Cultivation Practices, Adaptability and Phytochemical Composition of Jerusalem Artichoke (Helianthus tuberosus L.): A Weed with Economic Value
Abstract
:1. General Characteristics and Importance of Helianthus tuberosus
2. Climate and Soil Requirements
3. Adaptability of Jerusalem Artichoke to Abiotic Stresses
3.1. Drought
3.2. Salinity
3.3. Waterlogging
4. Cultivation Practices
4.1. Soil Preparation
4.2. Rotation
4.3. Planting
4.4. Fertilization
4.5. Irrigation
4.6. Weed Management
4.7. Genetic Material
5. Main Diseases and Pests
5.1. Diseases
5.2. Pests
6. Harvest and Yield or Quality
7. Storage
8. Chemical Composition
8.1. Carbohydrates: Inulin
8.2. Proteins
8.3. Nutrient Elements
8.4. Other Bioactive Compounds
9. Jerusalem Artichoke and Possible Risks for the Natural Ecosystem
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Filep, R.; Pal, R.W.; Balázs, V.L.; Mayer, M.; Nagy, D.U.; Cook, B.J.; Farkas, Á. Can seasonal dynamics of allelochemicals play a role in plant invasions? A case study with Helianthus tuberosus L. Plant Ecol. 2016, 217, 1489–1501. [Google Scholar] [CrossRef]
- Pacanoski, Z.; Mehmeti, A. The first report of the invasive alien weed Jerusalem artichoke (Helianthus tuberosus L.) in the Republic of North Macedonia. Agric For. 2020, 66, 115–127. [Google Scholar] [CrossRef]
- Tesio, F.; Weston, L.; Ferrero, A. Allelochemicals identified from Jerusalem artichoke (Helianthus tuberosus L.) residues and their potential inhibitory activity in the field and laboratory. Sci. Hortic. 2011, 129, 361–368. [Google Scholar] [CrossRef]
- Dias, N.; Ferreira, J.; Liu, X.; Suarez, D. Jerusalem artichoke (Helianthus tuberosus L.) maintains high inulin, tuber yield, and antioxidant capacity under moderately-saline irrigation waters. Ind. Crops Prod. 2016, 94, 1009–1024. [Google Scholar] [CrossRef]
- Baldini, M.; Danuso, F.; Monti, A.; Amaducci, M.; Stevanato, P.; De Mastro, G. Chicory and Jerusalem artichoke productivity in different areas of Italy, in relation to water availability and time of harvest. Ital. J. Agron. 2006, 1, 291–307. [Google Scholar] [CrossRef] [Green Version]
- Radulović, N.; Ðorđević, M. Chemical composition of the tuber essential oil from Helianthus tuberosus L. (Asteraceae). Chem. Biodivers. 2014, 11, 427–437. [Google Scholar] [CrossRef]
- Zhong, Q.; Yang, S.; Sun, X.; Wang, L.; Li, Y. The complete chloroplast genome of the Jerusalem artichoke (Helianthus tuberosus L.) and an adaptive evolutionary analysis of the ycf2 gene. PeerJ 2019, 7, e7596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slimestad, R.; Seljaasen, R.; Meijer, K.; Skar, S. Norwegian-grown Jerusalem artichoke (Helianthus tuberosus L.): Morphology and content of sugars and fructo-oligosaccharides in stems and tubers. J. Sci. Food Agric. 2010, 90, 956–964. [Google Scholar]
- Puttha, R.; Jogloy, S.; Suriharn, B.; Wangsomnuk, P.; Kesmala, T.; Patanothai, A. Variations in morphological and agronomic traits among Jerusalem artichoke (Helianthus tuberosus L.) accessions. Genet. Resour. Crop Evol. 2013, 60, 731–746. [Google Scholar] [CrossRef]
- Smekalova, T.N.; Lebedeva, N.V.; Novikova, L.Y. Morphological analysis of Jerusalem artichoke (Helianthus tuberosus L.) accessions of different origin from vir collection. Proc. Latv. Acad. Sci. Sect. B 2019, 73, 502–512. [Google Scholar] [CrossRef] [Green Version]
- Gunnarsson, I.; Svensson, S.; Johansson, E.; Karakashev, D.; Angelidaki, I. Potential of Jerusalem artichoke (Helianthus tuberosus L.) as a biorefinery crop. Ind. Crops Prod. 2014, 56, 231–240. [Google Scholar] [CrossRef]
- Johansson, E.; Prade, T.; Angelidaki, I.; Svensson, S.; Newson, W.; Gunnarsson, I.; Hovmalm, H. Economically viable components from Jerusalem artichoke (Helianthus tuberosus L.) in a biorefinery concept. Int. J. Mol. Sci. 2015, 16, 8997–9016. [Google Scholar] [CrossRef] [Green Version]
- Rossini, F.; Provenzano, M.E.; Kuzmanović, L.; Ruggeri, R. Jerusalem Artichoke (Helianthus tuberosus L.): A Versatile and Sustainable Crop for Renewable Energy Production in Europe. Agronomy 2019, 9, 528. [Google Scholar] [CrossRef] [Green Version]
- Nenciu, F.; Vladut, V. Studies on the perspectives of replacing the classic energy plants with Jerusalem artichoke and Sweet Sorghum, analyzing the impact on the conservation of ecosystems. IOP Conf. Ser. Earth Environ. Sci. 2021, 635, 012002. [Google Scholar] [CrossRef]
- Barta, J.; Pátkai, G. Chemical composition and storability of Jerusalem artichoke tubers. Acta Alimentaria 2007, 36, 257–267. [Google Scholar] [CrossRef]
- Danilcenko, H.; Jariene, E.; Aleknaviciene, P.; Gajewski, M. Quality of Jerusalem artichoke (Helianthus tuberosus L.) tubers in relation to storage conditions. Not. Bot. Horti Agrobo. 2008, 36, 23–27. [Google Scholar]
- Godin, B.; Lamaudière, S.; Agneessens, R.; Schmit, T.; Goffart, J.; Stilmant, D.; Gerin, P.; Delcarte, J. Chemical characteristics and biofuel potential of several vegetal biomasses grown under a wide range of environmental conditions. Ind. Crops Prod. 2013, 48, 1–12. [Google Scholar] [CrossRef]
- Krivorotova, T.; Sereikaite, J. Seasonal changes of carbohydrates composition in the tubers of Jerusalem artichoke. Acta Physiol. Plant. 2014, 36, 79–83. [Google Scholar] [CrossRef]
- Aduldecha, C.; Kaewpradit, W.; Vorasoot, N.; Puangbut, D.; Jogloy, S.; Patanothai, A. Effects of water regimes on inulin content and inulin yield of Jerusalem artichoke genotypes with different levels of drought tolerance. Turk. J. Agric. For. 2016, 40, 335–343. [Google Scholar] [CrossRef]
- Matías, J.; González, J.; Cabanillas, J.; Royano, L. Influence of NPK fertilisation and harvest date on agronomic performance of Jerusalem artichoke crop in the Guadiana Basin (Southwestern Spain). Ind. Crops Prod. 2013, 48, 191–197. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Xue, F.; Nan, X.; Wang, H.; Hua, D.; Liu, J.; Yang, L.; Jiang, L.; Xiong, B. Nutritional value, bioactivity, and application potential of Jerusalem artichoke (Helianthus tuberosus L.) as a neotype feed resource. Anim. Nutr. 2020, 6, 429–437. [Google Scholar] [CrossRef]
- Jariene, E.; Danilcenko, H.; Jariene, E.; Wawrzyniak, A.; Taraseviciene, Z.; Jeznach, M.; Zaldariene, S.; Tul-Krzyszczuk, A. Distribution of macronutrients within organically grown Jerusalem artichoke (Helianthus tuberosus L.) tubers throughout the growing period. J. Elementol. 2016, 21, 1315–1325. [Google Scholar] [CrossRef]
- Puangbut, D.; Jogloy, S.; Vorasoot, N.; Srijaranai, S.; Holbrook, C.C.; Patanothai, A. Variation of inulin content, inulin yield and water use efficiency for inulin yield in Jerusalem artichoke genotypes under different water regimes. Agric. Water Manag. 2015, 152, 142–150. [Google Scholar] [CrossRef]
- Khuenpet, K.; Jittanit, W.; Sirisansaneeyakul, S.; Srichamnong, W. Inulin powder production from Jerusalem artichoke (Helianthus tuberosus L.) tuber powder and its application to commercial food products. J. Food Process. Preserv. 2017, 41, e13097. [Google Scholar] [CrossRef]
- Sawicka, B.; Skiba, D.; Pszczółkowski, P.; Aslan, I.; Sharifi-Rad, J.; Krochmal-Marczak, B. Jerusalem artichoke (Helianthus tuberosus L.) as a medicinal plant and its natural products. Cell. Mol. Biol. 2020, 66, 160–177. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, M.G.; Dubkova, N.Z.; Kharkov, V.V.; Gumerova, G.H.; Nikolaev, A.N. Study of power consumption in vibromixing apparatus during Jerusalem artichoke drying. IOP Conf. Ser. Earth Environ. Sci. 2021, 640, 072006. [Google Scholar] [CrossRef]
- Chang, W.; Jia, H.; Aw, W.; Saito, K.; Hasegawa, S.; Kato, H. Beneficial effects of soluble dietary Jerusalem artichoke (Helianthus tuberosus) in the prevention of the onset of type 2 diabetes and non-alcoholic fatty liver disease in high-fructose diet-fed rats. Br. J. Nutr. 2014, 112, 709–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.; Lee, K.; An, H. Inhibitory effects of Helianthus tuberosus ethanol extract on Dermatophagoides farina body-induced atopic dermatitis mouse model and human keratinocytes. Nutrients 2018, 10, 1657. [Google Scholar] [CrossRef] [Green Version]
- Samal, L.; Chaturvedi, V.; Saikumar, G.; Somvanshi, R.; Pattanaik, A. Prebiotic potential of Jerusalem artichoke (Helianthus tuberosus L.) in Wistar rats: Effects of levels of supplementation on hindgut fermentation, intestinal morphology, blood metabolites and immune response. J. Sci. Food Agric. 2015, 95, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Kleessen, B.; Schwarz, S.; Boehm, A.; Fuhrmann, H.; Richter, A.; Henle, T.; Krueger, M. Jerusalem artichoke and chicory inulin in bakery products affect faecal microbiota of healthy volunteers. Br. J. Nutr. 2007, 98, 540–549. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.A.; Sousa, L.; Cabanas, J.E.; Arrobas, M. Tuber yield and leaf mineral composition of Jerusalem artichoke (Helianthus tuberosus L.) grown under different cropping practices. Span. J. Agric. Res. 2007, 5, 545–553. [Google Scholar] [CrossRef] [Green Version]
- Schittenhelm, S. Agronomic performance of root chicory, Jerusalem artichoke, and sugarbeet in stress and nonstress environments. Crop Sci. 1999, 39, 1815–1823. [Google Scholar] [CrossRef]
- Gao, K.; Zhu, T.; Wang, Q. Nitrogen fertilization, irrigation, and harvest times affect biomass and energy value of Helianthus tuberosus L. J. Plant Nutr. 2016, 39, 1906–1914. [Google Scholar]
- Niu, L.; Manxia, C.; Xiumei, G.; Xiaohua, L.; Hongbo, S.; Zhaopu, L.; Zed, R. Carbon sequestration and Jerusalem artichoke biomass under nitrogen applications in coastal saline zone in the northern region of Jiangsu, China. Sci. Total Environ. 2016, 568, 885–890. [Google Scholar] [CrossRef]
- Curt, M.; Aguado, P.; Sanz, M.; Sánchez, G.; Fernández, J. Clone precocity and the use of Helianthus tuberosus L. stems for bioethanol. Ind. Crops Prod. 2006, 24, 314–320. [Google Scholar] [CrossRef]
- Puangbut, D.; Jogloy, S.; Vorasoot, N.; Patanothai, A. Responses of growth, physiological traits and tuber yield in Helianthus tuberosus to seasonal variations under tropical area. Sci. Hortic. 2015, 195, 108–115. [Google Scholar] [CrossRef]
- Chaimala, A.; Jogloy, S.; Vorasoot, N.; Toomsan, B.; Jongrungklang, N.; Kesmala, T.; Holbrook, C.C.; Kvien, C.K. Responses of total biomass, shoot dry weight, yield and yield components of Jerusalem artichoke (Helianthus tuberosus L.) varieties under different terminal drought duration. Agriculture 2020, 10, 198. [Google Scholar] [CrossRef]
- Awad, A.A.M.; Sweed, A.A.A. Influence of organic manures on soil characteristics and yield of Jerusalem artichoke. Commun. Soil Sci. Plant Anal. 2020, 5, 1101–1113. [Google Scholar] [CrossRef]
- Fu, T.; Liu, Z.; Yang, Y.; Xie, G. Accumulation and concentration of nitrogen, phosphorus and potassium in Jerusalem artichoke in a semi-arid region. Ital. J. Agron. 2018, 13, 185–193. [Google Scholar] [CrossRef]
- Sawicka, B.; Kalesa, D.; Skiba, D. Variability in macroelement content in the aboveground part of Helianthus tuberosus L. at different nitrogen fertilization levels. Plant Soil Environ. 2015, 61, 158–163. [Google Scholar] [CrossRef]
- Gao, K.; Zhu, T.; Wang, L.; Gao, Y. Effects of root pruning radius and time on yield of tuberous roots and resource allocation in a crop of Helianthus tuberosus L. Sci. Rep. 2018, 8, 4392. [Google Scholar] [CrossRef] [Green Version]
- Nacoon, S.; Ekprasert, J.; Riddech, N.; Mongkolthanaruk, W.; Jogloy, S.; Vorasoot, N.; Cooper, J.; Boonlue, S. Growth enhancement of sunchoke by arbuscular mycorrhizal fungi under drought condition. Rhizosphere 2021, 17, 100308. [Google Scholar] [CrossRef]
- Namwongsa, J.; Jogloy, S.; Vorasoot, N.; Boonlue, S.; Riddech, N.; Riddech, N.; Mongkolthanaruk, W. Endophytic bacteria improve root traits, biomass and yield of Helianthus tuberosus L. under normal and deficit water conditions. J. Microbiol. Biotechnol. 2019, 29, 1777–1789. [Google Scholar] [CrossRef]
- Puangbut, D.; Jogloy, S.; Vorasoot, N. Association of photosynthetic traits with water use efficiency and SPAD chlorophyll meter reading of Jerusalem artichoke under drought conditions. Agric. Water Manag. 2017, 188, 29–35. [Google Scholar] [CrossRef]
- Ruttanaprasert, R.; Jogloy, S.; Vorasoot, N.; Kesmala, T.; Kanwar, R.; Holbrook, C.; Patanothai, A. Root responses of Jerusalem artichoke genotypes to different water regimes. Biomass Bioenergy 2015, 81, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Chen, Q.; Shen, S. Physiological responses of two Jerusalem artichoke cultivars to drought stress induced by polyethylene glycol. Acta Physiol. Plant. 2011, 33, 313–318. [Google Scholar] [CrossRef]
- Yan, K.; Chen, P.; Shao, H.; Zhao, S. Characterization of photosynthetic electron transport chain in bioenergy crop Jerusalem artichoke (Helianthus tuberosus L.) under heat stress for sustainable cultivation. Ind. Crops Prod. 2013, 50, 809–815. [Google Scholar] [CrossRef]
- Long, X.; Chi, J.; Liu, L.; Li, Q.; Liu, Z. Effect of seawater stress on physiological and biochemical responses of five Jerusalem artichoke ecotypes. Pedosphere 2009, 19, 208–216. [Google Scholar] [CrossRef]
- Long, X.; Huang, Z.; Huang, Y.; Kang, J.; Zhang, Z.; Liu, Z. Response of two Jerusalem artichoke (Helianthus tuberosus) cultivars differing in tolerance to salt treatment. Pedosphere 2010, 20, 515–524. [Google Scholar] [CrossRef]
- Bhagia, S.; Ferreira, J.; Kothari, N.; Nunez, A.; Liu, X.; da Silva Dias, N.; Suarez, D.; Kumar, R.; Wyman, C. Sugar yield and composition of tubers from Jerusalem artichoke (Helianthus tuberosus) irrigated with saline waters. Biotechnol. Bioeng. 2018, 115, 1475–1484. [Google Scholar] [CrossRef] [Green Version]
- Newton, P.J.; Myers, B.A.; West, D.W. Reduction in growth and yield of Jerusalem artichoke caused by soil salinity. Irrig. Sci. 1991, 12, 213–221. [Google Scholar] [CrossRef]
- Shao, T.; Li, L.; Wu, Y.; Chen, M.; Long, X.; Shao, H.; Liu, Z.; Rengel, Z. Balance between salt stress and endogenous hormones influence dry matter accumulation in Jerusalem artichoke. Sci. Total Environ. 2016, 568, 891–898. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, L.; Liu, Z.; Mehta, S.; Zhao, G. Protective role of Ca against NaCl toxicity in Jerusalem artichoke by up-regulation of antioxidant enzymes. Pedosphere 2008, 18, 766–774. [Google Scholar] [CrossRef]
- Yan, K.; Zhao, S.; Cui, M.; Han, G.; Wen, P. Vulnerability of photosynthesis and photosystem I in Jerusalem artichoke (Helianthus tuberosus L.) exposed to waterlogging. Plant. Physiol. Biochem. 2018, 125, 239–246. [Google Scholar] [CrossRef]
- Ruf, T.; Audu, V.; Holzhauser, K.; Emmerling, C. Bioenergy from periodically waterlogged cropland in Europe: A first assessment of the potential of five perennial energy crops to provide biomass and their interactions with soil. Agronomy 2019, 9, 374. [Google Scholar] [CrossRef] [Green Version]
- Bogucka, B.; Jankowski, K. Jerusalem artichoke: Quality response to potassium fertilization and irrigation in Poland. Agronomy 2020, 10, 1518. [Google Scholar] [CrossRef]
- Stolarski, M.; Krzyżaniak, M.; Warmiński, K.; Tworkowski, J.; Szczukowski, S. Perennial herbaceous crops as a feedstock for energy and industrial purposes: Organic and mineral fertilizers versus biomass yield and efficient nitrogen utilization. Ind. Crops Prod. 2017, 107, 244–259. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Z.; Jia, H.; Li, L.; Wu, F. Continuously monocropped Jerusalem artichoke changed soil bacterial community composition and ammonia-oxidizing and denitrifying bacteria abundances. Front. Microbiol. 2018, 9, 705. [Google Scholar] [CrossRef] [Green Version]
- Chi, J.; Long, X.; Liu, Z. Effects of continuous cropping on yield, quality of Jerusalem artichoke and soil enzyme activities. Jiangsu J. Agric. Sci. 2009, 25, 775–780. [Google Scholar]
- Puttha, R.; Goggi, A.; Gleason, M.; Jogloy, S.; Kesmala, T.; Vorasoot, N.; Banterng, P.; Patanothai, A. Pre-chill with gibberellic acid overcomes seed dormancy of Jerusalem artichoke. Agron. Sustain. Develop. 2014, 34, 869–878. [Google Scholar] [CrossRef] [Green Version]
- Monti, A.; Amaducci, M.; Venturi, G. Growth response, leaf gas exchange and fructans accumulation of Jerusalem artichoke (Helianthus tuberosus L.) as affected by different water regimes. Eur. J. Agron. 2005, 23, 136–145. [Google Scholar] [CrossRef]
- EL-Anany, A.M.A.; Anany, T.G. Effect of some mineral nutrients on productivity, tuber seed quality and storability of Jerusalem artichoke. Middle East. J. Agric. Res. 2020, 9, 779–790. [Google Scholar]
- Sennoi, R.; Jogloy, S.; Saksirirat, W.; Kesmala, T.; Singkham, N.; Patanothai, A. Levels of Sclerotium rolfsii inoculum influence identification of resistant genotypes in Jerusalem artichoke. Afr. J. Microbiol. Res. 2012, 6, 6755–6760. [Google Scholar]
- Junsopa, C.; Jogloy, S.; Saksirirat, W.; Songsri, P.; Kesmala, T.; Shew, B.; Patanothai, A. Inoculation with Sclerotium rolfsii, cause of stem rot in Jerusalem artichoke, under field conditions. Eur. J. Plant. Pathol. 2016, 146, 47–58. [Google Scholar] [CrossRef]
- Abdel-Hamid, M.S.; Hamouda, R.A.E.F.; Abd El-Aal, H.; Badawy, G.A. Distinctive application of the consortium of Chlorella vulgaris and Anabaena oryzae toward different planting dates and climate change on Jerusalem artichoke yield. J. Plant. Growth Regul. 2021. [Google Scholar] [CrossRef]
- Epie, K.; Santanen, A.; Mäkelä, P.; Stoddard, F. Fertilizer and intercropped legumes as nitrogen source for Jerusalem artichoke (Helianthus tuberosus L.) tops for bioenergy. Agric. Food Sci. 2018, 27, 199–205. [Google Scholar] [CrossRef]
- Németh, G.; Izsáki, Z.; Németh, T. Influence of nutrient supply on tuber and sugar yield of Jerusalem artichoke (Helianthus tuberosus L.). Cereal Res. Commun. 2008, 36, 1899–1902. [Google Scholar]
- Bogucka, B.; Pszczółkowska, A.; Okorski, A.; Jankowski, K. The Effects of potassium fertilization and irrigation on the yield and health status of Jerusalem artichoke (Helianthus tuberosus L.). Agronomy 2021, 11, 234. [Google Scholar] [CrossRef]
- Vidotto, F.; Tesio, F.; Ferrero, A. Allelopathic effects of Helianthus tuberosus L. on germination and seedling growth of several crops and weeds. Biol. Agric. Hortic. 2008, 26, 55–68. [Google Scholar] [CrossRef]
- Tesio, F.; Weston, L.A.; Vidotto, F.; Ferrero, A. Potential allelopathic effects of Jerusalem artichoke (Helianthus tuberosus) leaf tissues. Weed Technol. 2010, 24, 378–385. [Google Scholar] [CrossRef]
- Colquhoun, J.B.; Rittmeyer, R.A.; Heider, D.J. Carrot weed management programs without linuron herbicide. Weed Technol. 2019, 33, 490–494. [Google Scholar] [CrossRef]
- Farzinmehr, S.; Rezaei, J.; Fazaeli, H. Effect of harvesting frequency and maturity stage of jerusalem artichoke forage on yield, chemical composition and in vitro fermentation of the tubers and forage. Span. J. Agric. Res. 2020, 18, e0602-1. [Google Scholar] [CrossRef]
- Bach, V.; Kidmose, U.; Kjeldsen Bjørn, G.; Edelenbos, M. Effects of harvest time and variety on sensory quality and chemical composition of Jerusalem artichoke (Helianthus tuberosus) tubers. Food Chem. 2012, 133, 82–89. [Google Scholar] [CrossRef]
- Zorić, M.; Terzić, S.; Sikora, V.; Brdar-Jokanovic, M.; Vassilev, D. Effect of environmental variables on performance of Jerusalem artichoke (Helianthus tuberosus L.) cultivars in a long term trial: A statistical approach. Euphytica 2017, 213, 23. [Google Scholar] [CrossRef]
- Amarowicz, R.; Cwalina-Ambroziak, B.; Janiak, M.A.; Bogucka, B. Effect of N fertilization on the content of phenolic compounds in Jerusalem artichoke (Helianthus tuberosus L.) tubers and their antioxidant capacity. Agronomy 2020, 10, 1215. [Google Scholar] [CrossRef]
- Mu, Y.; Gao, W.; Lv, S.; Li, F.; Lu, Y.; Zhao, C. The antioxidant capacity and antioxidant system of Jerusalem artichoke (Helianthus tuberosus L.) tubers in relation to inulin during storage at different low temperatures. Ind. Crops Prod. 2021, 161, 113229. [Google Scholar] [CrossRef]
- Yue, Y.; Shao, T.; Long, X.; He, T.; Gao, X.; Zhou, Z.; Liu, Z.; Liu, Z.; Rengel, Z. Microbiome structure and function in rhizosphere of Jerusalem artichoke grown in saline land. Sci. Total Environ. 2020, 724, 138259. [Google Scholar] [CrossRef] [PubMed]
- Baldini, M.; Danuso, F.; Rocca, A.; Bulfoni, E.; Monti, A.; de Mastro, G. Jerusalem artichoke (Helianthus tuberosus L.) productivity in different Italian growing areas: A modelling approach. Ital. J. Agron. 2011, 6, 126–132. [Google Scholar] [CrossRef]
- Danilcenko, H.; Jariene, E.; Slepetiene, A.L.; Sawicka, B.; Zaldariene, S. The distribution of bioactive compounds in the tubers of organically grown Jerusalem artichoke (Helianthus tuberosus L.) during the growing period. Acta Sci. Pol. Hortorum Cultus 2017, 16, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Khristich, V.V.; Frizen, Y.V.; Gaivays, A.A. Research results of Jerusalem artichoke varieties and hybrids in the forest-steppe of the Omsk region. IOP Conf. Ser. Earth Sci 2021, 624, 012071. [Google Scholar] [CrossRef]
- Dubkova, N.Z.; Kharkov, V.V.; Vakhitov, M.R. Using Jerusalem artichoke powder in functional food production. Foods Raw Mater. 2021, 9, 69–78. [Google Scholar] [CrossRef]
- Rakhimov, D.; Zhauynbaeva, K.; Mezhlumyan, L.; Syrov, V.; Khushbaktova, Z.; Salikhov, S.; Mavlyanova, R. Carbohydrate and protein components of Helianthus tuberosus and their biological activity. Chem. Nat. Compd. 2011, 47, 503–506. [Google Scholar] [CrossRef]
- McCarter, S.M.; Kays, S.J. Diseases limiting production of Jerusalem artichokes in Georgia. Plant. Dis. 1984, 68, 299–302. [Google Scholar] [CrossRef]
- Sennoi, R.; Jogloy, S.; Saksirirat, W.; Kesmala, T.; Patanothai, A. Genotypic variation of resistance to southern stem rot of Jerusalem artichoke caused by Sclerotium Rolfsii. Euphytica 2013, 190, 415–424. [Google Scholar] [CrossRef]
- Junsopa, C.; Jogloy, S.; Saksirirat, W.; Songsri, P.; Kesmala, T.; Shew, B. Association of seedling and adult plant resistance to Sclerotium rolfsii in Jerusalem artichoke (Helianthus tuberosus L.) under field conditions. Eur. J. Plant. Pathol. 2018, 151, 251–255. [Google Scholar] [CrossRef]
- Özer, G.; Bayraktar, H. Occurrence of fungal pathogens and mycelial compatibility among Sclerotinia spp. associated with Jerusalem artichoke in Turkey. Int. J. Agric. Biol. 2015, 17, 619–624. [Google Scholar] [CrossRef]
- Prasad, M.S.L.; Sujatha, M.; Rao, S.C. Analysis of cultural and genetic diversity in Alternaria helianthi and determination of pathogenic variability using wild Helianthus species. J. Phytopathol. 2009, 157, 609–617. [Google Scholar] [CrossRef]
- Shane, W.W.; Baumer, J.S. Apical chlorosis and leaf spot of Jerusalem artichoke incited by Pseudomonas syringae pv. tagetis. Plant. Dis. 1984, 68, 257–260. [Google Scholar] [CrossRef]
- Cassells, A.; Walsh, M. (1995). Screening for Sclerotinia resistance in Helianthus tuberosus L. (Jerusalem artichoke) varieties, lines and somaclones, in the field and in vitro. Plant. Pathol. 1995, 44, 428–437. [Google Scholar] [CrossRef]
- Sujatha, M.; Lakshminarayana, M. Resistance to Spodoptera litura (Fabr.) in Helianthus species and backcross derived inbred lines from crosses involving diploid species. Euphytica 2007, 155, 205–213. [Google Scholar] [CrossRef]
- Charlet, L. Biology and seasonal abundance of parasitoids of the banded sunflower moth (Lepidoptera: Tortricidae) in sunflower. Biol. Control 2001, 20, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Charirak, P.; Saksirirat, W.; Jogloy, S.; Saepaisan, S. Integration of soil solarization with chemical and biological control of stem rot disease of Jerusalem artichoke. J. Pure Appl. Microbiol. 2016, 10, 2531–2539. [Google Scholar] [CrossRef]
- Khan, Z.; Son, S.; Moon, H.; Kim, S.; Shin, H.; Jeon, Y.; Kim, Y. Description of a foliar nematode, Aphelenchoides fragariae (Nematoda: Aphelenchida) with additional characteristics from Korea. J. Asia-Pac. Entomol. 2007, 10, 313–315. [Google Scholar] [CrossRef]
- Meng, X.; Wang, L.; Long, X.; Liu, Z.; Zhang, Z.; Zed, R. Influence of nitrogen fertilization on diazotrophic communities in the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.). Res. Microbiol. 2012, 163, 349–356. [Google Scholar] [CrossRef]
- Long, X.; Shao, H.; Liu, L.; Liu, L.; Liu, Z. Jerusalem artichoke: A sustainable biomass feedstock for biorefinery. Renew. Sustain. Energy Rev. 2016, 54, 1382–1388. [Google Scholar] [CrossRef]
- Liu, Z.; Steinberger, Y.; Chen, X.; Wang, J.; Xie, G. Chemical composition and potential ethanol yield of Jerusalem artichoke in a semi-arid region of China. Ital. J. Agron. 2015, 10, 34–43. [Google Scholar] [CrossRef] [Green Version]
- De Leenheer, L. Production and use of inulin: Industrial reality with a promising future. In Carbohydrates as Organic Raw Materials III; van Bekkum, H., Roper, H., Voragen, A.G.J., Eds.; CRF Carbohydrate Research Foundation: Hague, The Netherlands, 1996; pp. 67–92. [Google Scholar]
- Praznik, W.; Beck, R. Inulin composition during growth of tubers of Helianthus tuberosus. Agric. Biol. Chem. 1987, 51, 1593–1599. [Google Scholar] [CrossRef]
- Krivorotova, T.; Sereikaite, J. Correlation between fructan exohydrolase activity and the quality of Helianthus tuberosus L. tubers. Agronomy 2018, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Cabezas, M.; Rabert, C.; Bravo, S.; Shene, C. Inulin and sugar contents in Helianthus tuberosus and Cichorium intybus tubers: Effect of postharvest storage temperature. J. Food Sci. 2002, 67, 2860–2865. [Google Scholar] [CrossRef]
- Modler, H.; Jones, J.; Mazza, G. Observations on long-term storage and processing of Jerusalem artichoke tubers (Helianthus tuberosus). Food Chem. 1993, 48, 279–284. [Google Scholar] [CrossRef]
- Maicaurkaew, S.; Jogloy, S.; Hamaker, B.R.; Ningsanond, S. Fructan:fructan 1-fructosyltransferase and inulin hydrolase activities relating to inulin and soluble sugars in Jerusalem artichoke (Helianthus tuberosus Linn.) tubers during storage. J. Food Sci. Technol. 2017, 54, 698–706. [Google Scholar] [CrossRef] [Green Version]
- Van de Wiele, T.; Boon, N.; Possemiers, S.; Jacobs, H.; Verstraete, W. Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J. Appl. Microbiol. 2007, 102, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, C. Evaluation of whole Jerusalem artichoke (Helianthus tuberosus L.) for consolidated bioprocessing ethanol production. Renew. Energy 2014, 65, 83–91. [Google Scholar] [CrossRef]
- Franck, A. Technological functionality of inulin and oligofructose. Br. J. Nutr. 2002, 87, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Isticioaia, S.-F.; Apostol, L.; Matei, G.; Mîrzan, O.; Pintilie, P.; Trotuș, E.; Leonte, A.; Vlăduț, V.; Cristea, O.; Oprea, B.; et al. Variation of tuber yields and quality at some Jerusalem artichoke genotypes in pedoclimatic conditions from center of Moldova and the plain of Oltenia, Romania. Rom. Agric. Res. 2021, 38, 1–7. [Google Scholar]
- Jirayucharoensak, R.; Khuenpet, K.; Jittanit, W.; Sirisansaneeyakul, S. Physical and chemical properties of powder produced from spray drying of inulin component extracted from Jerusalem artichoke tuber powder. Dry. Technol. 2019, 37, 1215–1227. [Google Scholar] [CrossRef]
- Lindberg, J.; Malmberg, A.; Theander, O. The chemical composition and nutritive value for ruminants of four possible energy crops and their residues of anaerobic fermentation. Anim. Feed Sci. Technol. 1986, 15, 197–213. [Google Scholar] [CrossRef]
- Ersahince, A.C.; Kara, K. Nutrient composition and in vitro digestion parameters of Jerusalem artichoke (Helianthus tuberosus L.) herbage at different maturity stages in horse and ruminant. J. Anim. Feed Sci. 2017, 26, 213–225. [Google Scholar] [CrossRef]
- Helmi, Z.; Azzam, A.K.M.; Tsymbalista, Y.; Ghazleh, A.R.; Shaibah, H.; Aboul-Enein, H. Analysis of essential oil in Jerusalem artichoke (Helianthus tuberosus L.) leaves and tubers by Gas Chromatography-Mass Spectrometry. Adv. Pharm. Bull. 2014, 4, 521–526. [Google Scholar] [PubMed]
- Yuan, X.; Gao, M.; Xiao, H.; Tan, C.; Du, Y. Free radical scavenging activities and bioactive substances of Jerusalem artichoke (Helianthus tuberosus L.) leaves. Food Chem. 2012, 133, 10–14. [Google Scholar] [CrossRef]
- Kapusta, I.; Krok, E.S.; Jamro, D.B.; Cebulak, T.; Kaszuba, J.; Salach, R.T. Identification and quantification of phenolic compounds from Jerusalem artichoke (Helianthus tuberosus L.) tubers. J. Food Agric. Environ. 2013, 11, 601–606. [Google Scholar]
- Judprasong, K.; Archeepsudcharit, N.; Chantapiriyapoon, K.; Tanaviyutpakdee, P.; Temviriyanukul, P. Nutrients and natural toxic substances in commonly consumed Jerusalem artichoke (Helianthus tuberosus L.) tuber. Food Chem. 2018, 238, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Radovanovic, A.; Stojceska, V.; Plunkett, A.; Jankovic, S.; Milovanovic, D.; Cupara, S. The use of dry Jerusalem artichoke as a functional nutrient in developing extruded food with low glycaemic index. Food Chem. 2015, 177, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Terzić, S.; Atlagić, J.; Maksimović, I.; Zeremski, T.; Zorić, M.; Miklič, V.; Balalić, I. Genetic variability for concentrations of essential elements in tubers and leaves of Jerusalem artichoke (Helianthus tuberosus L.). Sci. Hortic. 2012, 136, 135–144. [Google Scholar] [CrossRef]
- Denisow, B.; Tymoszuk, K.; Dmitruk, M. Nectar and pollen production of Helianthus tuberosus L.-An exotic plant with invasiveness potential. Acta Bot. Croat. 2019, 78, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Bock, D.G.; Kantar, M.B.; Caseys, C.; Matthey-Doret, R.; Rieseberg, L.H. Evolution of invasiveness by genetic accommodation. Nat. Ecol. Evol. 2018, 2, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Fehér, A.; Končeková, L. Evaluation of mechanical regulation of invasive Helianthus tuberosus populations in agricultural landscape. J. Cent. Eur. Agric. 2009, 10, 245–250. [Google Scholar]
- Janikova, A.; Svehlakova, H.; Turcova, B.; Stalmachova, B. Influence of management on vegetative reproduction of invasive species of Helianthus tuberosus in Poodri PLA. IOP Conf. Ser. Earth Environ. Sci. 2020, 444, 012025. [Google Scholar] [CrossRef]
Genotypes | Countries | References |
---|---|---|
Draga, Mari, Rema | Denmark | [73] |
UKR 1/82, UKR 2/82, UKR 3/82 | Serbia | [74] |
Gute Gelbe | Poland | [75] |
LZJ119, Nanyu No. 1 | China | [76,77] |
Violet de Rennes | Italy, Poland | [56,78] |
Reka, Fredonia Nova | Germany | [32] |
Tápió korai, Tápió sima, Ceglédi, Gyöngyvér | Hungary | [15] |
Albik, Rubik, Sauliai | Lithuania | [18,79] |
Sireniki-1, Skorospelka | Russian | [80,81] |
Bragança | Portugal | [31] |
Elverum, Gram, Hvaler, Saturn, Slaagedal, Suitestad, Tysnes | Norway | [8] |
Columbia, Early White, Huertos de Moya, Salmantina, Violet de Rennes | Spain | [35] |
JA5, JA89, JA125, HEL65 | Thailand | [19] |
Stampede | USA | [4] |
Faiz Baraka | Uzbekistan | [82] |
Diseases | References |
---|---|
Stem rot (Sclerotium rolfsii) | [64,83,84,85] |
White mold (Sclerotinia sclerotiorum) | [86] |
Sclerotinia blight (Sclerotinia minor) | [86] |
Powdery mildew (Erysiphe cichoracearum) | [83,86] |
Rust (Puccinia helianthi) | [83,86] |
Alternaria blight (Alternaria helianthi) | [87] |
Pseudomonas syringe pv. tagetis | [88,89] |
Pests | |
Tobacco cutworm (Spodoptera litura) | [90] |
Banded sunflower moth (Cochylis hospes) | [91] |
Locations | Tuber Yield (t dw ha−1) | Aboveground Biomass Yield (t dw ha−1) | References |
---|---|---|---|
Inner Mongolia, China | 2.87–11.20 | 8.22–17.6 | [33] |
1.85–2.79 | - | [41] | |
Gansu, China | 3.6–10.3 | 9.4–30.7 | [96] |
Braunschweig, Germany | 8.4–12.9 | 3.05–5.84 | [32] |
Tomaszkowo, Poland | 7.57–16.66 | 18.15-28.65 | [68] |
Bragança, Portugal | 7.1–15 | - | [31] |
Guadiana River Basin, Spain | 6.1–15.8 | 10.0–22.1 | [20] |
Khon Kaen, Thailand | 3.24–5.09 | 6.25–9.77 | [36] |
Chemical Constituents | References |
---|---|
Carbohydrates (monosaccharides, oligosaccharides and polysaccharides) | |
Monosaccharides | [11,15,18,19,104,107] |
Glucose, fructose, arabinose and galactose | |
Oligosaccharides | |
Sucrose, 1-kestose, nystose and 1F-β-fructofuranosyl nystose | |
Polysaccharides | |
Inulin, hemicellulose and cellulose | |
Amino acids | |
Arginine, aspartic acid, histidine, glycine, isoleucine, leucine, lysine, phenylalanine, valine, methionine, cystine, threonine, threonine, serine, glutamic acid, proline, alanine, tyrosine and lysine | [82,108] |
Carotenoids | |
α-carotene, β-carotene, γ-carotene, lutein, lycopene and zeaxanthin | [109] |
Volatite compounds | |
α-Pinene, β-bisabolene, kauran-16-ol, undecanal, pentylfuran, a-copaene, sabinene, hexanal, linalool, 1-butanol, 2-methyl-1-butanol, calarene, verbenone, squalene and β-sesquiphellandrene | [6,73,110] |
Other organic compounds | |
Caffeic acid, 3,5-dicaffeoyquinic acid, 1,5-dicaffeoylquinic acid, 4,5-dicaffeoyquinic acid, 3,5-dicaffeoyquinic acid methyl ether, 3-O-caffeoyquinic acid, 3,5-O-dicaffeoyl, 3,4-O-dicaffeoyl, 4,5-O-dicaffeoyl, crypto-chlorogenic acid, neo-chlorogenic acid and chlorogenic acid | [111,112] |
Nutrient elements | |
Potassium, magnesium, zinc, calcium, sodium, copper, iron and phosphorus | [22,113] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liava, V.; Karkanis, A.; Danalatos, N.; Tsiropoulos, N. Cultivation Practices, Adaptability and Phytochemical Composition of Jerusalem Artichoke (Helianthus tuberosus L.): A Weed with Economic Value. Agronomy 2021, 11, 914. https://doi.org/10.3390/agronomy11050914
Liava V, Karkanis A, Danalatos N, Tsiropoulos N. Cultivation Practices, Adaptability and Phytochemical Composition of Jerusalem Artichoke (Helianthus tuberosus L.): A Weed with Economic Value. Agronomy. 2021; 11(5):914. https://doi.org/10.3390/agronomy11050914
Chicago/Turabian StyleLiava, Vasiliki, Anestis Karkanis, Nicholaos Danalatos, and Nikolaos Tsiropoulos. 2021. "Cultivation Practices, Adaptability and Phytochemical Composition of Jerusalem Artichoke (Helianthus tuberosus L.): A Weed with Economic Value" Agronomy 11, no. 5: 914. https://doi.org/10.3390/agronomy11050914
APA StyleLiava, V., Karkanis, A., Danalatos, N., & Tsiropoulos, N. (2021). Cultivation Practices, Adaptability and Phytochemical Composition of Jerusalem Artichoke (Helianthus tuberosus L.): A Weed with Economic Value. Agronomy, 11(5), 914. https://doi.org/10.3390/agronomy11050914