Integrated Nutrient Management Significantly Improves Pomelo (Citrus grandis) Root Growth and Nutrients Uptake under Acidic Soil of Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Pomelo Root Spatial Distribution Survey and Analysis
2.3. Experimental Setup and Harvest
2.4. Determination of Root Nutrient Contents
2.5. Statistical Analysis
3. Results
3.1. Dynamic Spatial Root Distribution
3.2. Root Morphological Traits under Various Nutrients Management Practices
3.3. Root Nutrient Contents
3.4. Relationship between Root Nutrient Contents and Morphological Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Xu, X.; Lu, Z.; Zhang, W.; Yang, J.; Hou, Y.; Wang, X.; Zhou, S.; Li, Y.; Wu, L.; et al. Carbon footprint of a typical pomelo production region in China based on farm survey data. J. Clean. Prod. 2020, 277, 124041. [Google Scholar] [CrossRef]
- Citrus Fruit Production by Country. 2020. Available online: https://knoema.com/ (accessed on 20 May 2021).
- Li, Y.; Han, M.-Q.; Lin, F.; Ten, Y.; Lin, J.; Zhu, D.-H.; Guo, P.; Weng, Y.B.; Chen, L.-S. Soil chemical properties,’Guanximiyou’pummelo leaf mineral nutrient status and fruit quality in the southern region of Fujian province, China. J. Soil Sci. Plant Nutr. 2015, 15, 615–628. [Google Scholar]
- Guo, J.; Yang, J.; Zhang, L.; Chen, H.; Jia, Y.; Wang, Z.; Wang, D.; Liao, W.; Chen, L.-S.; Li, Y. Lower soil chemical quality of pomelo orchards compared with that of paddy and vegetable fields in acidic red soil hilly regions of southern China. J. Soils Sediments 2019, 19, 2752–2763. [Google Scholar] [CrossRef]
- Yan, X.; Yang, W.; Muneer, M.A.; Zhang, S.; Wang, M.; Wu, L. Land-use change affects stoichiometric patterns of soil organic carbon, nitrogen, and phosphorus in the red soil of Southeast China. J. Soils Sediments 2021. [Google Scholar] [CrossRef]
- Zeng, M.; de Vries, W.; Bonten, L.T.C.; Zhu, Q.; Hao, T.; Liu, X.; Xu, M.; Shi, X.; Zhang, F.; Shen, J. Model-based analysis of the long-term effects of fertilization management on cropland soil acidification. Environ. Sci. Technol. 2017, 51, 3843–3851. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [Green Version]
- Haling, R.E.; Simpson, R.J.; Delhaize, E.; Hocking, P.J.; Richardson, A.E. Effect of lime on root growth, morphology and the rhizosheath of cereal seedlings growing in an acid soil. Plant Soil 2010, 327, 199–212. [Google Scholar] [CrossRef]
- Murillo-Amador, B.; Morales-Prado, L.E.; Troyo-Diéguez, E.; Córdoba-Matson, M.V.; Hernández-Montiel, L.G.; Rueda-Puente, E.O.; Nieto-Garibay, A. Changing environmental conditions and applying organic fertilizers in Origanum vulgare L. Front. Plant Sci. 2015, 6, 549. [Google Scholar] [CrossRef] [Green Version]
- Muneer, M.A.; Wang, P.; un Nisa, Z.; Lin, C.; Ji, B. Potential role of common mycorrhizal networks in improving plant growth and soil physicochemical properties under varying nitrogen levels in a grassland ecosystem. Glob. Ecol. Conserv. 2020, 24, e01352. [Google Scholar] [CrossRef]
- Mantovani, J.R.; da Silveira, L.G.; Landgraf, P.R.C.; dos Santos, A.R.; Costa, B.D.S. Phosphorus rates and use of cattle manure in potted gerbera cultivation. Ornam. Hortic. 2017, 23, 412–418. [Google Scholar] [CrossRef] [Green Version]
- Muneer, M.A.; Wang, P.; Zhang, J.; Li, Y.; Munir, M.Z.; Ji, B. Formation of Common Mycorrhizal Networks Significantly Affects Plant Biomass and Soil Properties of the Neighboring Plants under Various Nitrogen Levels. Microorganisms 2020, 8, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousaf, M.; Li, J.; Lu, J.; Ren, T.; Cong, R.; Fahad, S.; Li, X. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Sci. Rep. 2017, 7, 1270. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Hussain, H.A.; Hussain, S.; Shi, C.; Cholidah, L.; Men, S.; Ke, J.; Wang, L. Optimum Water and Fertilizer Management for Better Growth and Resource Use Efficiency of Rapeseed in Rainy and Drought Seasons. Sustainability 2020, 12, 703. [Google Scholar] [CrossRef] [Green Version]
- Tian, D.; Niu, S. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 2015. [Google Scholar] [CrossRef]
- Tang, W.; Shan, B.; Zhang, H.; Mao, Z. Heavy metal sources and associated risk in response to agricultural intensification in the estuarine sediments of Chaohu Lake Valley, East China. J. Hazard. Mater. 2010, 176, 945–951. [Google Scholar] [CrossRef]
- Ju, X.-T.; Xing, G.-X.; Chen, X.-P.; Zhang, S.-L.; Zhang, L.-J.; Liu, X.-J.; Cui, Z.-L.; Yin, B.; Christie, P.; Zhu, Z.-L. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Ma, C.; Zhou, H.; Liu, Y.; Huang, X.; Wang, M.; Cai, Y.; Su, D.; Muneer, M.A.; Guo, M.; et al. Identifying the main crops and key factors determining the carbon footprint of crop production in China, 2001–2018. Resour. Conserv. Recycl. 2021, 172, 105661. [Google Scholar] [CrossRef]
- Tarin, M.W.K.; Khaliq, M.A.; Fan, L.; Xie, D.; Tayyab, M.; Chen, L.; He, T.; Rong, J.; Zheng, Y. Divergent consequences of different biochar amendments on carbon dioxide (CO2) and nitrous oxide (N2O) emissions from the red soil. Sci. Total Environ. 2021, 754, 141935. [Google Scholar] [CrossRef] [PubMed]
- Smith, K. The Perils of Over-Fertilizing Plants and Trees. Available online: http://mgeldorado.ucanr.edu/files/170168.pdf (accessed on 20 May 2021).
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Awad, F.; Khalil, K.W.; Maksoud, M.A. Comparative effects of some organic manures and bentonite as soil amendments. Agrochimica 1993, 37, 369–387. [Google Scholar]
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil health and sustainable agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Correa, J.; Postma, J.A.; Watt, M.; Wojciechowski, T. Soil compaction and the architectural plasticity of root systems. J. Exp. Bot. 2019, 70, 6019–6034. [Google Scholar] [CrossRef]
- Smith, S.; De Smet, I. Root System Architecture: Insights from Arabidopsis and Cereal Crops; Royals Society: London, UK, 2012; pp. 1441–1452. [Google Scholar]
- Freschet, G.T.; Valverde-Barrantes, O.J.; Tucker, C.M.; Craine, J.M.; McCormack, M.L.; Violle, C.; Fort, F.; Blackwood, C.B.; Urban-Mead, K.R.; Iversen, C.M. Climate, soil and plant functional types as drivers of global fine-root trait variation. J. Ecol. 2017, 105, 1182–1196. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.S.; Kim, S.; Park, C.; Na, C.; Kim, Y. Treatment with silicon fertilizer induces changes in root morphological traits in soybean (Glycine max L.) during early growth. J. Crop Sci. Biotechnol. 2020, 23, 445–451. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, X.; Wang, S.; Pu, X. Benefits of organic manure combined with biochar amendments to cotton root growth and yield under continuous cropping systems in Xinjiang, China. Sci. Rep. 2020, 10, 4718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fageria, N.K.; Moreira, A. The role of mineral nutrition on root growth of crop plants. Adv. Agron. 2011, 110, 251–331. [Google Scholar]
- Chen, Z.C.; Peng, W.T.; Li, J.; Liao, H. Functional dissection and transport mechanism of magnesium in plants. In Proceedings of the Seminars in Cell & Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 74, pp. 142–152. [Google Scholar]
- Wen, M.; Wu, S.; Wang, P.; Jin, G.; Zhu, X.; Shi, X. Effect of magnesium (Mg) application in Satsuma Mandarin orchard with Mg nutrient deficiency. J. Fruit Sci. 2015, 32, 63–68. [Google Scholar]
- Clothier, B.E.; Green, S.R. Roots: The big movers of water and chemical in soil. Soil Sci. 1997, 162, 534–543. [Google Scholar] [CrossRef]
- Edwards, E.J.; Benham, D.G.; Marland, L.A.; Fitter, A.H. Root production is determined by radiation flux in a temperate grassland community. Glob. Chang. Biol. 2004, 10, 209–227. [Google Scholar] [CrossRef] [Green Version]
- Eissenstat, D.M.; Yanai, R.D. The ecology of root lifespan. In Advances in Ecological Research; Elsevier: Amsterdam, The Netherlands, 1997; Volume 27, pp. 1–60. ISBN 0065-2504. [Google Scholar]
- Smith, D.W. Soil Survey Staff: Keys to Soil Taxonomy; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Junying, L.; Baochun, F.; Yingchun, M. A review of researches and methods for fine-root production and Turnover of Trees. J. Shanxi Agric. Univ. 2006, 26, 1–6. [Google Scholar]
- Bao, S.D. Soil and Agricultural Chemistry Analysis; China Agricultural Press: Beijing, China, 2000; pp. 30–34. (In Chinese) [Google Scholar]
- Morgan, J.Á.; Connolly, E.Á. Plant-soil interactions: Nutrient uptake. Nat. Educ. Knowl. 2013, 4, 2. [Google Scholar]
- López-Bucio, J.; Cruz-Ramırez, A.; Herrera-Estrella, L. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 2003, 6, 280–287. [Google Scholar] [CrossRef]
- Yang, C.; Yang, L.; Yang, Y.; Ouyang, Z. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agric. Water Manag. 2004, 70, 67–81. [Google Scholar] [CrossRef]
- Wang, H.; Inukai, Y.; Yamauchi, A. Root development and nutrient uptake. CRC Crit. Rev. Plant Sci. 2006, 25, 279–301. [Google Scholar] [CrossRef]
- Barber, S.A.; Silberbush, M. Plant root morphology and nutrient uptake. Roots Nutr. Water Influx Plant Growth 1984, 49, 65–87. [Google Scholar]
- Baligar, V.C.; Fageria, N.K.; He, Z.L. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal. 2001, 32, 921–950. [Google Scholar] [CrossRef]
- Zekri, M.; Schumann, A.W.; Vashisth, T.; Kadyampakeni, D.; Morgan, K.T.; Boman, B.; Obreza, T.A. 2020–2021 Florida Citrus Production Guide: Fertilizer Application Methods. EDIS 2020. [Google Scholar] [CrossRef]
- Roberts, T.L. Right product, right rate, right time and right place… the foundation of best management practices for fertilizer. Fertil. Best Manag. Pr. 2007, 29, 1–8. [Google Scholar]
- Quiñones, A.; Martínez-Alcántara, B.; Primo-Millo, E.; Legaz, F. Fertigation: Concept and application in citrus. In Advances in Citrus Nutrition; Springer: Berlin/Heidelberg, Germany, 2012; pp. 281–301. [Google Scholar]
- Long, A.; Zhang, J.; Yang, L.-T.; Ye, X.; Lai, N.-W.; Tan, L.-L.; Lin, D.; Chen, L.-S. Effects of low pH on photosynthesis, related physiological parameters, and nutrient profiles of citrus. Front. Plant Sci. 2017, 8, 185. [Google Scholar] [CrossRef] [Green Version]
- Machado, B.D.; Magro, M.; de Souza, D.S.; Rufato, L.; Kretzschmar, A.A. Study on the growth and spatial distribution of the root system of different european pear cultivars on quince rootstock combinations. Rev. Bras. Frutic. 2018, 40. [Google Scholar] [CrossRef]
- Santana, M.B.; Souza, L.d.S.; Souza, L.D.; Fontes, L.E.F. Soil physical attributes and citrus root system distribution as indicators of cohesive layers in soils of coastal table lands in the state of Bahia, Brazil. Rev. Bras. Ciênc. Solo 2006, 30, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.T.; Ma, M.; Dong, T.; Liu, X.L.; Zhao, M.X.; Yin, X.N.; Niu, J.Q. Response of distribution pattern and physiological characteristics of apple roots grown in the dry area of eastern Gansu to ground mulching. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2016, 27, 3153–3163. [Google Scholar]
- Spiers, J.M. Root Distribution ofGulfcoast’Southern Highbush Blueberry. HortScience 1997, 32, 428A. [Google Scholar] [CrossRef]
- Xi, B.; Wang, Y.; Jia, L.; Bloomberg, M.; Li, G.; Di, N. Characteristics of fine root system and water uptake in a triploid Populus tomentosa plantation in the North China Plain: Implications for irrigation water management. Agric. Water Manag. 2013, 117, 83–92. [Google Scholar] [CrossRef]
- Van der Heijden, G.; Dambrine, E.; Pollier, B.; Zeller, B.; Ranger, J.; Legout, A. Mg and Ca uptake by roots in relation to depth and allocation to aboveground tissues: Results from an isotopic labeling study in a beech forest on base-poor soil. Biogeochemistry 2015, 122, 375–393. [Google Scholar] [CrossRef]
- Von Uexküll, H.R.; Mutert, E. Global extent, development and economic impact of acid soils. Plant Soil 1995, 171, 1–15. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, B.; Xu, M.; Zhang, H.; He, X.; Zhang, L.; Gao, S. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China. J. Soils Sediments 2015, 15, 260–270. [Google Scholar] [CrossRef]
- Qaswar, M.; Dongchu, L.; Jing, H.; Tianfu, H.; Ahmed, W.; Abbas, M.; Lu, Z.; Jiangxue, D.; Khan, Z.H.; Ullah, S.; et al. Interaction of liming and long-term fertilization increased crop yield and phosphorus use efficiency (PUE) through mediating exchangeable cations in acidic soil under wheat–maize cropping system. Sci. Rep. 2020, 10, 19828. [Google Scholar] [CrossRef]
- Han, T.; Cai, A.; Liu, K.; Huang, J.; Wang, B.; Li, D.; Qaswar, M.; Feng, G.; Zhang, H. The links between potassium availability and soil exchangeable calcium, magnesium, and aluminum are mediated by lime in acidic soil. J. Soils Sediments 2019. [Google Scholar] [CrossRef]
- Álvarez, E.; Viadé, A.; Fernández-Marcos, M.L. Effect of liming with different sized limestone on the forms of aluminium in a Galician soil (NW Spain). Geoderma 2009, 152, 1–8. [Google Scholar] [CrossRef]
- Aye, N.S.; Sale, P.W.G.; Tang, C. The impact of long-term liming on soil organic carbon and aggregate stability in low-input acid soils. Biol. Fertil. Soils 2016, 52, 697–709. [Google Scholar] [CrossRef]
- Korzune, M.; Ávila, F.W.; Botelho, R.V.; Petranski, P.H.; de Matos, K.K.B.L.; Rampim, L.; Muller, M.M.L. Nutrient concentrations in trifoliate orange as affected by lime and gypsum. Res. Soc. Dev. 2020, 9, e7449109096. [Google Scholar] [CrossRef]
- Trinchera, A.; Torrisi, B.; Allegra, M.; Rinaldi, S.; Rea, E.; Intrigliolo, F.; Roccuzzo, G. Effects of organic fertilization on soil organic matter and root morphology and density of orange trees. Acta Hortic 2015, 1065, 1807–1814. [Google Scholar] [CrossRef]
- Uzun, I. Use of Spent Mushroom Compost in Sustainable Fruit Production. J. Fruit Ornam. Plant Res. 2004, 12, 157–165. [Google Scholar]
- Oei, P.; Hui, Z.; Jianhua, L.; Jianqing, D.; Meiyuan, C.; Yi, C. The Alternative Uses of Spent Mushroom Compost; Oei, P., Ed.; Productschap Tuinbouw: Tiel, The Netherlands, 2007. [Google Scholar]
- Fan, R.; Luo, J.; Gao, Y.; Liu, H.; Yan, S.; Zhang, Z. Advances in utilization of agricultural wastes in soilless growing medium production. Jiangsu J. Agric. Sci. 2014, 30, 442–448. [Google Scholar]
- Kulshreshtha, S.; Mathur, N.; Bhatnagar, P. Mushroom as a product and their role in mycoremediation. AMB Express 2014, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.Y.; Davey, B.G.; Geering, H.R. Adsorption of Magnesium and Calcium by a Soil with Variable Charge. Soil Sci. Soc. Am. J. 1979, 43, 301–304. [Google Scholar] [CrossRef]
- Cremer, M.; Prietzel, J. Soil acidity and exchangeable base cation stocks under pure and mixed stands of European beech, Douglas fir and Norway spruce. Plant Soil 2017, 415, 393–405. [Google Scholar] [CrossRef]
- Gransee, A.; Führs, H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 2013, 368, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Holland, J.E.; Bennett, A.E.; Newton, A.C.; White, P.J.; McKenzie, B.M.; George, T.S.; Pakeman, R.J.; Bailey, J.S.; Fornara, D.A.; Hayes, R.C. Liming impacts on soils, crops and biodiversity in the UK: A review. Sci. Total Environ. 2018, 610–611, 316–332. [Google Scholar] [CrossRef] [PubMed]
- Gerendás, J.; Führs, H. The significance of magnesium for crop quality. Plant Soil 2013, 368, 101–128. [Google Scholar] [CrossRef] [Green Version]
- Cakmak, I.; Hengeler, C.; Marschner, H. Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J. Exp. Bot. 1994, 45, 1245–1250. [Google Scholar] [CrossRef]
- Cakmak, I.; Hengeler, C.; Marschner, H. Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J. Exp. Bot. 1994, 45, 1251–1257. [Google Scholar] [CrossRef]
- Zhang, J.; Li, B.; Zhang, J.; Christie, P.; Li, X. Organic fertilizer application and Mg fertilizer promote banana yield and quality in an Udic Ferralsol. PLoS ONE 2020, 15, e0230593. [Google Scholar] [CrossRef] [PubMed]
- Tarin, M.W.K.; Fan, L.L.; Shen, L.; Lai, J.L.; Tayyab, M.; Sarfraz, R.; Chen, L.Y.; Ye, J.; He, T.Y.; Rong, J.D.; et al. Effects of different biochars ammendments on physiochemical properties of soil and root morphological attributes of Fokenia Hodginsii (Fujian cypress). Appl. Ecol. Environ. Res. 2019, 17, 11107–11120. [Google Scholar] [CrossRef]
- Sprugel, G.; Ryan, M.G.; Brooks, J.R.; Vogt, K.A.; Martin, T.A. Respiration from the Organ Level to the Stand. In Resource Physiology of Conifers; Academic Press: Cambridge, MA, USA, 1995; pp. 255–299. ISBN 9780126528701. [Google Scholar]
Soil Depth | pH | Nitrate-N | Ammonium-N | Available-P | Available-K | Exchangeable-Ca | Exchangeable-Mg |
---|---|---|---|---|---|---|---|
(cm) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | |
0–20 | 4.6 ± 0.4 | 11.0 ± 3.1 | 45.7 ± 14.8 | 787.6 ± 94.5 | 341.0 ± 87.8 | 294.4 ± 159.8 | 92.8 ± 37.1 |
20–40 | 4.2 ± 0.4 | 6.0 ± 1.8 | 32.3 ± 22.1 | 509.9 ± 116.0 | 252.9 ± 54.7 | 260.0 ± 121.0 | 63.4 ± 26.1 |
Treatment | N | P2O5 | K2O | MgO | Lime | Mushroom Residue |
---|---|---|---|---|---|---|
FFP | 1084 | 914 | 906 | 0 | 0 | 7700 |
O+L+M | 160 | 0 | 176 | 0 | 3108 | 2000 |
O+L+Mg | 200 | 0 | 200 | 40 | 3108 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Muneer, M.A.; Li, J.; Hou, W.; Ma, C.; Jiao, J.; Cai, Y.; Chen, X.; Wu, L.; Zheng, C. Integrated Nutrient Management Significantly Improves Pomelo (Citrus grandis) Root Growth and Nutrients Uptake under Acidic Soil of Southern China. Agronomy 2021, 11, 1231. https://doi.org/10.3390/agronomy11061231
Huang X, Muneer MA, Li J, Hou W, Ma C, Jiao J, Cai Y, Chen X, Wu L, Zheng C. Integrated Nutrient Management Significantly Improves Pomelo (Citrus grandis) Root Growth and Nutrients Uptake under Acidic Soil of Southern China. Agronomy. 2021; 11(6):1231. https://doi.org/10.3390/agronomy11061231
Chicago/Turabian StyleHuang, Xiaoman, Muhammad Atif Muneer, Jian Li, Wei Hou, Changcheng Ma, Jiabin Jiao, Yuanyang Cai, Xiaohui Chen, Liangquan Wu, and Chaoyuan Zheng. 2021. "Integrated Nutrient Management Significantly Improves Pomelo (Citrus grandis) Root Growth and Nutrients Uptake under Acidic Soil of Southern China" Agronomy 11, no. 6: 1231. https://doi.org/10.3390/agronomy11061231
APA StyleHuang, X., Muneer, M. A., Li, J., Hou, W., Ma, C., Jiao, J., Cai, Y., Chen, X., Wu, L., & Zheng, C. (2021). Integrated Nutrient Management Significantly Improves Pomelo (Citrus grandis) Root Growth and Nutrients Uptake under Acidic Soil of Southern China. Agronomy, 11(6), 1231. https://doi.org/10.3390/agronomy11061231