Nutritional and Sensory Quality of Two Types of Cress Microgreens Depending on the Mineral Nutrition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Cultivation
2.2. Ethanol Extraction
2.3. Water Extraction
2.4. Analysis of the Compounds
2.5. Sensory Evaluation
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Brentlinger, D.J. New trends in hydroponic crop production in the US. In Proceedings of the International Conference and Exhibition on Soilless Culture: ICESC 2005, Singapore, 5–8 September 2005; Volume 742, pp. 31–33. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; El-Nakhel, C.; Graziani, G.; Pannico, A.; Soteriou, G.A.; Giordano, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chem. 2019, 277, 107–118. [Google Scholar] [CrossRef]
- Xiao, Z.; Lester, G.E.; Park, E.; Saftner, R.A.; Luo, Y.; Wang, Q. Evaluation and correlation of sensory attributes and chemical compositions of emerging fresh produce: Microgreens. Postharvest Biol. Technol. 2015, 110, 140–148. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; El-Nakhel, C.; Pannico, A.; Graziani, G.; Soteriou, G.A.; Giordano, M.; Zarrelli, A.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Genotype-specific modulatory effects of select spectral bandwidths on the nutritive and phytochemical composition of microgreens. Front. Plant Sci. 2019, 10, 1501. [Google Scholar] [CrossRef] [PubMed]
- El-Nakhel, C.; Pannico, A.; Graziani, G.; Kyriacou, M.C.; Giordano, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Variation in macronutrient content, phytochemical constitution and in vitro antioxidant capacity of green and red butterhead lettuce dictated by different developmental stages of harvest maturity. Antioxidants 2020, 9, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Gioia, F.; Tzortzakis, N.; Rouphael, Y.; Kyriacou, M.C.; Sampaio, S.L.; Ferreira, I.C.; Petropoulos, S.A. Grown to Be Blue—Antioxidant Properties and Health Effects of Colored Vegetables. Part II: Leafy, Fruit, and Other Vegetables. Antioxidants 2020, 9, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neugart, S.; Baldermann, S.; Hanschen, F.S.; Klopsch, R.; Wiesner-Reinhold, M.; Schreiner, M. The intrinsic quality of brassicaceous vegetables: How secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Sci. Hortic. 2018, 233, 460–478. [Google Scholar] [CrossRef]
- Kapusta-Duch, J.; Kopec, A.; Piatkowska, E.; Borczak, B.; Leszczynska, T. The beneficial effects of Brassica vegetables on human health. Rocz. Państwowego Zakładu Hig. 2012, 63, 389–395. [Google Scholar]
- Kamal, K.Y.; Khodaeiaminjan, M.; El-Tantawy, A.A.; Moneim, D.A.; Salam, A.A.; Ash-shormillesy, S.M.A.I.; Attia, A.; Ali, M.A.S.; Herranz, R.; El-Esawi, M.A.; et al. Evaluation of growth and nutritional value of Brassica microgreens grown under red, blue and green LEDs combinations. Physiol. Plant. 2020, 169, 625–638. [Google Scholar] [CrossRef]
- Di Gioia, F.; Renna, M.; Santamaria, P. Sprouts, microgreens and baby leaf vegetables. In Minimally Processed Refrigerated Fruits and Vegetables; Springer: Boston, MA, USA, 2017; pp. 403–432. [Google Scholar] [CrossRef]
- Pannico, A.; El-Nakhel, C.; Graziani, G.; Kyriacou, M.C.; Giordano, M.; Soteriou, G.A.; Zarrelli, A.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Selenium biofortification impacts the nutritive value, polyphenolic content, and bioactive constitution of variable microgreens species. Antioxidants 2020, 9, 272. [Google Scholar] [CrossRef] [Green Version]
- El-Nakhel, C.; Pannico, A.; Kyriacou, M.C.; Giordano, M.; De Pascale, S.; Rouphael, Y. Macronutrient deprivation eustress elicits differential secondary metabolites in red and green-pigmented butterhead lettuce grown in a closed soilless system. J. Sci. Food Agric. 2019, 99, 6962–6972. [Google Scholar] [CrossRef]
- Choe, U.; Yu, L.L.; Wang, T.T.Y. The science behind microgreens as an exciting new food for the 21st century. J. Agric. Food Chem. 2018, 66, 11519–11530. [Google Scholar] [CrossRef]
- Xiao, Z.; Lester, G.E.; Luo, Y.; Wang, Q. Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar] [CrossRef] [PubMed]
- Mir, S.A.; Shah, M.A.; Mir, M.M. Microgreens: Production, shelf life, and bioactive components. Crit. Rev. Food Sci. Nutr. 2017, 57, 2730–2736. [Google Scholar] [CrossRef] [PubMed]
- Caracciolo, F.; El-Nakhel, C.; Raimondo, M.; Kyriacou, M.C.; Cembalo, L.; De Pascale, S.; Rouphael, Y. Sensory attributes and consumer acceptability of 12 microgreens species. Agronomy 2020, 10, 1043. [Google Scholar] [CrossRef]
- Treadwell, D.; Hochmuth, R.; Landrum, L.; Laughlin, W. Microgreens: A New Specialty Crop. EDIS 2020, 5, 1–3. [Google Scholar] [CrossRef]
- Gerovac, J.R.; Craver, J.K.; Boldt, J.K.; Lopez, R.G. Light intensity and quality from sole-source light-emitting diodes impact growth, morphology, and nutrient content of Brassica microgreens. HortScience 2016, 51, 497–503. [Google Scholar] [CrossRef] [Green Version]
- Waterland, N.L.; Moon, Y.; Tou, J.C.; Kopsell, D.A.; Kim, M.J.; Park, S. Differences in leaf color and stage of development at harvest influenced phytochemical content in three cultivars of kale (Brassica oleracea L. and B. napus). J. Agric. Sci. 2019, 11, 14. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; El-Nakhel, C.; Pannico, A.; Graziani, G.; Soteriou, G.A.; Giordano, M.; Palladino, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Phenolic constitution, phytochemical and macronutrient content in three species of microgreens as modulated by natural fiber and synthetic substrates. Antioxidants 2020, 9, 252. [Google Scholar] [CrossRef] [Green Version]
- Bulgari, R.; Baldi, A.; Ferrante, A.; Lenzi, A. Yield and quality of basil, Swiss chard, and rocket microgreens grown in a hydroponic system. N. Z. J. Crop Hort. 2017, 45, 119–129. [Google Scholar] [CrossRef]
- Lenzi, A.; Orlandini, A.; Bulgari, R.; Ferrante, A.; Bruschi, P. Antioxidant and mineral composition of three wild leafy species: A comparison between microgreens and baby greens. Foods 2019, 8, 487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmitessa, O.D.; Renna, M.; Crupi, P.; Lovece, A.; Corbo, F.; Santamaria, P. Yield and quality characteristics of brassica microgreens as affected by the NH4:NO3 molar ratio and strength of the nutrient solution. Foods 2020, 9, 677. [Google Scholar] [CrossRef]
- El-Nakhel, C.; Pannico, A.; Graziani, G.; Kyriacou, M.C.; Gaspari, A.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Nutrient supplementation configures the bioactive profile and production characteristics of three Brassica L. microgreens species grown in peat-based media. Agronomy 2021, 11, 346. [Google Scholar] [CrossRef]
- Gruda, N. Does soilless culture have an influence on product quality of vegetables? J. Appl. Bot. Food Qual. 2009, 2, 141–147. [Google Scholar] [CrossRef]
- Raskin, I.; Ribnicky, D.M.; Komarnytsky, S.; Ilic, N.; Poulev, A.; Borisjuk, N.; Brinker, A.; Moreno, D.A.; Ripoll, C.; Yakoby, N.; et al. Plants and human health in the twenty-first century. Trends Biotechnol. 2002, 20, 522–531. [Google Scholar] [CrossRef]
- Oancea, S.; Oprean, L. Anthocyanins, from biosynthesis in plants to human health benefits. Acta Univ. Cinbinesis Ser. E Food Technol. 2011, 15, 3–16. [Google Scholar]
- Rouphael, Y.; Kyriacou, M.C. Enhancing quality of fresh vegetables through salinity eustress and biofortification applications facilitated by soilless cultivation. Front. Plant Sci. 2018, 9, 1254. [Google Scholar] [CrossRef] [PubMed]
- Teklić, T.; Parađiković, N.; Špoljarević, M.; Zeljković, S.; Lončarić, Z.; Lisjak, M. Linking abiotic stress, plant metabolites, biostimulants and functional food. Ann. Appl. Biol. 2020, 178, 169–191. [Google Scholar] [CrossRef]
- Murphy, C.; Pill, W. Cultural practices to speed the growth of microgreen arugula (roquette; Eruca vesicaria subsp. sativa ). J. Hortic. Sci. Biotechnol. 2010, 85, 171–176. [Google Scholar] [CrossRef]
- Wieth, A.R.; Pinheiro, W.D.; Duarte, T.S. Purple cabbage microgreens grown in different substrates and nutritive solution concentrations | Microgreens de repolho roxo cultivado em diferentes substratos e concentrações de solução nutritiva. Rev. Caatinga 2019, 32, 976–985. [Google Scholar] [CrossRef] [Green Version]
- Renna, M.; Di Gioia, F.; Leoni, B.; Mininni, C.; Santamaria, P. Culinary assessment of self-produced microgreens as basic ingredients in sweet and savory dishes. J. Culinary Sci. Technol. 2017, 15, 126–142. [Google Scholar] [CrossRef]
- Michell, K.A.; Isweiri, H.; Newman, S.E.; Bunning, M.; Bellows, L.L.; Dinges, M.M.; Prenni, J.E. Microgreens: Consumer sensory perception and acceptance of an emerging functional food crop. J. Food Sci. 2020, 85, 926–935. [Google Scholar] [CrossRef]
- Suki, N.M. Consumer environmental concern and green product purchase in Malaysia: Structural effects of consumption values. J. Clean. Prod. 2016, 132, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Sumanta, N.; Haque, C.I.; Nishika, J.; Suprakash, R. Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci. 2014, 2231, 606X. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Keutgen, A.J.; Pawelzik, E. Modifications of strawberry fruit antioxidant pools and fruit quality under NaCl stress. J. Agric. Food Chem. 2007, 55, 4066–4072. [Google Scholar] [CrossRef]
- Keutgen, A.J.; Wszelaczyńska, E.; Pobereżny, J.; Przewodowska, A.; Przewodowski, W.; Milczarek, D.; Tatarowska, B.; Flis, B.; Keutgen, N. Antioxidant properties of potato tubers (Solanum tuberosum L.) as a consequence of genetic potential and growing conditions. PLoS ONE 2019, 14, e0222976. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Durst, R.; Wrolstad, R. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Purbaningtias, T.E.; Aprilia, A.C.; Fauziáh, L. The study of temperature and UV light effect in anthocyanin extract from dragon fruit (Hylocereus costaricensis) rind using UV-Visible spectrophotometer. AIP Conf. Proc. 2017, 1911, 020014. [Google Scholar] [CrossRef] [Green Version]
- Miranda, K.M.; Espey, M.G.; Wink, D.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and ntrite. Nitric Oxide 2001, 5, 62–71. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhao, Y.; Liu, J.; Guo, Y. A statistical analysis of the freshness of postharvest leafy vegetables with application of water based on chlorophyll fluorescence measurement. Inf. Process. Agric. 2017, 4, 269–274. [Google Scholar] [CrossRef]
- Verma, N.; Shukla, S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. Aromat. Plants 2015, 2, 105–113. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Soteriou, G.A.; Colla, G.; Rouphael, Y. The occurrence of nitrate and nitrite in Mediterranean fresh salad vegetables and its modulation by preharvest practices and postharvest conditions. Food Chem. 2019, 285, 468–477. [Google Scholar] [CrossRef]
- Tuncay, Ö.; Eşiyok, D.; Yağmur, B.; Okur, B. Yield and quality of garden cress affected by different nitrogen sources and growing period. Afr. J. Agr. Res. 2011, 6, 608–617. [Google Scholar]
- Berges, J.A.; Charlebois, D.O.; Mauzerall, D.C.; Falkowski, P.G. Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiol. 1996, 110, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Young, A.J. The photoprotective role of carotenoids in higher plants. Physiol. Plant. 1991, 83, 702–708. [Google Scholar] [CrossRef]
- Pareek, S.; Sagar, N.A.; Sharma, S.; Kumar, V.; Agarwal, T.; Gonzalez-Aguilar, G.A.; Yahia, E.M. Chlorophylls: Chemistry and biological functions. In Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd ed.; Yahia, E.M., Ed.; Wiley-Blackwell, John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; Volume 1, pp. 269–284. [Google Scholar] [CrossRef]
- Abdel-Aty, A.M.; Salama, W.H.; Fahmy, A.S.; Mohamed, S.A. Impact of germination on antioxidant capacity of garden cress: New calculation for determination of total antioxidant activity. Sci. Hortic. 2019, 246, 155–160. [Google Scholar] [CrossRef]
- Middleton, E.; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000, 52, 673–751. [Google Scholar] [PubMed]
- Ravishankar, D.; Rajora, A.K.; Greco, F.; Osborn, H.M. Flavonoids as prospective compounds for anti-cancer therapy. Int. J. Biochem. Cell Biol. 2013, 45, 2821–2831. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, C.; Quesada, A.R.; Medina, M.A. Anti-angiogenic and anti-inflammatory properties of kahweol, a coffee diterpene. PLoS ONE 2011, 6, e23407. [Google Scholar] [CrossRef]
- Hosseinzade, A.; Sadeghi, O.; Biregani, A.N.; Soukhtehzari, S.; Brandt, G.S.; Esmaillzadeh, A. Immunomodulatory effects of flavonoids: Possible induction of T CD4+ regulatory cells through suppression of mTOR pathway signaling activity. Front. Immunol. 2019, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Toscano, S.; Trivellini, A.; Cocetta, G.; Bulgari, R.; Francini, A.; Romano, D.; Ferrante, A. Effect of preharvest abiotic stresses on the accumulation of bioactive compounds in horticultural produce. Front. Plant Sci. 2019, 10, 1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.; Lee, Y.-T.; Mele, M.; Choi, I.-L.; Kang, H.-M. The effect of phosphorus and root zone temperature on anthocyanin of red Romaine lettuce. Agronomy 2019, 9, 47. [Google Scholar] [CrossRef] [Green Version]
- De la Fuente, B.; López-García, G.; Máñez, V.; Alegría, A.; Barberá, R.; Cilla, A. Evaluation of the bioaccessibility of antioxidant bioactive compounds and minerals of four genotypes of Brassicaceae microgreens. Foods 2019, 8, 250. [Google Scholar] [CrossRef] [Green Version]
- Di Bella, M.C.; Niklas, A.; Toscano, S.; Picchi, V.; Romano, D.; Lo Scalzo, R.; Branca, F. Morphometric characteristics, polyphenols and ascorbic acid variation in Brassica oleracea L. novel foods: Sprouts, microgreens and baby leaves. Agronomy 2020, 10, 782. [Google Scholar] [CrossRef]
- Ghoora, M.D.; Haldipur, A.C.; Srividya, N. Comparative evaluation of phytochemical content, antioxidant capacities and overall antioxidant potential of select culinary microgreens. J. Agric. Food Res. 2020, 2, 100046. [Google Scholar] [CrossRef]
- Lobiuc, A.; Vasilache, V.; Pintilie, O.; Stoleru, T.; Burducea, M.; Oroian, M.; Zamfirache, M.M. Blue and red LED illumination improves growth and bioactive compounds contents in acyanic and cyanic Ocimum basilicum L. microgreens. Molecules 2017, 22, 2111. [Google Scholar] [CrossRef] [Green Version]
- Mlinarić, S.; Gvozdić, V.; Vukovic, A.; Varga, M.; Vlašiček, I.; Cesar, V.; Begović, L. The effect of light on antioxidant properties and metabolic profile of chia microgreens. Appl. Sci. 2020, 10, 5731. [Google Scholar] [CrossRef]
Nutrient Solution | CaSO4 [mg L−1] | MgSO4 [mg L−1] | K2HPO4 [mg L−1] | KNO3 [mg L−1] |
---|---|---|---|---|
100% Hoagland | 172 | 123 | 114 | 354 |
50% Hoagland | 86 | 61.5 | 57 | 177 |
25% Hoagland | 43 | 30.75 | 28.5 | 88.5 |
Electrical Conductivity (20 °C) | 217–300 µS cm−1 |
---|---|
pH-value | 8.0–8.2 |
Nitrate | 3.5–5.4 mg L−1 |
Chloride | <1–2 mg L−1 |
Sulfate | 4–18 mg L−1 |
Calcium | 41–54 mg L−1 |
Magnesium | 7.4–11 mg L−1 |
Sodium | <1 mg L−1 |
Potassium | <1 mg L−1 |
Total Flavor Impression | Scale of Sensory Attributes |
---|---|
Pungency | |
Crispness | Scale: 1 = not perceived at all; |
Typical aroma | 5 = perceived very well |
Presence of off-flavors | |
Visual Appearance | Scale of Sensory Attributes |
Stem length (plant size) | Scale: 1 = not perceived at all; |
Cotyledon appearance | 5 = perceived very well |
Color impression |
Estimated Leaf Area of Radish Cress [cm2] | Stem Length of Radish Cress [cm] | Stem Length of Garden Cress [cm] | |
---|---|---|---|
100% Hoagland | 0.89 ± 0.19 a | 5.97 ± 0.81 a | 4.86 ± 0.79 a |
50% Hoagland | 0.65 ± 0.18 b | 5.14 ± 0.33 b | 4.29 ± 0.64 a |
25% Hoagland | 0.51 ± 0.11 c | 4.60 ± 0.71 b | 3.13 ± 0.68 b |
Tap water | 0.39 ± 0.09 d | 3.65 ± 0.59 c | 2.81 ± 0.46 b |
Demineralized water | 0.27 ± 0.05 e | 2.71 ± 0.39 d | 1.93 ± 0.22 c |
Transformation | f(x) = LN(x) | - | f(x) = LN(x) |
PKolmogorov-Smirnov t. | 0.200 1 | 0.200 1 | 0.200 1 |
PShapiro Wilk test | 0.635 | 0.431 | 0.140 |
PLevene test | 0.649 | 0.050 | 0.452 |
PANOVA | 0.000 | 0.000 | 0.000 |
Posthoc test | Duncan | Duncan | Duncan |
Water Content of Radish Cress Cotyledons [%] | Water Content of Radish Cress Stems [%] | Water Content of Garden Cress [%] | |
---|---|---|---|
100% Hoagland | 88.5 ± 1.6 a | 95.6 ± 0.7 a | 93.2 ± 1.2 a |
50% Hoagland | 86.4 ± 2.2 a | 95.2 ± 0.8 ab | 92.6 ± 1.6 ab |
25% Hoagland | 83.1 ± 2.2 b | 94.5 ± 1.0 b | 90.8 ± 2.6 bc |
Tap water | 78.7 ± 2.7 c | 93.4 ± 0.9 c | 89.8 ± 3.2 cd |
Demineralized water | 72.6 ± 3.9 d | 91.4 ± 0.8 d | 88.4 ± 2.0 d |
Transformation | - | - | - |
PKolmogorov-Smirnov t. | 0.158 | 0.200 1 | 0.099 |
PShapiro Wilk test | 0.021 | 0.144 | 0.050 |
PLevene test | 0.079 | 0.947 | 0.105 |
PANOVA | 0.000 | 0.000 | 0.000 |
Posthoc test | Duncan | Duncan | Duncan |
Nitrate Content of Radish Cress Cotyledons [g kg−1 DM] | Nitrate Content of Radish Cress Stems [g kg−1 DM] | Nitrate Content of Garden Cress [g kg−1 DM] | |
---|---|---|---|
100% Hoagland | 6.17 ± 0.53 a | 23.33 ± 1.61 a | 21.33 ± 0.58 a |
50% Hoagland | 3.42 ± 0.88 b | 16.00 ± 0.87 b | 14.83 ± 1.15 b |
25% Hoagland | 1.18 ± 0.09 c | 6.03 ± 0.43 c | 5.47 ± 0.80 c |
Tap water | 0.00 ± 0.00 d | 0.14 ± 0.03 d | 0.00 ± 0.00 d |
Demineralized water | 0.01 ± 0.02 d | 0.13 ± 0.04 d | 0.07 ± 0.08 d |
Transformation | f(x) = x0.8 | f(x) = x0.5 | f(x) = x0.455 |
PKolmogorov-Smirnov t. | 0.058 | 0.010 1 | 0.050 |
PShapiro Wilk test | 0.012 | 0.010 1 | 0.011 |
PLevene test | 0.057 | 0.089 | 0.051 |
PANOVA | 0.000 | 0.000 | 0.000 |
Posthoc test | Duncan | Duncan | Duncan |
Total Chl Content [g kg−1 DM] | Chl a Content [g kg−1 DM] | Chl b Content [g kg−1 DM] | Chl a/b Ratio | Car Content [g kg−1 DM] | |
---|---|---|---|---|---|
100% Hoagland | 4.66 ± 1.39 a | 3.53 ± 0.99 a | 1.13 ± 0.40 a | 3.16 ± 0.20 c | 0.68 ± 0.16 a |
50% Hoagland | 4.10 ± 0.26 a | 3.11 ± 0.21 a | 1.00 ± 0.06 a | 3.12 ± 0.06 c | 0.60 ± 0.03 a |
25% Hoagland | 3.39 ± 0.41 a | 2.61 ± 0.30 a | 0.78 ± 0.12 a | 3.34 ± 0.15 c | 0.56 ± 0.03 a |
Tap water | 2.28 ± 0.20 b | 1.80 ± 0.13 b | 0.49 ± 0.07 b | 3.73 ± 0.26 b | 0.42 ± 0.01 b |
Demineralized water | 1.50 ± 0.19 c | 1.21 ± 0.16 c | 0.29 ± 0.03 c | 4.14 ± 0.20 a | 0.31 ± 0.04 c |
Transformation | f(x) = LN(LN(x) + 2) | f(x) = LN(x) | f(x) = LN(LN(x) + 2) | - | f(x) = LN(LN(x) + 2) |
PKolmogorov-Smirnov t. | 0.037 | 0.078 | 0.020 | 0.200 1 | 0.047 |
PShapiro Wilk test | 0.247 | 0.441 | 0.057 | 0.195 | 0.136 |
PLevene test | 0.108 | 0.054 | 0.074 | 0.441 | 0.070 |
PANOVA | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Posthoc test | Duncan | Duncan | Duncan | Duncan | Duncan |
Total Chl Content [g kg−1 DM] | Chl a Content [g kg−1 DM] | Chl b Content [g kg−1 DM] | Chl a/b Ratio | Car Content [g kg−1 DM] | |
---|---|---|---|---|---|
100% Hoagland | 0.34 ± 0.01 a | 0.30 ± 0.02 a | 0.05 ± 0.01 a | 6.73 ± 1.86 a | 0.08 ± 0.00 a |
50% Hoagland | 0.33 ± 0.04 a | 0.30 ± 0.03 a | 0.03 ± 0.01 ab | 9.99 ± 2.03 a | 0.08 ± 0.01 a |
25% Hoagland | 0.32 ± 0.02 a | 0.29 ± 0.01 a | 0.03 ± 0.01 ab | 11.54 ± 3.98 a | 0.08 ± 0.00 a |
Tap water | 0.26 ± 0.07 ab | 0.25 ± 0.04 ab | 0.02 ± 0.02 bc | 13.19 ± 16.91 a | 0.07 ± 0.01 a |
Demineralized water | 0.20 ± 0.07 b | 0.21 ± 0.05 b | 0.00 ± 0.01 c | 30.47 ± 42.40 a | 0.06 ± 0.01 a |
Transformation | - | f(x) = x2 | - | - | - |
PKolmogorov-Smirnov t. | 0.101 | 0.060 | 0.200 1 | 0.004 | 0.006 |
PShapiro Wilk test | 0.038 | 0.178 | 0.728 | 0.000 | 0.029 |
PLevene test | 0.183 | 0.410 | 0.559 | - | - |
P Kruskal-Wallis t. | - | - | - | 0.520 | 0.069 |
PANOVA | 0.028 | 0.035 | 0.011 | - | - |
Posthoc test | Duncan | Duncan | Duncan | - | - |
Total Chl Content [g kg−1 DM] | Chl a Content [g kg−1 DM] | Chl b Content [g kg−1 DM] | Chl a/b Ratio | Car Content [g kg−1 DM] | |
---|---|---|---|---|---|
100% Hoagland | 4.78 ± 0.98 a | 3.53 ± 0.58 a | 1.26 ± 0.40 a | 2.89 ± 0.40 c | 0.56 ± 0.07 a |
50% Hoagland | 3.80 ± 0.56 ab | 2.88 ± 0.42 ab | 0.92 ± 0.16 ab | 3.17 ± 0.36 bc | 0.50 ± 0.08 ab |
25% Hoagland | 2.96 ± 0.29 bc | 2.31 ± 0.21 bc | 0.64 ± 0.11 abc | 3.65 ± 0.51 abc | 0.44 ± 0.04 ab |
Tap water | 2.70 ± 1.14 bc | 2.13 ± 0.83 bc | 0.57 ± 0.31 bc | 3.97 ± 0.65 ab | 0.40 ± 0.13 bc |
Demineralized water | 1.96 ± 0.13 c | 1.58 ± 0.08 c | 0.39 ± 0.05 c | 4.11 ± 0.32 a | 0.31 ± 0.01 c |
Transformation | - | - | f(x) = LN(LN (LN(x) + 2) + 1)) | - | f(x) = LN(LN (LN (x) + 2) + 1) |
PKolmogorov-Smirnov t. | 0.200 1 | 0.2001 | 0.103 | 0.200 1 | 0.061 |
PShapiro Wilk test | 0.467 | 0.532 | 0.136 | 0.986 | 0.041 |
PLevene test | 0.054 | 0.055 | 0.059 | 0.738 | 0.064 |
PANOVA | 0.007 | 0.007 | 0.023 | 0.042 | 0.007 |
Posthoc test | Duncan | Duncan | Duncan | Duncan | Duncan |
Phenol Content [g GAE kg−1 DM] | Flavonoid Content [g RE kg−1 DM] | Anthocyanin Content [g kg−1 DM] | Antioxidant Capacity [mol kg−1 DM] | |
---|---|---|---|---|
100% Hoagland | 1.54 ± 0.15 a | 13.94 ± 5.72 a | 0.77 ± 0.04 a | 0.12 ± 0.01 a |
50% Hoagland | 1.48 ± 0.12 ab | 11.38 ± 2.83 a | 1.10 ± 0.46 a | 0.10 ± 0.01 ab |
25% Hoagland | 1.41 ± 0.07 ab | 10.48 ± 4.53 a | 0.88 ± 0.06 a | 0.12 ± 0.01 a |
Tap water | 1.28 ± 0.10 bc | 7.70 ± 2.99 a | 1.08 ± 0.27 a | 0.10 ± 0.01 ab |
Demineralized water | 1.15 ± 0.12 c | 6.90 ± 0.56 a | 1.21 ± 0.21 a | 0.08 ± 0.01 b |
Transformation | - | - | - | - |
PKolmogorov-Smirnov t. | 0.200 1 | 0.162 | 0.023 | 0.136 |
PShapiro Wilk test | 0.984 | 0.045 | 0.012 | 0.216 |
PLevene test | 0.807 | 0.092 | - | 1.000 |
PKruskal-Wallis t. | - | - | 0.067 | - |
PANOVA | 0.011 | 0.219 | - | 0.008 |
Posthoc test | Duncan | - | - | Duncan |
Phenol Content [g GAE kg−1 DM] | Flavonoid Content [g RE kg−1 DM] | Anthocyanin Content [g kg−1 DM] | Antioxidant Capacity [mol kg−1 DM] | |
---|---|---|---|---|
100% Hoagland | 0.82 ± 0.04 c | 0.00 ± 0.00 a | 4.93 ± 0.23 c | 0.02 ± 0.00 a |
50% Hoagland | 0.90 ± 0.03 c | 0.00 ± 0.00 a | 5.95 ± 0.97 bc | 0.03 ± 0.01 a |
25% Hoagland | 1.01 ± 0.03 b | 0.00 ± 0.00 a | 6.51 ± 0.17 ab | 0.04 ± 0.00 a |
Tap water | 1.10 ± 0.07 a | 0.00 ± 0.00 a | 7.57 ± 1.01 ab | 0.05 ± 0.01 a |
Demineralized water | 1.14 ± 0.02 a | 0.93 ± 1.40 a | 8.79 ± 2.97 a | 0.04 ± 0.00 a |
Transformation | - | - | f(x) = LN(LN(LN(x))) | - |
PKolmogorov-Smirnov t. | 0.200 1 | 0.000 | 0.200 1 | 0.000 |
PShapiro Wilk test | 0.376 | 0.000 | 0.861 | 0.004 |
PLevene test | 0.338 | - | 0.166 | - |
PKruskal-Wallis t. | - | 0.073 | - | 0.092 |
PANOVA | 0.000 | - | 0.008 | - |
Posthoc test | Duncan | - | Duncan | - |
Phenol Content [g GAE kg−1 DM] | Flavonoid Content [g RE kg−1 DM] | Anthocyanin Content [g kg−1 DM] | Antioxidant Capacity [mol kg−1 DM] | |
---|---|---|---|---|
100% Hoagland | 2.35 ± 0.08 a | 11.22 ± 3.62 a | 0.04 ± 0.05 b | 0.15 ± 0.01 a |
50% Hoagland | 2.15 ± 0.13 a | 12.34 ± 5.66 a | 0.03 ± 0.02 b | 0.14 ± 0.02 a |
25% Hoagland | 2.16 ± 0.21 a | 14.42 ± 11.96 a | 0.04 ± 0.02 b | 0.14 ± 0.01 a |
Tap water | 2.37 ± 0.01 a | 18.97 ± 7.94 a | 0.12 ± 0.07 ab | 0.16 ± 0.02 a |
Demineralized water | 2.15 ± 0.04 a | 17.23 ± 1.52 a | 0.15 ± 0.06 a | 0.13 ± 0.01 a |
Transformation | - | f(x) = LN(x) | - | - |
PKolmogorov-Smirnov t. | 0.055 | 0.200 1 | 0.200 1 | 0.084 |
PShapiro Wilk test | 0.110 | 0.229 | 0.061 | 0.170 |
PLevene test | 0.008 | 0.160 | 0.250 | 0.494 |
PANOVA | 0.086 | 0.611 | 0.037 | 0.431 |
Post-hoc test | - | - | Duncan | - |
Pungency | Crispness | Typical Aroma | Presence of Off-Flavors | Total Flavor Impression | |
---|---|---|---|---|---|
100% Hoagland | 3.33 ± 1.01 a | 3.59 ± 0.76 a | 3.83 ± 0.91 a | 4.31 ± 0.91 ab | 3.91 ± 0.90 a |
50% Hoagland | 3.50 ± 0.91 a | 3.76 ± 0.70 a | 3.74 ± 0.92 ab | 4.24 ± 0.93 a | 3.63 ± 0.98 ab |
25% Hoagland | 3.13 ± 1.01 a | 3.63 ± 0.65 a | 3.76 ± 0.87 a | 4.17 ± 0.99 abc | 3.70 ± 0.96 a |
Tap water | 3.15 ± 1.00 a | 3.43 ± 0.72 a | 3.20 ± 0.96 bc | 3.54 ± 1.27 c | 3.13 ± 0.91 bc |
Demineralized water | 2.98 ± 0.11 a | 3.35 ± 0.91 a | 3.04 ± 0.85 c | 3.65 ± 1.18 bc | 3.04 ± 0.89 c |
Stem Length (Plant Size) | Cotyledon Appearance | Color Impression | General Visual Appearance | |
---|---|---|---|---|
100% Hoagland | 4.48 ± 0.57 a | 3.63 ± 0.81 a | 3.57 ± 0.84 a | 3.80 ± 0.94 a |
50% Hoagland | 3.93 ± 0.87 ab | 3.50 ± 0.84 ab | 3.74 ± 0.80 a | 3.87 ± 0.75 a |
25% Hoagland | 3.37 ± 0.62 b | 3.02 ± 0.74 bc | 3.70 ± 0.72 a | 3.89 ± 0.72 a |
Tap water | 2.48 ± 0.77 c | 2.48 ± 0.67 cd | 3.63 ± 0.92 a | 3.48 ± 0.93 a |
Demineralized water | 1.80 ± 0.76 c | 1.91 ± 0.62 d | 3.39 ± 1.11 a | 2.74 ± 0.99 b |
Pungency | Crispness | Typical Aroma | Presence of Off-Flavors | Total Flavor Impression | |
---|---|---|---|---|---|
100% Hoagland | 3.24 ± 0.88 ab | 3.50 ± 0.77 a | 3.65 ± 0.71 a | 4.15 ± 0.77 a | 3.82 ± 0.76 a |
50% Hoagland | 3.39 ± 1.04 a | 3.56 ± 0.86 a | 3.70 ± 0.82 a | 3.88 ± 0.97 a | 3.62 ± 0.86 a |
25% Hoagland | 3.05 ± 0.97 ab | 3.23 ± 0.91 ab | 3.29 ± 0.87 ab | 3.74 ± 1.04 a | 3.09 ± 0.94 b |
Tap water | 3.33 ± 1.00 a | 2.95 ± 0.94 ab | 3.03 ± 0.86 bc | 3.55 ± 1.08 a | 2.89 ± 0.93 bc |
Demineralized water | 2.79 ± 1.14 b | 2.74 ± 1.01 b | 2.59 ± 0.89 c | 2.71 ± 1.15 b | 2.36 ± 1.02 c |
Stem Length (Plant Size) | Cotyledon Appearance | Color Impression | General Visual Appearance | |
---|---|---|---|---|
100% Hoagland | 3.89 ± 0.70 a | 3.56 ± 0.75 a | 3.94 ± 0.76 a | 4.30 ± 0.63 a |
50% Hoagland | 3.41 ± 0.88 a | 3.42 ± 0.82 a | 3.77 ± 0.72 a | 3.95 ± 0.73 a |
25% Hoagland | 2.45 ± 0.75 b | 2.61 ± 0.65 b | 3.14 ± 0.72 b | 2.86 ± 0.86 b |
Tap water | 2.12 ± 0.67 b | 2.26 ± 0.64 b | 2.82 ± 0.88 b | 2.53 ± 0.92 b |
Demineralized water | 1.41 ± 0.63 c | 1.67 ± 0.56 c | 2.20 ± 0.92 c | 1.88 ± 0.87 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keutgen, N.; Hausknecht, M.; Tomaszewska-Sowa, M.; Keutgen, A.J. Nutritional and Sensory Quality of Two Types of Cress Microgreens Depending on the Mineral Nutrition. Agronomy 2021, 11, 1110. https://doi.org/10.3390/agronomy11061110
Keutgen N, Hausknecht M, Tomaszewska-Sowa M, Keutgen AJ. Nutritional and Sensory Quality of Two Types of Cress Microgreens Depending on the Mineral Nutrition. Agronomy. 2021; 11(6):1110. https://doi.org/10.3390/agronomy11061110
Chicago/Turabian StyleKeutgen, Norbert, Michael Hausknecht, Magda Tomaszewska-Sowa, and Anna Jadwiga Keutgen. 2021. "Nutritional and Sensory Quality of Two Types of Cress Microgreens Depending on the Mineral Nutrition" Agronomy 11, no. 6: 1110. https://doi.org/10.3390/agronomy11061110
APA StyleKeutgen, N., Hausknecht, M., Tomaszewska-Sowa, M., & Keutgen, A. J. (2021). Nutritional and Sensory Quality of Two Types of Cress Microgreens Depending on the Mineral Nutrition. Agronomy, 11(6), 1110. https://doi.org/10.3390/agronomy11061110