Impact of Different Water Management Regimes on the Growth, Productivity, and Resource Use Efficiency of Dry Direct Seeded Rice in Central Punjab-Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Harvesting and Data Collection
2.4. Statistical Analysis
3. Results
3.1. Total Water Input
3.2. Plant Height and Yield Related Attributes
3.3. Crop Growth, and Physiological Attributes
3.4. Yield, Harvest Index and Water Productivity
3.5. Benefit Cost Ratio
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cordero-Lara, K.I. Temperate japonica rice (Oryza sativa L.) breeding: History, present and future challenges. Chil. J. Agric. Res. 2020, 80, 303–314. [Google Scholar] [CrossRef]
- Chan, C.; Nor, M. Impacts and implications of direct seeding on irrigation requirement and systems management. Papepr presented at the Workshop on Water and Direct Seeding for Rice; Muda Agricultural Development Authority, Ampang Jajar, Alor Setar, Malaysia, 14–16 June 1993. [Google Scholar]
- Pandey, S.; Velasco, L. Economics of direct seeding in asia: Patterns of adoption and research priorities. In Direct Seeding: Research Strategies and Opportunities; Pandey, S., Mortimer, M., Wade, L., Tuong, T.P., Lopes, K., Hardy, B., Eds.; International Rice Research Institutel: Los Banõs, Philippines, 2002; pp. 3–14. [Google Scholar]
- Luo, X.; Liao, J.; Zang, Y.; Zhou, Z. Improving agricultural mechanization level to promote agricultural sustainable development. Trans. Chin. Soc. Agric. Eng. 2016, 32, 1–11. [Google Scholar]
- Ko, J.Y.; Kang, H.W. The effects of cultural practices on methane emission from rice fields. In Methane Emissions from Major Rice Ecosystems in Asia; Springer: Berlin/Heidelberg, Germany, 2000; pp. 311–314. [Google Scholar]
- Kukal, S.; Aggarwal, G. Percolation losses of water in relation to puddling intensity and depth in a sandy loam rice (Oryza sativa) field. Agric. Water Manag. 2002, 57, 49–59. [Google Scholar] [CrossRef]
- Bhushan, L.; Ladha, J.K.; Gupta, R.K.; Singh, S.; Tirol-Padre, A.; Saharawat, Y.; Gathala, M.; Pathak, H. Saving of water and labor in a rice-wheat system with no-tillage and direct seeding technologies. Agron. J. 2007, 99, 1288–1296. [Google Scholar] [CrossRef]
- Kato, Y.; Katsura, K. Rice adaptation to aerobic soils: Physiological considerations and implications for agronomy. Plant Prod. Sci. 2014, 17, 1–12. [Google Scholar] [CrossRef]
- Fukai, S.; Ouk, M. Increased productivity of rainfed lowland rice cropping systems of the Mekong region. Crop Pasture Sci. 2013, 63, 944–973. [Google Scholar] [CrossRef]
- Stevens, G.; Vories, E.; Heiser, J.; Rhine, M. Experimentation on cultivation of rice irrigated with a center pivot system. In Irrigation Systems and Practices in Challenging Environments; InTech: Janeza Trdine Rejeka, Croatia; 2012; pp. 233–254. [Google Scholar]
- Liu, H.; Hussain, S.; Zheng, M.; Peng, S.; Huang, J.; Cui, K.; Nie, L. Dry direct-seeded rice as an alternative to transplanted-flooded rice in Central China. Agron. Sustain. Dev. 2015, 35, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Ji, M.; Yuan, D.; Mao, W. 750 kg Yield target techniques by non-flooding irrigation and direct-sowing cultivation. China Rice 2005, 3, 33. [Google Scholar]
- Kato, Y.; Okami, M.; Katsura, K. Yield potential and water use efficiency of aerobic rice (Oryza sativa L.) in Japan. Field Crop. Res. 2009, 113, 328–334. [Google Scholar] [CrossRef]
- Katsura, K.; Nakaide, Y. Factors that determine grain weight in rice under high-yielding aerobic culture: The importance of husk size. Field Crop. Res. 2011, 123, 266–272. [Google Scholar] [CrossRef]
- Shi, Y.; Shen, Q.; Mao, Z.; Li, W. Biological response of rice crop cultivated on upland soil condition and the effect of mulching on it. Plant Nutr. Fert. Sci. 2001, 7, 271–277. [Google Scholar]
- Zhao, C.; Jiang, H.; Ren, C.; Yin, Y.; Li, Y. Studies on key techniques of sowing rice directly on dry land for high yield and high efficiency. J. Jilin Agric. Sci. 2007, 32, 9–11. [Google Scholar]
- Lun, Z. A report on dry direct seeding cultivation technique of early rice. J. Guangxi Agric. 2008, 23, 10–11, (In Chinese with English abstract). [Google Scholar]
- De Datta, S.; Krupp, H.; Alvarez, E.; Modgal, S. Water management practices in flooded tropical rice. In Water Management in Philippine Irrigation Systems: Research and Operations; IRRI: Los Banos, Philippines; 1973; pp. 1–18. [Google Scholar]
- Virk, P.; Virmani, S.; Lopena, V.; Cabangon, R. Enhancing water productivity in irrigated rice. In Proceedings of the Poster Presentation, New Directions for a Diverse Planet; Handbook and Abstracts for the 4th International Crop Science Congress, Brisbane, Australia, 26 September–1 October 2004; p. 113. [Google Scholar]
- Jong, G.W.; Hirahara, Y.; Yoshida, T.; Imabayashi, S. Selection of rice lines using SPGP seedling method for direct seeding. Plant Prod. Sci. 1998, 1, 280–285. [Google Scholar]
- Yuan, L. Breeding of super hybrid rice. Rice Research for Food Security and Poverty Alleviation. In Proceedings of the International Rice Research Conference, Los Baños, Philippines, 31 March–3 April 2000; International Rice Research Institute (IRRI): Philpphine, 2001; pp. 143–149. [Google Scholar]
- Peng, S.; Khush, G.S.; Virk, P.; Tang, Q.; Zou, Y. Progress in ideotype breeding to increase rice yield potential. Field Crop. Res. 2008, 108, 32–38. [Google Scholar] [CrossRef]
- Peng, S.; Tang, Q.; Zou, Y. Current status and challenges of rice production in China. Plant Prod. Sci. 2009, 12, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Katsura, K.; Maeda, S.; Horie, T.; Shiraiwa, T. Analysis of yield attributes and crop physiological traits of Liangyoupeijiu, a hybrid rice recently bred in China. Field Crop. Res. 2007, 103, 170–177. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Q.; Zou, Y.; Li, D.; Qin, J.; Yang, S.; Chen, L.; Xia, B.; Peng, S. Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crop. Res. 2009, 114, 91–98. [Google Scholar] [CrossRef]
- Bouman, B. Water Management in Irrigated Rice: Coping with Water Scarcity; International Rice Research Institure: Los Banos, Philppine, 2007. [Google Scholar]
- Tuong, T.P.; Bam, B.; Mortimer, M. More Rice, Less Water-Integrated Approaches for Increasing Water Productivity in Irrigated Rice-Based Systems in Asia-. Plant Prod. Sci. 2005, 8, 231–241. [Google Scholar] [CrossRef]
- Bouman, B.; Tuong, T.P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Kumar, V.; Ladha, J.K. Direct seeding of rice: Recent developments and future research needs. Adv. Agron. 2011, 111, 297–413. [Google Scholar]
- Peizhou, X.; Yun, L.; Shu, Y. Studies of photosystem complexes and chlorophyll synthesis in chlorophyll-deficient rice mutant W1. Sci. Agric. Sin. 2006, 39, 1299–1305. [Google Scholar]
- Singh, C. Effects of transplanting data and irrigation regime on growth, yield and water use in rice (Oryza sativa) in northern India. Indian J. Agric. Sci. 1996, 66, 137–141. [Google Scholar]
- Yao, F.; Huang, J.; Cui, K.; Nie, L.; Xiang, J.; Liu, X.; Wu, W.; Chen, M.; Peng, S. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crop. Res. 2012, 126, 16–22. [Google Scholar] [CrossRef]
- Linquist, B.A.; Anders, M.M.; Adviento-Borbe, M.A.A.; Chaney, R.L.; Nalley, L.L.; Da Rosa, E.F.; Van Kessel, C. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Glob. Chang. Biol. 2015, 21, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Carrijo, D.R.; Lundy, M.E.; Linquist, B.A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crop. Res. 2017, 203, 173–180. [Google Scholar] [CrossRef]
- Bouman, B.; Humphreys, E.; Tuong, T.P.; Barker, R. Rice and water. Adv. Agron. 2007, 92, 187–237. [Google Scholar]
- Liu, Y.; Wan, B.; Li, W. Study on varieties selected for characteristic of water-saving or drought tolerant. Hunan Agric. Sci. 2009, 5, 24–26. [Google Scholar]
- Li, S.; Yu, H.; Peng, B.; Xu, X. Selection of a new late-cropping gall midge resistant hybrid rice combination Wufengyougan No. 3 with fine grain quality. Hybrid Rice 2010, 25, 88–89. [Google Scholar]
- Nguyen, N.T.A.; Van Pham, C.; Nguyen, D.T.N.; Mochizuki, T. Genotypic variation in morphological and physiological characteristics of rice (Oryza sativa L.) under aerobic conditions. Plant Prod. Sci. 2015, 18, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Laza, M.R.C.; Cassman, K.G.; Huang, J.; Nie, L.; Ling, X.; Centeno, G.S.; Cui, K.; Wang, F.; Li, Y. Temperature explains the yield difference of double-season rice between tropical and subtropical environments. Field Crop. Res. 2016, 198, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Chen, T.; Wang, Z.; Zhang, H.; Yang, J.; Zhang, J. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crop. Res. 2013, 154, 226–235. [Google Scholar] [CrossRef]
- Ishfaq, M.; Akbar, N.; Anjum, S.A.; Anwar-i-Haq, M. Growth, yield and water productivity of dry direct seeded rice and transplanted aromatic rice under different irrigation management regimes. J. Integr. Agric. 2020, 19, 2656–2673. [Google Scholar] [CrossRef]
Treatments | Cultivars | Irrigation Events | Irrigation Amount (mm) | Rainfall (mm) | Total Water Input (mm) | ||||
---|---|---|---|---|---|---|---|---|---|
2018 | 2020 | 2018 | 2020 | 2018 | 2020 | 2018 | 2020 | ||
AR * | Hybrid | 19 | 16 | 456 | 384 | 208.1 | 202.4 | 664.1 | 586.4 |
Inbred | 19 | 16 | 456 | 384 | 208.1 | 202.4 | 664.1 | 586.4 | |
AWD | Hybrid | 22 | 17 | 528 | 408 | 208.1 | 202.4 | 736.1 | 610.4 |
Inbred | 23 | 18 | 552 | 432 | 208.1 | 202.4 | 760.1 | 634.4 | |
CF | Hybrid | 29 | 27 | 696 | 648 | 208.1 | 202.4 | 904.1 | 850.4 |
Inbred | 31 | 29 | 744 | 696 | 208.1 | 202.4 | 952.1 | 898.4 |
Treatments | Plant Height (cm) | Panicle (m−2) | Spikelets (Panicle−1) | Productive Tiller (%) | Grain Filling (%) | 1000-Grain Weight (g) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2020 | 2018 | 2020 | 2018 | 2020 | 2018 | 2020 | 2018 | 2020 | 2018 | 2020 | |
Irrigation Regimes (IR) | ||||||||||||
AR * | 90.00b | 90.28b | 287.00b | 286.28b | 124.38b | 124.95b | 53.01b | 53.17b | 58.53b | 58.26b | 23.58a | 23.29a |
AWD | 103.57a | 103.83a | 320.92a | 321.63a | 135.98a | 136.35a | 78.38a | 78.53a | 75.35a | 75.73a | 23.67a | 23.71a |
CF | 101.70a | 101.95a | 338.17a | 338.81a | 136.01a | 137.88a | 77.00a | 77.14a | 77.15b | 78.23a | 24.09a | 23.94a |
HSD (p ≤ 0.05) | 6.37 | 6.39 | 30.28 | 30.62 | 3.86 | 6.75 | 7.18 | 7.17 | 7.92 | 9.48 | 1.01 | 1.14 |
Cultivar (C) | ||||||||||||
Hybrid (H) | 98.60a | 98.88a | 328.72a | 330.46a | 132.63a | 133.37a | 72.20a | 72.35a | 71.23a | 71.80a | 24.37a | 24.28a |
Inbred (I) | 98.24b | 98.48a | 302.00b | 300.69b | 131.60a | 132.75a | 66.73b | 66.88b | 69.46a | 69.68a | 23.19b | 23.01b |
HSD (p ≤ 0.05) | 4.22 | 4.23 | 20.75 | 20.31 | 2.56 | 4.47 | 4.76 | 4.76 | 5.25 | 6.29 | 0.67 | 0.76 |
IR × C | ||||||||||||
AR × H | 87.00c | 87.30c | 297.33b | 298.05b | 123.51e | 121.90c | 51.43c | 51.53c | 53.50c | 52.73c | 24.03ab | 24.07ab |
AR × I | 93.00bc | 93.27bc | 276.67b | 274.51b | 125.25de | 127.99bc | 54.60c | 54.76c | 63.56bc | 63.80bc | 23.13b | 22.51b |
AWD × H | 104.30ab | 104.60ab | 326.17ab | 326.82ab | 133.63bc | 134.04ab | 80.53ab | 80.68ab | 77.60ab | 78.16ab | 24.10ab | 24.14ab |
AWD × I | 102.83ab | 103.07ab | 315.66ab | 316.45ab | 138.34ab | 138.66ab | 76.23ab | 76.78ab | 73.10ab | 73.30ab | 23.24ab | 23.28ab |
CF × H | 104.50a | 104.77a | 362.67a | 366.50a | 140.75a | 144.6a | 84.63a | 84.78a | 83.60a | 84.50a | 24.98a | 24.64a |
CF × I | 98.90ab | 99.13ab | 313.68ab | 311.11b | 131.20cd | 131.60bc | 69.36b | 69.51b | 71.73ab | 71.97ab | 23.20ab | 23.24ab |
HSD (p ≤ 0.05) | 11.39 | 11.42 | 55.90 | 54.72 | 6.90 | 12.06 | 12.83 | 12.82 | 14.16 | 16.95 | 1.81 | 2.04 |
Treatments | Chlorophyll a (mg/g FW) | Chlorophyll b (mg/g FW) | Carotenoids (mg/g FW) | Maximum LAI | Crop Growth Rate (g/m2day1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2018 | 2020 | 2018 | 2020 | 2018 | 2020 | 2018 | 2020 | 2018 | 2020 | |
Irrigation Regimes (IR) | ||||||||||
AR * | 1.26b | 1.16b | 0.32b | 0.31b | 6.72b | 6.62b | 6.90b | 6.96b | 6.72b | 6.36b |
AWD | 1.70a | 1.53a | 0.52a | 0.50a | 7.79a | 7.71a | 7.44a | 7.50a | 7.79a | 7.98a |
CF | 1.63a | 1.60a | 0.49a | 0.50a | 7.99a | 7.87a | 7.52a | 7.59a | 7.99a | 7.93a |
HSD (p ≤ 0.05) | 0.14 | 0.24 | 0.09 | 0.05 | 0.82 | 0.95 | 0.38 | 0.38 | 0.82 | 0.91 |
Cultivar (C) | ||||||||||
Hybrid (H) | 1.67a | 1.55a | 0.45a | 0.46a | 7.95a | 7.83a | 7.45a | 7.51a | 7.94a | 8.19a |
Inbred (I) | 1.39b | 1.31b | 0.44a | 0.41b | 7.05b | 6.97b | 7.13b | 7.19b | 7.05b | 6.66b |
HSD (p ≤ 0.05) | 0.09 | 0.16 | 0.06 | 0.03 | 0.54 | 0.63 | 0.26 | 0.25 | 0.54 | 0.60 |
IR × C | ||||||||||
AR × H | 1.44b | 1.24bc | 0.28c | 0.29d | 6.57c | 6.44c | 6.87b | 6.93b | 6.57c | 6.23b |
AR × I | 1.08c | 1.08c | 0.37bc | 0.34cd | 6.87bc | 6.79bc | 6.94b | 7.00b | 6.87bc | 6.50b |
AWD × H | 1.75a | 1.60ab | 0.53ab | 0.50ab | 8.29ab | 8.20ab | 7.55ab | 7.61ab | 8.29ab | 8.97a |
AWD × I | 1.66ab | 1.46a-c | 0.52ab | 0.50ab | 7.29bc | 7.22a-c | 7.34ab | 7.40ab | 7.29bc | 7.00b |
CF × H | 1.82a | 1.81a | 0.55a | 0.60a | 8.97a | 8.84a | 7.93a | 8.00a | 8.97a | 9.36a |
CF × I | 1.45b | 1.40a-c | 0.46a-c | 0.40bc | 7.01bc | 6.89bc | 7.12b | 7.18b | 7.01bc | 6.50b |
HSD (p ≤ 0.05) | 0.26 | 0.43 | 0.17 | 0.10 | 1.47 | 1.69 | 0.69 | 0.68 | 1.47 | 1.63 |
Treatments | Total Dry Weight (t ha−1) | Grain Yield (t ha−1) | Harvest Index (%) | Water Productivity (kg m−3) | ||||
---|---|---|---|---|---|---|---|---|
2018 | 2020 | 2018 | 2020 | 2018 | 2020 | 2018 | 2020 | |
Irrigation regimes (IR) | ||||||||
AR * | 5.74b | 5.55b | 2.75b | 2.79b | 47.88 | 50.54 | 0.41b | 0.47b |
AWD | 8.23a | 8.28a | 4.21a | 4.29a | 51.15 | 51.94 | 0.56a | 0.69a |
CF | 9.13a | 9.09a | 4.43a | 4.53a | 48.89 | 49.88 | 0.47b | 0.51b |
HSD (p ≤ 0.05) | 0.94 | 1.21 | 0.62 | 0.71 | 6.74 | 6.32 | 0.08 | 0.09 |
Cultivar (C) | ||||||||
Hybrid (H) | 8.08a | 7.92a | 4.01a | 4.12a | 49.88 | 52.56 | 0.51a | 0.60a |
Inbred (I) | 7.32b | 7.33a | 3.58b | 3.62b | 48.74 | 49.01 | 0.45b | 0.52b |
HSD (p ≤ 0.05) | 0.62 | 0.80 | 0.41 | 0.47 | 4.47 | 4.19 | 0.05 | 0.06 |
IR × C | ||||||||
AR × H | 5.57c | 5.16c | 2.77b | 2.80b | 49.55 | 54.16 | 0.41b | 0.47bc |
AR × I | 5.91c | 5.95bc | 2.73b | 2.79b | 46.20 | 46.92 | 0.41b | 0.47bc |
AWD × H | 8.41b | 8.45a | 4.41a | 4.54a | 52.39 | 53.90 | 0.59a | 0.74a |
AWD × I | 8.06b | 8.11ab | 4.02a | 4.05ab | 49.91 | 49.97 | 0.52ab | 0.63ab |
CF × H | 10.28a | 10.15ab | 4.87a | 5.02a | 47.71 | 49.63 | 0.53ab | 0.59a-c |
CF × I | 7.99b | 8.03ab | 4.00a | 4.03ab | 50.08 | 50.13 | 0.42b | 0.44c |
HSD (p ≤ 0.05) | 1.68 | 2.16 | 1.11 | 1.26 | 12.05 | 11.31 | 0.14 | 0.16 |
Treatments | Cultivars | Benefit Cost Ratio | |
---|---|---|---|
2018 | 2020 | ||
Aerobic rice | Hybrid | 1.29 | 1.29 |
Inbred | 1.11 | 1.14 | |
Mean | 1.20 | 1.22 | |
Alternate wetting and drying | Hybrid | 2.04 | 2.10 |
Inbred | 1.63 | 1.64 | |
Mean | 1.84 | 1.87 | |
Continuous flooding | Hybrid | 2.26 | 2.32 |
Inbred | 1.62 | 1.63 | |
Mean | 1.94 | 1.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, S.; Hussain, S.; Aslam, Z.; Rafiq, M.; Abbas, A.; Saqib, M.; Rauf, A.; Hano, C.; El-Esawi, M.A. Impact of Different Water Management Regimes on the Growth, Productivity, and Resource Use Efficiency of Dry Direct Seeded Rice in Central Punjab-Pakistan. Agronomy 2021, 11, 1151. https://doi.org/10.3390/agronomy11061151
Hussain S, Hussain S, Aslam Z, Rafiq M, Abbas A, Saqib M, Rauf A, Hano C, El-Esawi MA. Impact of Different Water Management Regimes on the Growth, Productivity, and Resource Use Efficiency of Dry Direct Seeded Rice in Central Punjab-Pakistan. Agronomy. 2021; 11(6):1151. https://doi.org/10.3390/agronomy11061151
Chicago/Turabian StyleHussain, Sadam, Saddam Hussain, Zubair Aslam, Muhammad Rafiq, Adeel Abbas, Muhammad Saqib, Abdur Rauf, Christophe Hano, and Mohamed A. El-Esawi. 2021. "Impact of Different Water Management Regimes on the Growth, Productivity, and Resource Use Efficiency of Dry Direct Seeded Rice in Central Punjab-Pakistan" Agronomy 11, no. 6: 1151. https://doi.org/10.3390/agronomy11061151
APA StyleHussain, S., Hussain, S., Aslam, Z., Rafiq, M., Abbas, A., Saqib, M., Rauf, A., Hano, C., & El-Esawi, M. A. (2021). Impact of Different Water Management Regimes on the Growth, Productivity, and Resource Use Efficiency of Dry Direct Seeded Rice in Central Punjab-Pakistan. Agronomy, 11(6), 1151. https://doi.org/10.3390/agronomy11061151