Biochar Improves Root Growth of Sapium sebiferum (L.) Roxb. Container Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Pot Experiment
2.3. Plant Samplings and Analysis
2.3.1. Seedling Height and Ground Diameter
2.3.2. Root System Indexes
2.3.3. Biomass
2.3.4. Non-Structure Carbohydrate
2.3.5. Nitrate Reductase
2.3.6. Nitrogen and Carbon Content
2.4. Statistical Analysis
3. Results
3.1. Seedling Height, Ground Diameter, and Height–Diameter Ratio
3.2. Biomass
3.3. Root System
3.4. The Concentration of Non-Structure Carbohydrate and Nitrate Reductase Activity
3.5. Nitrogen Concentration, Carbon Concentration, and N/C Ratio in Roots
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, J.; Harcombe, P.A.; Fulton, M.R.; Hall, R.W. Sapling growth and survivorship as affected by light and flooding in a river floodplain forest of southeast Texas. Oecologia 2004, 139, 399–407. [Google Scholar] [CrossRef]
- Miller, J.H. Nonnative Invasive Plants of Southern Forests: A Field Guide for Identification and Control; General Technical Reports SRS-62; U.S. Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2003; p. 93.
- Potts, W.M.; Bolley, D.S. Analysis of the fruit of the Chinese tallow tree in Texas. J. Am. Oil Chem. Soc. 1946, 23, 316–318. [Google Scholar] [CrossRef]
- Ruskin, H.A.K. Economic Analysis of Biofuels Production in Arid Regions. Ph.D. Thesis, The University of Arizona, Tucson, AZ, USA, 1983; pp. 1–12. [Google Scholar]
- Liu, Y.; Xin, H.; Yan, Y. Physicochemical properties of Stillingia oil: Feasibility for biodiesel production by enzyme transesterification. Ind. Crop. Prod. 2009, 30, 431–436. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Tian, S.; Yin, T. Study on the causes of Sapium sebiferum seed dormancy and the methods for dormancy breaking. J. Nanjing For. Univ. 2011, 35, 1–4. (In Chinese) [Google Scholar]
- Repáč, I.; Tučeková, A.; Sarvašová, I.; Vencurik, J. Survival and growth of outplanted seedlings of selected tree species on the High Tatra Mts. windthrow area after the first growing season. J. For. Sci. 2011, 57, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Sorrenti, G.; Muzzi, E.; Toselli, M. Root growth dynamic and plant performance of nectarine trees amended with biochar and compost. Sci. Hortic. 2019, 257, 108710. [Google Scholar] [CrossRef]
- Xiu, L.; Zhang, W.; Wu, D.; Sun, Y.; Zhang, H.; Gu, W.; Wang, W.; Meng, J.; Chen, W. Biochar can improve biological nitrogen fixation by altering the root growth strategy of soybean in Albic soil. Sci. Total Environ. 2021, 773, 144564. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 1, 403–427. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change Dominic. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [Green Version]
- Beesley, L.; Moreno-Jimenez, E.; Gomez-Eyles, J.L.; Harris, E.; Robinson, B.; Sizmur, T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 2011, 159, 3269–3282. [Google Scholar] [CrossRef]
- Chen, B.; Chen, Z. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 2009, 76, 127–133. [Google Scholar] [CrossRef]
- Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Burrell, L.D.; Zehetner, F.; Rampazzo, N.; Wimmer, B.; Soja, G. Long-term effects of biochar on soil physical properties. Geoderma 2016, 282, 96–102. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K. Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biol. Biochem. 2016, 103, 1–15. [Google Scholar] [CrossRef]
- Yu, L.; Yu, M.; Lu, X.; Tang, C.; Liu, X.; Brookes, P.; Xu, J. Combined application of biochar and nitrogen fertilizer benefits nitrogen retention in the rhizosphere of soybean by increasing microbial biomass but not altering microbial community structure. Sci. Total Environ. 2018, 640, 1221–1230. [Google Scholar] [CrossRef]
- Liu, Y.; Lonappan, L.; Brar, S.K.; Yang, S.M. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review. Sci. Total Environ. 2018, 645, 60–70. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Liu, B.; Amonette, J.E.; Lin, Z.; Liu, G.; Ambus, P.; Xie, Z. How does biochar influence soil N cycle? A meta-analysis. Plant Soil 2018, 426, 211–225. [Google Scholar] [CrossRef]
- Zwieten, L.V.; Rose, T.; Herridge, D.; Kimber, S.; Rust, J.; Cowie, A.; Morris, S. Enhanced biological N2 fixation and yield of faba bean (Vicia faba L.) in an acid soil following biochar addition: Dissection of causal mechanisms. Plant Soil 2015, 395, 7–20. [Google Scholar] [CrossRef] [Green Version]
- Scheifele, M.; Hobi, A.; Buegger, F.; Gattinger, A.; Schulin, R.; Boller, T.; Mäder, P. Impact of pyrochar and hydrochar on soybean (Glycine max L.) root nodulation and biological nitrogen fixation. J. Plant Nutr. Soil Sci. 2017, 180, 199–211. [Google Scholar] [CrossRef]
- Ahmad, M.; Upamali, A.R.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; OK, S.Y. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Lehmanna, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockadayd, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, B.; Zhu, L.; Xing, B. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environ. Pollut. 2017, 227, 98–115. [Google Scholar] [CrossRef]
- Pietikäinen, J.; Kiikkilä, O.; Fritze, H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 2000, 89, 231–242. [Google Scholar] [CrossRef]
- Li, Q.; Liang, J.; Zhang, X.; Feng, J.; Song, M.; Gao, J. Biochar addition affects root morphology and nitrogen uptake capacity in common reed (Phragmites australis). Sci. Total Environ. 2021, 766, 144381. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yin, T.; Qian, C.; Liao, Z.; Shu, Y.; Li, S. Seed coat morphology in Sapium sebiferum in relation to its mechanism of water uptake. J. Hortic. Sci. Biotechnol. 2015, 90, 613–618. [Google Scholar] [CrossRef]
- Blouin, M.; Barot, S.; Roumet, C. A quick method to determine root biomass distribution in diameter classes. Plant Soil 2007, 290, 371–381. [Google Scholar] [CrossRef]
- Judd, L.A.; Jackson, B.E.; Fonteno, W.C. Advancements in root growth measurement technologies and observation capabilities for container-grown plants. Plants 2015, 4, 369–392. [Google Scholar] [CrossRef] [Green Version]
- Greenan, N.S.; Mulvaney, R.L.; Sims, G.K. A microscale method for colorimetric determination of urea in soil extracts. Commun. Soil Sci. Plant Anal. 1995, 26, 2519–2529. [Google Scholar] [CrossRef] [Green Version]
- Stitt, M.; Müller, C.; Matt, P.; Gibon, Y.; Carillo, P.; Morcuende, R.; Scheible, R.; Krapp, A. Steps towards an integrated view of nitrogen metabolism. J. Exp. Bot. 2002, 53, 959–970. [Google Scholar] [CrossRef]
- Jaworski, E.G. Nitrate reductase assay in intact plant tissues. Biochem. Biophys. Res. Commun. 1971, 43, 1274–1279. [Google Scholar] [CrossRef]
- Sorrenti, G.; Ventura, M.; Toselli, M. Effect of biochar on nutrient retention and nectarine tree performance: A three-year field trial. J. Plant Nutr. Soil Sci. 2016, 179, 336–346. [Google Scholar] [CrossRef]
- Lu, K.; Yang, X.; Gielen, G.; Bolan, N.; Ok, Y.S.; Niazi, N.K.; Xu, S.; Yuan, G.; Chen, X.; Zhang, X.; et al. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ. Manag. 2017, 186, 285–292. [Google Scholar] [CrossRef]
- Xiang, Y.; Deng, Q.; Duan, H.; Guo, Y. Effects of biochar application on root traits: A meta-analysis. Glob. Chang. Biol. 2017, 9, 1563–1572. [Google Scholar] [CrossRef]
- Backer, R.G.M.; Saeed, W.; Seguin, P.; Smith, L.D. Root traits and nitrogen fertilizer recovery efficiency of corn grown in biochar-amended soil under greenhouse conditions. Plant Soil 2017, 415, 465–477. [Google Scholar] [CrossRef]
- Lu, K.; Yang, X.; Shen, J.; Robinson, B.; Huang, H.; Liu, D.; Bolan, N.; Pei, J.; Wang, H. Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric. Ecosyst. Environ. 2014, 191, 124–132. [Google Scholar] [CrossRef]
- Oguntunde, P.G.; Abiodun, B.J.; Ajayi, A.E.; van de Giesen, N. Effects of charcoal production on soil physical properties in Ghana. J. Soil Sci. Plant Nutr. 2008, 182, 863–998. [Google Scholar] [CrossRef]
- Brockhoff, S.R.; Christians, N.E.; Killorn, R.J.; Horton, R.; Davis, D.D. Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar. Agron. J. 2010, 102, 1627–1631. [Google Scholar] [CrossRef]
- Wu, Q.; Pagès, L.; Wu, J. Relationships between root diameter, root length and root branching along lateral roots in adult, field-grown maize. Ann. Bot. 2016, 117, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; da Silva, J.P.J.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological anthrosol and a ferrasol of the Central Amazon basin: Fertilizer, manure, and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Chen, S.; Rotaru, A.; Shrestha, P.M.; Malvankar, N.S.; Liu, F.; Fan, W.; Nevin, K.P.; Lovely, D.R. Promoting interspecies electron transfer with biochar. Nature 2014, 4, 5019. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Skjemstad, J.; Sohi, S.; Carter, J.; Barson, M.; Falloon, P.; Coleman, K.; Woodbury, P.; Krull, E. Australian climate-carbon cycle feedback reduced by soil black carbon. Nat. Geosci. 2008, 1, 832–835. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Ajema, L. Effects of biochar application on beneficial soil organism review. Int. J. Res. Stud. Sci. Eng. Tech. 2018, 5, 9–18. [Google Scholar] [CrossRef]
- Rawat, J.; Saxena, J.; Sanwal, P. Biochar: A sustainable approach for improving plant growth and soil properties. In Biochar—An Imperative Amendment for Soil and the Environment; Vikas Abrol and Peeyush Sharma; IntechOpen: New York, NY, USA, 2019. [Google Scholar] [CrossRef] [Green Version]
- Crawford, M.N. Nitrate: Nutrient and signal for plant growth. Plant Cell 1995, 7, 859–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagemann, N.; Kammann, C.I.; Schmidt, H.P.; Kappler, A.; Behrens, S. Nitrate capture and slow release in biochar amended compost and soil. PLoS ONE 2017, 12, e0171214. [Google Scholar] [CrossRef]
- Wardle, D.A.; Nilsson, M.C.; Zackrisson, O. Fire-derived charcoal causes loss of forest humus. Science 2008, 320, 629. [Google Scholar] [CrossRef]
- Laird, D.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, S.; Minchin, T.; Kimber, S.; van Zwieten, L.; Gilbert, J.; Munroe, P.; Joseph, S.; Thomas, T. Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers. Agric. Ecosyst. Environ. 2014, 191, 73–82. [Google Scholar] [CrossRef]
- Harel, Y.M.; Elad, Y.; Rav-David, D.; Borenstein, M.; Shulchani, R.; Lew, B.; Graber, E.R. Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant Soil 2012, 357, 245–257. [Google Scholar] [CrossRef]
- Chen, X.; Lewis, S.; Heal, K.V.; Lin, Q.; Sohi, S.P. Biochar engineering and ageing influence the spatiotemporal dynamics of soil pH in the charosphere. Geoderma 2021, 386, 114919. [Google Scholar] [CrossRef]
- Yu, M.; Meng, J.; Yu, L.; Su, W.; Afzal, M.; Li, Y.; Brookes, P.C.; Redmile-Gordon, M.; Luo, Y.; Xu, J. Changes in nitrogen related functional genes along soil pH, C and nutrient gradients in the charosphere. Sci. Total Environ. 2019, 650, 626–632. [Google Scholar] [CrossRef] [PubMed]
Treatments | Straw Biochar Content | Bamboo Biochar Content |
---|---|---|
CK | 0 | 0 |
C1 | 1% | 0 |
C2 | 3% | 0 |
C3 | 5% | 0 |
C4 | 0 | 1% |
C5 | 0 | 3% |
C6 | 0 | 5% |
Treatment | Seedling Height (cm) | Ground Diameter (mm) | Height-Diameter Ratio |
---|---|---|---|
CK | 63.60 ± 4.68 c | 7.56 ± 0.39 c | 83.1 ± 3.20 c |
C1 | 100.67 ± 3.76 a | 9.99 ± 0. 37 ab | 101.7 ± 3.83 ab |
C2 | 101.07 ± 3.92 a | 10.12 ± 0.34 a | 100.2 ± 3.13 b |
C3 | 89.47 ± 2.71 b | 8.97 ± 0.26 b | 100.1 ± 2.39 b |
C4 | 101.27 ± 1.85 a | 9.22 ± 0.23 bc | 110.5 ± 2.73 a |
C5 | 91.40 ± 2.11 ab | 8.75 ± 0.26 b | 105.2 ± 2.86 ab |
C6 | 96.13 ± 2.28 ab | 8.84 ± 0.24 b | 109.2 ± 2.18 ab |
Treatment | Over-Ground Part (g) | Underground Part (g) | Fibrous Roots (g) | Root-Stem Ratio |
---|---|---|---|---|
CK | 3.77 ± 0.78 d | 3.59 ± 0.65 c | 0.036 ± 0.009 c | 1.05 ± 0.09 a |
C1 | 15.08 ± 1.83 ab | 9.88 ± 1.16 a | 0.189 ± 0.032 ab | 0.66 ± 0.03 b |
C2 | 16.50 ± 2.94 a | 11.07 ± 1.69 a | 0.112 ± 0.022 b | 0.70 ± 0.05 b |
C3 | 9.29 ± 0.80 c | 6.22 ± 0.74 bc | 0.182 ± 0.040 ab | 0.66 ± 0.04 b |
C4 | 10.67 ± 0.97 bc | 6.46 ± 0.77 bc | 0.193 ± 0.063 ab | 0.60 ± 0.05 b |
C5 | 9.35 ± 0.75 c | 6.37 ± 0.51 bc | 0.122 ± 0.103 a | 0.70 ± 0.06 b |
C6 | 11.19 ± 1.31 bc | 8.20 ± 0.77 ab | 0.131 ± 0.015 b | 0.76 ± 0.07 b |
Treatment | Primary Lateral Root Number | Total Root Length (cm) | Root Surface Area (cm2) | Root Volume (cm3) |
---|---|---|---|---|
CK | 2.00 ± 0.41 c | 145.7 ± 20.10 d | 122.3 ± 23.07 b | 2.33 ± 0.95 b |
C1 | 5.33 ± 0.55 a | 365.3 ± 33.55 bc | 194.2 ± 12.20 b | 7.84 ± 0.53 c |
C2 | 5.56 ± 0.78 a | 463.6 ± 40.63 ab | 227.8 ± 15.94 ab | 11.39 ± 1.01 bc |
C3 | 5.22 ± 0.68 a | 455.5 ± 21.74 ab | 241.1 ± 16.12 ab | 11.55 ± 1.24 abc |
C4 | 3.00 ± 0.33 bc | 345.1 ± 40.54 c | 284.7 ± 26.06 a | 10.43 ± 2.57 a |
C5 | 4.33 ± 0.94 ab | 391.9 ± 24.83 bc | 243.3 ± 14.30 ab | 10.14 ± 2.03 abc |
C6 | 4.67 ± 0.58 ab | 420.9 ± 50.66 a | 239.0 ± 16.26 ab | 10.77 ± 6.16 ab |
Treatment | Soluble Sugar (mg/g FW) | Starch (mg/g FW) | NR Activity (µg·g−1·h−1) |
---|---|---|---|
CK | 31.06 ± 1.39 a | 92.10 ± 12.27 a | 9.37 ± 0.68 b |
C1 | 26.26 ± 3.47 ab | 67.22 ± 25.45 ab | 4.25 ± 0.65 c |
C2 | 21.15 ± 1.67 b | 52.32 ± 7.61 ab | 32.50 ± 1.12 a |
C3 | 23.56 ± 0.96 ab | 56.83 ± 6.59 ab | 11.61 ± 2.24 b |
C4 | 23.68 ± 5.22 ab | 41.80 ± 8.72 b | 3.77 ± 0.15 c |
C5 | 24.41 ± 1.67 ab | 59.82 ± 5.54 ab | 9.92 ± 1.86 b |
C6 | 22.61 ± 1.68 ab | 63.50 ± 7.43 ab | 9.12 ± 0.54 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Chen, C.; Yu, F. Biochar Improves Root Growth of Sapium sebiferum (L.) Roxb. Container Seedlings. Agronomy 2021, 11, 1242. https://doi.org/10.3390/agronomy11061242
Chen H, Chen C, Yu F. Biochar Improves Root Growth of Sapium sebiferum (L.) Roxb. Container Seedlings. Agronomy. 2021; 11(6):1242. https://doi.org/10.3390/agronomy11061242
Chicago/Turabian StyleChen, Hong, Chen Chen, and Fangyuan Yu. 2021. "Biochar Improves Root Growth of Sapium sebiferum (L.) Roxb. Container Seedlings" Agronomy 11, no. 6: 1242. https://doi.org/10.3390/agronomy11061242
APA StyleChen, H., Chen, C., & Yu, F. (2021). Biochar Improves Root Growth of Sapium sebiferum (L.) Roxb. Container Seedlings. Agronomy, 11(6), 1242. https://doi.org/10.3390/agronomy11061242