Optimization by Means of Chemometric Tools of an Ultrasound-Assisted Method for the Extraction of Betacyanins from Red Dragon Fruit (Hylocereus polyrhizus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Red Dragon Fruit Samples
2.3. Ultrasound-Assisted Extraction (UAE)
2.4. Betacyanins Determination
2.5. Identification of Betacyanins by UHPLC-QToF-MS
2.6. Antioxidant Activity
2.7. Experimental Design
2.8. Statistical Analysis
3. Results and Discussion
3.1. Identification of the Betacyanins
3.2. Optimization of the UAE Method
3.3. Prediction Capability of the Regression Model
12.1BB
3.4. Response Optimization
3.5. Optimal Extraction Time
3.6. Validation of the UAE Method
3.7. Application to Real Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gengatharan, A.; Dykes, G.A.; Choo, W.S. Betalains: Natural plant pigments with potential application in functional foods. LWT 2015, 64, 645–649. [Google Scholar] [CrossRef]
- Prasetyo, B.F.; Shabrina, H.; Juniantito, V.; Wientarsih, I. Activity of red dragon fruit (Hylocereus polyrhizus) juices on doxorubicin-induced nephropathy in rats. IOP Conf. Ser. 2018, 196, 12037. [Google Scholar] [CrossRef]
- Mahayothee, B.; Komonsing, N.; Khuwijitjaru, P.; Nagle, M.; Müller, J. Influence of drying conditions on colour, betacyanin content and antioxidant capacities in dried red-fleshed dragon fruit (Hylocereus polyrhizus). Int. J. Food Sci. Technol. 2019, 54, 460–470. [Google Scholar] [CrossRef]
- Martinez, R.M.; Longhi-Balbinot, D.T.; Zarpelon, A.C.; Staurengo-Ferrari, L.; Baracat, M.M.; Georgetti, S.R.; Sassonia, R.C.; Verri, W.A.; Casagrande, R. Anti-inflammatory activity of betalain-rich dye of Beta vulgaris: Effect on edema, leukocyte recruitment, superoxide anion and cytokine production. Arch. Pharm. Res. 2015, 38, 494–504. [Google Scholar] [CrossRef]
- Pietrzkowski, Z.; Nemzer, B.; Spórna, A.; Stalica, P.; Tresher, W.; Keller, R.; Jimenez, R.; Michałowski, T.; Wybraniec, S. Influence of betalain-rich extract on reduction of discomfort associated with osteoarthritis. N. Med. 2010, 1, 12–17. [Google Scholar]
- De Mello, F.R.; Bernardo, C.; Dias, C.O.; Gonzaga, L.; Amante, E.R.; Fett, R.; Candido, L.M.B. Antioxidant properties, quantification and stability of betalains from pitaya (Hylocereus undatus) peel. Ciência Rural 2014, 45, 323–328. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Ferreiro-González, M.; Espada-Bellido, E.; Carrera, C.; Palma, M.; Álvarez, J.Á.; Ayuso, J.; Barbero, G.F. Extraction of anthocyanins and total phenolic compounds from açai (Euterpe oleracea Mart.) using an experimental design methodology. Part 1: Pressurized liquid extraction. Agronomy 2020, 10, 183. [Google Scholar] [CrossRef] [Green Version]
- Shang, Y.F.; Kim, S.M.; Um, B.-H. Optimisation of pressurised liquid extraction of antioxidants from black bamboo leaves. Food Chem. 2014, 154, 164–170. [Google Scholar] [CrossRef]
- González-De-Peredo, A.V.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Álvarez, J.Á.; Barbero, G.F.; Ayuso, J. Optimization of analytical ultrasound-assisted methods for the extraction of total phenolic compounds and anthocyanins from sloes (Prunus spinosa L.). Agronomy 2020, 10, 966. [Google Scholar] [CrossRef]
- Setyaningsih, W.; Saputro, I.E.; Carrera, C.A.; Palma, M. Optimisation of an ultrasound-assisted extraction method for the simultaneous determination of phenolics in rice grains. Food Chem. 2019, 288, 221–227. [Google Scholar] [CrossRef]
- Cardoso-Ugarte, G.A.; Sosa-Morales, M.E.; Ballard, T.; Liceaga, A.; San Martín-González, M.F. Microwave-assisted extraction of betalains from red beet (Beta vulgaris). LWT 2014, 59, 276–282. [Google Scholar] [CrossRef]
- Vázquez-Espinosa, M.; Espada-Bellido, E.; de Peredo, A.V.G.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Barroso, C.G.; Barbero, G.F. Optimization of microwave-assisted extraction for the recovery of bioactive compounds from the Chilean superfruit (Aristotelia chilensis (Mol.) Stuntz). Agronomy 2018, 8, 240. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Weller, C.L. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 2006, 17, 300–312. [Google Scholar] [CrossRef]
- Laqui-Vilca, C.; Aguilar-Tuesta, S.; Mamani-Navarro, W.; Montaño-Bustamante, J.; Condezo-Hoyos, L. Ultrasound-assisted optimal extraction and thermal stability of betalains from colored quinoa (Chenopodium quinoa Willd) hulls. Ind. Crops Prod. 2018, 111, 606–614. [Google Scholar] [CrossRef]
- Tutunchi, P.; Roufegarinejad, L.; Hamishehkar, H.; Alizadeh, A. Extraction of red beet extract with β-cyclodextrin-enhanced ultrasound assisted extraction: A strategy for enhancing the extraction efficacy of bioactive compounds and their stability in food models. Food Chem. 2019, 297, 124994. [Google Scholar] [CrossRef] [PubMed]
- Koubaa, M.; Barba, F.J.; Grimi, N.; Mhemdi, H.; Koubaa, W.; Boussetta, N.; Vorobiev, E. Recovery of colorants from red prickly pear peels and pulps enhanced by pulsed electric field and ultrasound. Innov. Food Sci. Emerg. Technol. 2016, 37, 336–344. [Google Scholar] [CrossRef]
- Setyaningsih, W.; Duros, E.; Palma, M.; Barroso, C.G. Optimization of the ultrasound-assisted extraction of melatonin from red rice (Oryza sativa) grains through a response surface methodology. Appl. Acoust. 2016, 103, 129–135. [Google Scholar] [CrossRef]
- Martín-García, B.; Pasini, F.; Verardo, V.; Díaz-de-Cerio, E.; Tylewicz, U.; Gómez-Caravaca, A.M.; Caboni, M.F. Optimization of sonotrode ultrasonic-assisted extraction of proanthocyanidins from brewers’ spent grains. Antioxidants 2019, 8, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yong, Y.Y.; Dykes, G.; Lee, S.M.; Choo, W.S. Comparative study of betacyanin profile and antimicrobial activity of red pitahaya (Hylocereus polyrhizus) and red spinach (Amaranthus dubius). Plant. Foods Hum. Nutr. 2017, 72, 41–47. [Google Scholar] [CrossRef]
- Lima, A.C.V.D.; Dionisio, A.P.; Abreu, F.A.P.D.; Silva, G.S.D.; Lima, R.D., Jr.; Magalhães, H.C.R.; Garruti, D.D.S.; Araújo, I.M.D.S.; Artur, A.G.; Taniguchi, C.A.K.; et al. Microfiltered red-purple pitaya colorant: UPLC-ESI-QTOF-MSE-based metabolic profile and its potential application as a natural food ingredient. Food Chem. 2020, 330, 127222. [Google Scholar] [CrossRef]
- Baş, D.; Boyacı, İ.H. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 2007, 78, 836–845. [Google Scholar] [CrossRef]
- Ramli, N.S.; Ismail, P.; Rahmat, A. Influence of conventional and ultrasonic-assisted extraction on phenolic contents, betacyanin contents, and antioxidant capacity of red dragon fruit (Hylocereus polyrhizus). Sci. World J. 2014, 2014, 964731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.S.; Norziah, M.H. Stability of betacyanin pigments from red purple pitaya fruit (Hylocereus polyrhizus): Influence of pH, temperature, metal ions and ascorbic acid. Indones. J. Chem. 2007, 7, 327–331. [Google Scholar] [CrossRef]
- Tenore, G.C.; Novellino, E.; Basile, A. Nutraceutical potential and antioxidant benefits of red pitaya (Hylocereus polyrhizus) extracts. J. Funct. Foods 2012, 4, 129–136. [Google Scholar] [CrossRef]
- Raj, G.V.S.B.; Dash, K.K. Ultrasound-assisted extraction of phytocompounds from dragon fruit peel: Optimization, kinetics and thermodynamic studies. Ultrason. Sonochem. 2020, 68, 105189. [Google Scholar] [CrossRef]
Factors | −1 | 0 | +1 | Unit |
---|---|---|---|---|
Temperature (A) | 10 | 35 | 60 | °C |
Solvent composition (B) | 20 | 50 | 80 | % methanol in water |
Sample to solvent ratio (C) | 0.1:10 | 0.2:10 | 0.3:10 | g mL−1 |
Ultrasound power (D) | 20 | 45 | 70 | % |
Cycle (E) | 0.3 | 0.5 | 0.7 | s−1 |
Experimental Run | UAE Variables | Relative Value with Respect to the Maximum (%) | ||||
---|---|---|---|---|---|---|
A | B | C | D | E | ||
1 | −1 | −1 | 0 | 0 | 0 | 67.53 |
2 | −1 | 0 | +1 | 0 | 0 | 62.13 |
3 | +1 | 0 | 0 | +1 | 0 | 65.47 |
4 | 0 | 0 | +1 | −1 | 0 | 100.00 |
5 | −1 | +1 | 0 | 0 | 0 | 73.59 |
6 | +1 | +1 | 0 | 0 | 0 | 60.88 |
7 | 0 | 0 | 0 | −1 | −1 | 86.77 |
8 | 0 | 0 | 0 | 0 | 0 | 82.83 |
9 | +1 | 0 | +1 | 0 | 0 | 89.11 |
10 | 0 | 0 | +1 | 0 | +1 | 84.78 |
11 | −1 | 0 | 0 | 0 | +1 | 92.11 |
12 | +1 | 0 | −1 | 0 | 0 | 67.99 |
13 | +1 | 0 | 0 | 0 | +1 | 74.27 |
14 | 0 | 0 | −1 | +1 | 0 | 80.12 |
15 | −1 | 0 | −1 | 0 | 0 | 76.71 |
16 | 0 | 0 | 0 | 0 | 0 | 93.65 |
17 | 0 | −1 | 0 | −1 | 0 | 91.10 |
18 | 0 | 0 | 0 | 0 | 0 | 90.68 |
19 | 0 | +1 | 0 | +1 | 0 | 67.31 |
20 | 0 | 0 | −1 | 0 | +1 | 66.43 |
21 | 0 | 0 | 0 | −1 | +1 | 87.87 |
22 | 0 | +1 | 0 | 0 | +1 | 74.44 |
23 | 0 | −1 | 0 | 0 | +1 | 65.49 |
24 | 0 | 0 | +1 | +1 | 0 | 84.01 |
25 | 0 | 0 | 0 | 0 | 0 | 81.30 |
26 | 0 | 0 | 0 | +1 | +1 | 82.55 |
27 | 0 | 0 | +1 | 0 | −1 | 87.14 |
28 | 0 | 0 | −1 | 0 | −1 | 84.32 |
29 | +1 | 0 | 0 | −1 | 0 | 83.03 |
30 | 0 | 0 | 0 | 0 | 0 | 92.18 |
31 | 0 | +1 | −1 | 0 | 0 | 48.39 |
32 | −1 | 0 | 0 | +1 | 0 | 94.29 |
33 | 0 | −1 | +1 | 0 | 0 | 85.51 |
34 | 0 | +1 | 0 | −1 | 0 | 70.22 |
35 | 0 | +1 | 0 | 0 | −1 | 68.17 |
36 | +1 | −1 | 0 | 0 | 0 | 69.55 |
37 | 0 | −1 | −1 | 0 | 0 | 77.87 |
38 | 0 | −1 | 0 | 0 | −1 | 96.42 |
39 | 0 | 0 | −1 | −1 | 0 | 87.84 |
40 | −1 | 0 | 0 | −1 | 0 | 62.38 |
41 | 0 | 0 | 0 | 0 | 0 | 90.62 |
42 | +1 | 0 | 0 | 0 | −1 | 83.18 |
43 | 0 | +1 | +1 | 0 | 0 | 75.50 |
44 | 0 | −1 | 0 | +1 | 0 | 78.27 |
45 | 0 | 0 | 0 | +1 | −1 | 89.00 |
46 | −1 | 0 | 0 | 0 | −1 | 94.84 |
N° | Retention Time (min) | MS (Positive Ion Mode) | Molecular Formula | Identification | ||
---|---|---|---|---|---|---|
Ion | Observed | Calculated | ||||
1 | 4.36 | [M+H]+ | 551.1512 | 551.1513 | C24H26N2O13 | Betanin |
2 | 4.55 | [M+H]+ | 551.1515 | 551.1513 | C24H26N2O13 | Isobetanin |
3 | 4.84 | [M]+ | 637.1517 | 637.1517 | C27H29N2O16+ | Phyllocactin |
4 | 4.87 | [M+H]+ | 637.1510 | 637.1517 | C27H28N2O16 | Betanidin-5-O-(6′-O-3 hydroxybutyril-β-glucoside) |
5 | 4.97 | [M+H]+ | 637.1511 | 637.1517 | C27H28N2O16 | Isophyllocactin |
6 | 5.00 | [M+H]+ | 637.1512 | 637.1517 | C27H28N2O16 | Isobetanidin-5-O-(6′-O-3 hydroxybutyril-β-glucoside) |
7 | 5.05 | [M+H]+ | 769.1943 | 769.1943 | C32H37N2O20 | Apiosyl-malonyl-betanin |
BET | IBET | PHY | BET5O | IPHY | IBET5O | AMBET | ||
---|---|---|---|---|---|---|---|---|
CV (%) | Repeatability (n = 9) | 2.23 | 1.92 | 1.45 | 1.21 | 1.48 | 1.57 | 1.04 |
Intermediate precision (n = 3 + 3 + 3) | 3.88 | 3.28 | 5.51 | 2.00 | 2.16 | 1.61 | 1.15 |
Sample | Betacyanin Content (mg/g) * | Antioxidant Activity (mgTE/g) ** | BET (%) | IBET (%) | PHY (%) | BET5O (%) | IPHY (%) | IBET5O (%) | AMBET (%) |
---|---|---|---|---|---|---|---|---|---|
Indonesian | 0.84 ± 0.07 | 1.73 ± 0.21 | 45.24 | 6.97 | 38.75 | 3.61 | 3.94 | 1.16 | 0.34 |
Spanish | 1.31 ± 0.14 | 2.69 ± 0.28 | 20.07 | 3.83 | 60.79 | 5.49 | 7.43 | 2.29 | 0.08 |
Mexican | 0.93 ± 0.30 | 2.47 ± 0.36 | 61.41 | 15.58 | 16.12 | 0.92 | 4.74 | 1.22 | n.d. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrera, C.; Pastol, J.; Setyaningsih, W.; Ruiz-Rodríguez, A.; Ferreiro-González, M.; Fernández Barbero, G.; Palma, M. Optimization by Means of Chemometric Tools of an Ultrasound-Assisted Method for the Extraction of Betacyanins from Red Dragon Fruit (Hylocereus polyrhizus). Agronomy 2021, 11, 1053. https://doi.org/10.3390/agronomy11061053
Carrera C, Pastol J, Setyaningsih W, Ruiz-Rodríguez A, Ferreiro-González M, Fernández Barbero G, Palma M. Optimization by Means of Chemometric Tools of an Ultrasound-Assisted Method for the Extraction of Betacyanins from Red Dragon Fruit (Hylocereus polyrhizus). Agronomy. 2021; 11(6):1053. https://doi.org/10.3390/agronomy11061053
Chicago/Turabian StyleCarrera, Ceferino, Jean Pastol, Widiastuti Setyaningsih, Ana Ruiz-Rodríguez, Marta Ferreiro-González, Gerardo Fernández Barbero, and Miguel Palma. 2021. "Optimization by Means of Chemometric Tools of an Ultrasound-Assisted Method for the Extraction of Betacyanins from Red Dragon Fruit (Hylocereus polyrhizus)" Agronomy 11, no. 6: 1053. https://doi.org/10.3390/agronomy11061053
APA StyleCarrera, C., Pastol, J., Setyaningsih, W., Ruiz-Rodríguez, A., Ferreiro-González, M., Fernández Barbero, G., & Palma, M. (2021). Optimization by Means of Chemometric Tools of an Ultrasound-Assisted Method for the Extraction of Betacyanins from Red Dragon Fruit (Hylocereus polyrhizus). Agronomy, 11(6), 1053. https://doi.org/10.3390/agronomy11061053