Weed Spread and Caraway (Carum carvi L.) Crop Productivity in a Multi-Cropping System
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Conditions
2.2. Experimental Design
2.3. Agrotechnologies of the Experiment
2.4. Meteorological Conditions
2.5. Research Methods
2.6. Statistical Analysis
3. Results
3.1. Weed Species Composition
3.2. Number of Weeds
3.3. Weed Dry Biomass
3.4. Caraway Crop Density
3.5. Caraway Seed Yield
3.6. Aboveground Dry Biomass of White Clover
4. Discussion
4.1. Weed Spread in the Multi-Cropping System
4.2. Caraway Crop Productivity in the Multi-Cropping System
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Agegnehu, G.; Ghizaw, A.; Sinebo, W. Yield potential and land-use efficiency of wheat and faba bean mixed intercropping. Agron. Sustain. Dev. 2008, 28, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.; Abid, M.; Azam, F. Mixed cropping effects on growth of wheat (Triticum aestivum L.) and chickpea (Cicer arietenum L.). Pak. J. Bot. 2009, 41, 1029–1036. [Google Scholar]
- Mahapatra, S.C. Study of grass-legume intercropping system in terms of competition indices and monetary advantage index under acid lateritic soil of India. Am. J. Exp. Agric. 2011, 1, 1–6. [Google Scholar] [CrossRef]
- Frick, B.L.; Telford, L.; Martens, J.T. Intercropping. In Organic Field Crop Handbook, 3rd ed.; Wallace, J., Ed.; Canadian Organic Growers: Ottawa, ON, Canada, 2017; pp. 169–176. [Google Scholar]
- Khan, M.B.; Khan, M.; Hussain, M.; Farooq, M.; Jabran, K.; Dong-Jin, L. Bio-economic assessment of different wheat-canola intercropping systems. Int. J. Agric. Biol. 2012, 14, 769–774. [Google Scholar]
- Nasar, J.; Alam, A.; Nasar, A.; Khan, M.Z. Intercropping Induce Changes in Above and Below Ground Plant Compartments in Mixed Cropping System. Biomed. J. Sci. Tech. Res. 2019, 17, 13043–13050. [Google Scholar] [CrossRef]
- Hiddink, G.A.; Termorshuizen, A.J.; Van Bruggen, A.H.C. Mixed Cropping and Suppression of Soilborne Diseases. In Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming; Lichtfouse, E., Ed.; Sustainable Agriculture Reviews; Springer: Dordrecht, The Netherlands, 2010; pp. 119–146. [Google Scholar]
- Adamu, G.K.; Yusuf, M.A. A comparative study of changes in soil fertility under two farming practices in the Kano close-settled zone. Eur. Sci. J. 2014, 10, 313–323. [Google Scholar]
- Mu-chun, Y.; Ting-ting, X.; Peng-hui, S.; Jian-jun, D. Effects of different cropping patterns of soybean and maize seedlings on soil enzyme activities and MBC and MBN. J. Northeast Agric. Univ. 2012, 19, 42–47. [Google Scholar] [CrossRef]
- Nongkling, P.; Kayang, H. Soil physicochemical properties and its relationship with AMF spore density under two cropping systems. Fungal. Biol. 2017, 7, 33–39. [Google Scholar] [CrossRef]
- Corre-Hellou, G.; Brisson, N.; Launay, M.; Fustec, J.; Crozat, Y. Effect of root depth penetration on soil nitrogen competitive interactions and dry matter production in pea–barley intercrops given different soil nitrogen supplies. Field Crop. Res. 2007, 103, 76–85. [Google Scholar] [CrossRef]
- Hiltbrunner, J.; Liedgens, M. Performance of winter wheat varieties in white clover living mulch. Biol. Agric. Hortic. 2008, 26, 85–101. [Google Scholar] [CrossRef] [Green Version]
- Eskandari, H.; Ghanbari-Bonjar, A.; Galavi, M.; Salari, M. Forage quality of cow pea (Vigna sinensis) intercropped with corn (Zea mays) as affected by nutrient uptake and light interception. Not. Bot. Hort. Agrobot. Cluj. 2009, 37, 171–174. [Google Scholar]
- Ghanbari-Bonjar, A.; Lee, H.C. Intercropped wheat (Triticum aestivum L.) and bean (Vicia faba L.) as a whole-crop forage: Effect of harvest time on forage yield and quality. Grass Forage Sci. 2003, 58, 28–36. [Google Scholar] [CrossRef]
- Mennan, H.; Jabran, K.; Zandstra, B.H.; Pala, F. Non-Chemical Weed Management in Vegetables by Using Cover Crops: A Review. Agronomy 2020, 10, 257. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Li, R.; Zhang, J.; Liu, S.; Hei, Z.; Qiu, S. A combination of rice cultivar mixed-cropping and duck co-culture suppressed weeds and pests in paddy fields. Basic Appl. Ecol. 2019, 40, 67–77. [Google Scholar] [CrossRef]
- Yadollahi, P.; Abad, A.R.B.; Khaje, M.; Asgharipour, M.R.; Amiri, A. Effect of intercropping on weed control in sustainable agriculture. Int. J. Agri. Crop. Sci. 2014, 7, 683–686. [Google Scholar]
- Sturm, D.J.; Peteinatos, G.; Gerhards, R. Contribution of allelopathic effects to the overall weed suppression by different cover crops. Weed Res. 2018, 58, 331–337. [Google Scholar] [CrossRef]
- Alizadeh, Y.; Koocheki, A.; Nassiri, M.M. Yield, yield components and potential weed control of intercropping bean (Phaseolus vulgaris) with sweet basil (Ocimum basilicum). Field Crops Res. 2009, 7, 541–553. [Google Scholar]
- Corre-Hellou, G.; Fustec, J.; Crozat, Y. Interspecific competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea-barley intercrops. Plant Soil 2006, 282, 195–208. [Google Scholar] [CrossRef]
- Lulie, B. Intercropping Practice as an Alternative Pathway for Sustainable Agriculture: A Review. Acad. Res. J. Agric. Sci. Res. 2017, 5, 440–452. [Google Scholar]
- Dusa, E.M.; Stan, V. The effect of intercropping on crop productivity and yield quality of oat (Avena sativa L.)/grain leguminous species (pea—Pissum sativum L.; lentil—Lens culinaris L.) cultivated in pure stand and mixtures, in the organic agriculture system. Eur. Sci. J. 2013, 9, 69–78. [Google Scholar]
- Aćimović, M.G.; Oljaca, S.I.; Tešević, V.; Todosijević, M.; Djisalov, J.N. Evaluation of caraway essential oil from different production areas of Serbia. Hort. Sci. 2014, 41, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Lithourgidis, A.S.; Dordas, C.A.; Damalas, C.A.; Vlachostergios, D. Annual intercrops: An alternative pathway for sustainable agriculture. Aust. J. Crop Sci. 2011, 5, 396–410. [Google Scholar]
- FAO; IUSS. Luvisols. In World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015; pp. 112–113. [Google Scholar]
- Tarakanovas, P.; Raudonius, S. Statistical Analysis of Agronomic Research Data Using Computer Programs ANOVA, STAT, SPLIT-PLOT from the Package SELEKCIJA and IRRISTAT; Academy Press: Kaunas district, Lithuania, 2003; p. 58. [Google Scholar]
- Malinauskas, A. Caraway growing technology. In Caraway, 2nd ed.; Šlepetys, J., Ed.; Lithuanian Agricultural Advisory Service; Academy Press: Kėdainiai District, Lithuanian, 2007; pp. 17–38. [Google Scholar]
- Malhotra, S.K. Caraway. In Handbook of Herbs and Spices. Woodhead Publishing Series in Food Science, Technology and Nutrition; Elsevier: Amsterdam, The Netherlands, 2006; pp. 270–298. [Google Scholar]
- Wozniak, A. Weed infestation of a spring wheat (Triticum aestivum L.) crop under the conditions of plough and ploughless tillage. Acta Agrobot. 2011, 64, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Cheriere, T.; Lorin, M.; Corre-Hellou, G. Species choice and spatial arrangement in soybean-based intercropping: Levers that drive yield and weed control. Field Crops Res. 2020, 256, 107923. [Google Scholar] [CrossRef]
- Kozera, W.; Barczak, B.; Orłowska, M.J.; Knapowski, T. Agrotechnical and economic assessment of intercropping of caraway (Carum carvi L.). J. Cent. Eur. Agric. 2018, 19, 227–244. [Google Scholar] [CrossRef] [Green Version]
- Franco, J.G.; King, S.R.; Volder, A. Component crop physiology and water use efficiency in response to intercropping. Eur. J. Agron. 2018, 93, 27–39. [Google Scholar] [CrossRef]
- Šarūnaitė, L.; Kadžiulienė, Ž.; Kadžiulis, L. Yield formation and nitrogen accumulation rate of swards during the first two years of age. Zemdirb. Agric. 2008, 95, 125–137. [Google Scholar]
- Šarūnaitė, L.; Deveikytė, I.; Kadžiulienė, Ž. Intercropping spring wheat with grain legume for increased production in an organic crop rotation. Zemdirb. Agric. 2010, 97, 51–58. [Google Scholar]
- Arlauskienė, A.; Šarūnaitė, L.; Kadžiulienė, Ž.; Deveikytė, I.; Maikštėnienė, S. Suppression of annual weeds in pea and cereal intercrops. Agron. J. 2014, 106, 1765–1774. [Google Scholar] [CrossRef]
- Bilalis, D.; Papastylianou, P.; Konstantas, A.; Patsiali, S.; Karkanis, A.; Efthimiadou, A. Weed-suppressive effects of maize–legume intercropping in organic farming. Int. J. Pest Manag. 2010, 56, 173–181. [Google Scholar] [CrossRef]
- Šarūnaitė, L.; Deveikytė, I.; Arlauskienė, A.; Kadžiulienė, Ž.; Maikštėnienė, S. Pea and Spring Cereal Intercropping Systems: Advantages and Suppression of Broad-Leaved Weeds. Pol. J. Environ. Stud. 2013, 22, 541–551. [Google Scholar]
- Amossé, C.; Jeuffroy, M.H.; Celette, F.; David, C. Relay-intercropped forage legumes help to control weeds in organic grain production. Eur. J. Agron. 2013, 49, 158–167. [Google Scholar] [CrossRef]
- Kadžiulienė, Ž.; Šarūnaitė, L.; Deveikytė, I. Effect of pea and spring cereals intercropping on grain yield and crude protein content. Field Veg. Crop Res. 2011, 48, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Taddese, G.; Eshete, A.; Wondaferew, D.; Ababu, K.; Gashaw, S. Effect of barley (Hordeum vulgare L.) and fababean (Vicia fabae L.) intercropping on barley and fababean yield components. For. Res. Eng. Int. J. 2019, 3, 7–13. [Google Scholar]
- Malézieux, E.; Crozat, Y.; Dupraz, C.; Laurans, M.; Makowski, D.; Ozier-Lafontaine, H.; Rapidel, B.; De Tourdonnet, S.; Valantin-Morison, M. Mixing plant species in cropping systems: Concepts, tools and models: A review. Agron. Sustain. Dev. 2009, 29, 43–62. [Google Scholar] [CrossRef] [Green Version]
- Launay, M.; Brisson, N.; Satger, S.; Hauggaard-Nielsen, H.; Corre-Hellou, G.; Kasynova, E.; Ruske, R.; Jensen, E.S.; Gooding, M.J. Exploring options for managing strategies for pea-barley intercropping using a modeling approach. Eur. J. Agron. 2009, 31, 85–98. [Google Scholar] [CrossRef]
- Mason, H.; Navabi, A.; Frick, B.; O’Donovan, J.; Spaner, D. Cultivar and seeding rate effects on the competitive ability of spring cereals grown under organic production in northern Canada. Agron. J. 2007, 99, 1199–1207. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Jørnsgaard, B.; Kinane, J.; Jensen, E.S. Grain legume-cereal intercropping: The practical application of diversity, competition and facilitation in arable and organic cropping systems. Renew. Agric. Food Syst. 2008, 23, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Seran, T.H.; Brintha, I. Biological and economic efficiency of radish (Raphanus sativus L.) intercropped with vegetable amaranthus (Amaranthus tricolor L.). Hort. J. 2009, 2, 17–21. [Google Scholar] [CrossRef]
- Gong, X.; Dang, K.; Liu, L.; Zhao, G.; Lv, S.; Tian, L.; Jin, F.; Feng, Y.; Zhao, Y.; Feng, B. Intercropping combined with nitrogen input promotes proso millet (Panicum miliaceum L.) growth and resource use efficiency to increase grain yield on the Loess plateau of China. Agric. Water Manag. 2020, 243, 106434. [Google Scholar] [CrossRef]
- Mariotti, M.; Masoni, A.; Ercoli, L.; Arduini, I. Above-and below-ground competition between barley, wheat, lupin and vetch in a cereal and legume intercropping system. Grass Forage Sci. 2009, 64, 401–412. [Google Scholar] [CrossRef]
- Li, L.; Zhang, F.; Li, X.; Christie, P.; Sun, J.; Yang, S.; Tang, C. Interspecific facilitation of nutrient uptake by intercropped maize and faba bean. Nutr. Cycl. Agroecosyst. 2003, 65, 61–71. [Google Scholar] [CrossRef]
- Xiao, J.; Yin, X.; Ren, J.; Zhang, M.; Tang, L.; Zheng, Y. Complementation drives higher growth rate and yield of wheat and saves nitrogen fertilizer in wheat and faba bean intercropping. Field Crop. Res. 2018, 221, 119–129. [Google Scholar] [CrossRef]
- Moghbeli, T.; Bolandnazar, S.; Panahande, J.; Raei, Y. Evaluation of yield and its components on onion and fenugreek intercropping ratios in different planting densities. J. Clean. Prod. 2019, 213, 634–641. [Google Scholar] [CrossRef]
- Lithourgidis, A.S.; Dordas, C.A. Forage yield, growth rate, and nitrogen uptake of faba bean intercrops with wheat, barley, and rye in three seeding ratios. Crop Sci. 2010, 50, 2148–2158. [Google Scholar] [CrossRef]
- Duchene, O.; Vian, J.F.; Celette, F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric. Ecosyst. Environ. 2017, 240, 148–161. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Ambus, P.; Jensen, E.S. Temporal and spatial distribution of roots and competition for nitrogen in pea-barley intercrops—A field study employing 32P technique. Plant Soil 2001, 236, 63–74. [Google Scholar] [CrossRef] [Green Version]
1st Year of Caraway Vegetative Season, 2017 | ||
Sole | Binary | Trinary |
1. Spring barley (SB) 2. Spring wheat (SW) 3. Pea (P) 4. Caraway (CA) | 5. Spring barley + Caraway (SB-CA) 6. Spring wheat + Caraway (SW-CA) 7. Pea + Caraway (P-CA) | 8. Spring barley + Caraway + White clover (SB-CA-WC) 9. Spring wheat + Caraway + White clover (SCA-WC) 10. Pea + Caraway + White clover (P-CA-WC) |
2nd Year of Caraway Vegetative Season, 2018 | ||
Sole | Binary | Trinary |
1. Spring barley (SB) 2. Spring barley (SB) 3. Spring barley (SB) 4. Caraway (CA) | 5. Caraway (SB-CA) 6. Caraway (SW-CA) 7. Caraway (P-CA) | 8. Caraway +White clover (SB-CA-WC) 9. Caraway + White clover (SCA-WC) 10. Caraway + White clover (P-CA-WC) |
3rd Year of Caraway Vegetative Season, 2019 | ||
Sole | Binary | Trinary |
1. Spring barley (SB) 2. Spring barley (SB) 3. Spring barley (SB) 4. Bare fallow (BF) | 5. Caraway (SB-CA) 6. Caraway (SW-CA) 7. Caraway (P-CA) | 8. Caraway + White clover (SB-CA-WC) 9. Caraway + White clover (SCA-WC) 10. Caraway + White clover (P-CA-WC) |
Treatment | Weed Species | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C. album L. | P. lapathifolia L. | T. perforatum L. | S. arvensis L. | E. crus-galli L. | ||||||
pcs. m−2 | g m−2 | pcs. m−2 | g m−2 | pcs. m−2 | g m−2 | pcs. m−2 | g m−2 | pcs. m−2 | g m−2 | |
Sole | ||||||||||
S. barley | 36.7 | 13.8 | 16.2 | 18.6 | 0.42 | 0.11 | 0 | 0 | 0.42 | 0.04 |
S. wheat | 5.00 | 1.64 | 14.6 | 3.09 | 1.67 | 0.89 | 0 | 0 | 0 | 0 |
Pea | 3.75 | 1.69 | 2.08 | 0.59 | 0.83 | 2.40 | 2.08 | 2.72 | 0 | 0 |
Caraway | 0.42 | 0.34 | 0 | 0 | 5.00 | 54.6 | 0 | 0 | 5.42 | 28.0 |
Binary | ||||||||||
S. barley + caraway | 172.5 | 59.7 | 74.2 | 35.3 | 4.58 | 6.75 | 8.33 | 10.6 | 0.83 | 0.75 |
S. wheat + caraway | 80.8 | 30.3 | 23.7 | 10.2 | 4.17 | 10.0 | 10.0 | 7.76 | 0 | 0 |
Pea + caraway | 0.83 | 1.68 | 0 | 0 | 6.25 | 30.5 | 0.83 | 0.81 | 3.33 | 12.3 |
Trinary | ||||||||||
S. barley + caraway + white clover | 148.3 | 110.2 | 71.2 | 50.8 | 1.67 | 0.78 | 7.08 | 12.5 | 2.91 | 0.73 |
S. wheat + caraway +white clover | 74.6 | 43.6 | 11.7 | 19.5 | 3.75 | 11.7 | 12.5 | 21.3 | 0 | 0 |
S. wheat + caraway +white clover | 90.4 | 96.7 | 0 | 0 | 2.92 | 10.5 | 19.2 | 256.3 | 0.42 | 1.96 |
Treatment | Weed Species | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C. album L. | P. lapathifolia L. | T. perforatum L. | C. minus L. | T. officinale L. | ||||||
pcs. m−2 | g m−2 | pcs. m−2 | g m−2 | pcs. m−2 | g m−2 | pcs. m−2 | g m−2 | pcs. m−2 | g m−2 | |
Sole | ||||||||||
S. barley | 22.5 | 2.78 | 18.3 | 2.00 | 0 | 0 | 3.75 | 0.62 | 0 | 0 |
S. barley | 13.3 | 2.72 | 11.3 | 2.79 | 0 | 0 | 0 | 0 | 0 | 0 |
S. barley | 11.7 | 1.91 | 33.3 | 15.5 | 0 | 0 | 1.67 | 0.13 | 0 | 0 |
Caraway | 0 | 0 | 0 | 0 | 3.33 | 26.8 | 0 | 0 | 0 | |
Binary | ||||||||||
S. barley + caraway | 0 | 0 | 0 | 0 | 2.50 | 34.4 | 0 | 0 | 4.18 | 3.38 |
S. wheat + caraway | 0 | 0 | 0 | 0 | 4.17 | 42.7 | 0 | 0 | 2.08 | 0.52 |
Pea + caraway | 0 | 0 | 0 | 0 | 5.00 | 9.26 | 0 | 0 | 1.25 | 2.21 |
Trinary | ||||||||||
S. barley + caraway + white clover | 0 | 0 | 0 | 0 | 1.25 | 15.6 | 0 | 0 | 0 | 0 |
S. wheat + caraway + white clover | 0 | 0 | 0 | 0 | 3.33 | 33.2 | 0 | 0 | 0.42 | 0.16 |
S. wheat + caraway + white clover | 0 | 0 | 0 | 0 | 2.92 | 17.0 | 0 | 0 | 0 | 0 |
Treatment | Weed Species | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
T. officinale | T. perforatum L. | C. album L. | E. crus-galli L. | C. arvense L. | ||||||
pcs. m−2 | g m−2 | pcs. m−2 | g m−2 | pcs. m−2 | g m−2 | pcs. m−2 | g m−2 | pcs. m−2 | g m−2 | |
Sole | ||||||||||
S. barley | 10.0 | 12.5 | 0.83 | 0.88 | 10.8 | 1.71 | 6.25 | 0.62 | 2.08 | 10.4 |
S. barley | 9.17 | 13.9 | 0 | 0 | 16.3 | 2.29 | 15.8 | 2.04 | 1.67 | 2.50 |
S. barley | 9.17 | 21.6 | 9.58 | 39.4 | 9.17 | 1.62 | 28.3 | 15.0 | 0.83 | 3.33 |
Bare fallow | 7.08 | 8.29 | 3.33 | 1.42 | 6.67 | 5.79 | 6.25 | 5.83 | 2.08 | 8.33 |
Binary | ||||||||||
S. barley + caraway | 11.7 | 54.8 | 11.2 | 20.5 | 2.92 | 5.17 | 0 | 0 | 1.67 | 3.58 |
S. wheat + caraway | 10.0 | 60.7 | 15.4 | 46.8 | 0.42 | 0.67 | 5.00 | 1.67 | 4.58 | 24.5 |
Pea + caraway | 11.7 | 172.4 | 11.2 | 75.8 | 6.25 | 4.42 | 0 | 0 | 0 | 0 |
Trinary | ||||||||||
S. barley + caraway + white clover | 7.50 | 76.3 | 9.17 | 86.1 | 7.50 | 16.5 | 0 | 0 | 0.83 | 13.3 |
S. wheat + caraway +white clover | 3.75 | 21.7 | 17.5 | 57.1 | 8.75 | 16.6 | 0 | 0 | 1.25 | 10.9 |
S. wheat + caraway +white clover | 14.2 | 91.5 | 10.4 | 31.5 | 11.2 | 20.4 | 0 | 0 | 0.42 | 0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcinkevičienė, A.; Rudinskienė, A.; Velička, R.; Kosteckas, R.; Kriaučiūnienė, Z. Weed Spread and Caraway (Carum carvi L.) Crop Productivity in a Multi-Cropping System. Agronomy 2021, 11, 1172. https://doi.org/10.3390/agronomy11061172
Marcinkevičienė A, Rudinskienė A, Velička R, Kosteckas R, Kriaučiūnienė Z. Weed Spread and Caraway (Carum carvi L.) Crop Productivity in a Multi-Cropping System. Agronomy. 2021; 11(6):1172. https://doi.org/10.3390/agronomy11061172
Chicago/Turabian StyleMarcinkevičienė, Aušra, Aušra Rudinskienė, Rimantas Velička, Robertas Kosteckas, and Zita Kriaučiūnienė. 2021. "Weed Spread and Caraway (Carum carvi L.) Crop Productivity in a Multi-Cropping System" Agronomy 11, no. 6: 1172. https://doi.org/10.3390/agronomy11061172
APA StyleMarcinkevičienė, A., Rudinskienė, A., Velička, R., Kosteckas, R., & Kriaučiūnienė, Z. (2021). Weed Spread and Caraway (Carum carvi L.) Crop Productivity in a Multi-Cropping System. Agronomy, 11(6), 1172. https://doi.org/10.3390/agronomy11061172