Lazorchak, J.; Schönfield, J.; Snape, J.R. Ecological assessment of antibiotics: A call for improved consideration of microorganisms. Environ. Int. 2015, 85, 189–205. [Google Scholar] [CrossRef]
- Nannipieri, P.; Trasar-Cepeda, C.; Dick, R.P. Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fertil. Soils 2018, 54, 11–19. [Google Scholar] [CrossRef]
- Trasar-Cepeda, C.; Leirós, M.C.; Seoane, S.; Gil-Sotres, F. Limitations of soil enzymes as indicators of soil pollution. Soil Biol. Biochem. 2000, 32, 1867–1875. [Google Scholar] [CrossRef]
- Rousk, J.; Demoling, L.A.; Bååth, E. Contrasting short-term antibiotic effects on respiration and bacterial growth compromises the validity of the selective respiratory inhibition technique to distinguish fungi and bacteria. Microb. Ecol. 2009, 58, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Brandt, K.K.; Sjøholm, O.R.; Krogh, K.A.; Halling-Sørensen, B.; Nibroe, O. Increased pollution-induced bacterial community tolerance to sulfadiazine in soil hotspots amendmed with artificial roots exudates. Environ. Sci. Technol. 2009, 43, 2963–2968. [Google Scholar] [CrossRef] [PubMed]
- Demoling, L.A.; Bååth, E.; Greve, G.; Wouterse, M.; Schmitt, H. Effects of sulfamethoxazole on soil microbial communities after adding substrate. Soil Biol. Biochem. 2009, 41, 840–848. [Google Scholar] [CrossRef]
- Bossio, D.A.; Scow, K.M. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 1998, 35, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Raviña, M.; Bååth, E.; Martín, A.; Carballas, T. Microbial community structure in forest soils treated with a fire retardant. Biol. Fertil. Soils 2006, 42, 465–471. [Google Scholar] [CrossRef]
Soil | 1 | 2 | 3 | 4 |
---|---|---|---|---|
pHWater | 4.8 | 5.0 | 5.0 | 4.7 |
pHKCl | 4.2 | 4.4 | 4.3 | 4.3 |
C (g·kg−1) | 10.7 | 21.4 | 25.3 | 33.9 |
N (g·kg−1) | 0.9 | 2.0 | 2.3 | 3.1 |
eCEC * (cmolc·kg−1) | 4.1 | 5.3 | 6.4 | 5.9 |
DOC ** (g·kg−1) | 0.21 | 0.28 | 0.31 | 0.24 |
POlsen *** (g·kg−1) | 0.23 | 0.19 | 0.11 | 0.12 |
Texture | Sandy loam | Sandy clay loam | Sandy clay loam | Sandy clay loam |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santás-Miguel, V.; Díaz-Raviña, M.; Martín, A.; García-Campos, E.; Barreiro, A.; Núñez-Delgado, A.; Álvarez-Rodríguez, E.; Arias-Estévez, M.; Fernández-Calviño, D. Soil Enzymatic Activities and Microbial Community Structure in Soils Polluted with Tetracycline Antibiotics. Agronomy 2021, 11, 906. https://doi.org/10.3390/agronomy11050906
Santás-Miguel V, Díaz-Raviña M, Martín A, García-Campos E, Barreiro A, Núñez-Delgado A, Álvarez-Rodríguez E, Arias-Estévez M, Fernández-Calviño D. Soil Enzymatic Activities and Microbial Community Structure in Soils Polluted with Tetracycline Antibiotics. Agronomy. 2021; 11(5):906. https://doi.org/10.3390/agronomy11050906
Chicago/Turabian StyleSantás-Miguel, Vanesa, Montserrat Díaz-Raviña, Angela Martín, Elena García-Campos, Ana Barreiro, Avelino Núñez-Delgado, Esperanza Álvarez-Rodríguez, Manuel Arias-Estévez, and David Fernández-Calviño. 2021. "Soil Enzymatic Activities and Microbial Community Structure in Soils Polluted with Tetracycline Antibiotics" Agronomy 11, no. 5: 906. https://doi.org/10.3390/agronomy11050906
APA StyleSantás-Miguel, V., Díaz-Raviña, M., Martín, A., García-Campos, E., Barreiro, A., Núñez-Delgado, A., Álvarez-Rodríguez, E., Arias-Estévez, M., & Fernández-Calviño, D. (2021). Soil Enzymatic Activities and Microbial Community Structure in Soils Polluted with Tetracycline Antibiotics. Agronomy, 11(5), 906. https://doi.org/10.3390/agronomy11050906