3.1. Characterisation of HS
To describe the analysed samples, the elemental characterisation was performed first.
Table 2 shows the elemental composition of the samples, as well as their ash content. HS are carbon-based compounds, as seen from their composition. Carbon values vary from 31.71% (Jin Tai FA) and 34.36% (Lignohumate HS) to 55.46% (low moor peat). Oxygen values for HS tend to be higher for samples with lower carbon content, varying from 36.08% (low moor peat, highest C) to 61.03% (Jin Tai FA, lowest C) and 61.97% (Lignohumate HS, lowest C). Nitrogen content in samples varies from 0.44% (Lignohumate HS) to 3.69% (vermicompost) and 3.94% (soil compost). Hydrogen values, in turn, vary from around 3% (Humintech, Humic Growth Solutions, Lignohumate HS products) to 5.92% (low moor peat). H/C ratio shows the aromaticity of samples: the higher the value, the lower is the aromaticity. This ratio in the studied samples varies from 0.76 (the Humic Growth Solutions product) to 1.60 (raised bog peat). As the aromaticity of HS increases, their persistence in the environment increases as well. H/C ratio, which describes the level of aromaticity, has the smallest value (which means the highest aromaticity) in the samples of Humic Growth Solutions and Humintech products. O/C ratio, which shows the quantity of oxygen-containing functional groups and the level of humification in a sample, has the highest values in the samples of Lignohumate and Jin Tai products. Ash content is expressed as percentage in a sample that consists of inorganic substances. The purest HS samples with the lowest ash content are those of vermicompost (0.39%), Jin Tai (0.79%) and low moor peat (0.89%). These samples predominantly consist of organic matter. The highest ash content is presented in the Humintech (18.69%) and Lignohumate (35.23%) products. These samples have high content of inorganic compounds.
Analysis of metal content was done to further characterise the studied HS (
Table 3). Some of these elements are plant nutrients and are vital for plant growth and development (K, Ca, Mg, P, S, Fe, Zn), while others have been included to determine the degree of contamination (if any) in samples (Na, Al, Pb). All samples have high potassium content, especially the raised bog peat sample and Lignohumate and Jin Tai products. This could be explained by the use of potassium hydroxide extracts. Calcium content in samples has a wide range of variation, from almost none (less than 0.5 µg g
−1) in vermicompost HS to 19.85 µg g
−1 in Jin Tai FA. Magnesium content is high in Jin Tai FA (6750 µg g
−1), which is at least 15 times more than that in the rest of the samples. Phosphorus content is extremely high (126,574 µg g
−1) in raised bog peat, whereas Jin Tai FA contains less than 2 µg g
−1. Elevated content of sulphur is detected in the Lignohumate (52,850 µg g
−1) and Jin Tai (11,370 µg g
−1) samples. The samples containing the least amounts of iron, such as those of raised bog peat and Lignohumate product, also have the smallest aluminium concentrations, while the samples containing the highest amounts of iron, such as those of Humintech, Humic Growth Solutions and low moor peat, also have the highest aluminium content. The Lignohumate product has a very high concentration of zinc (862 µg g
−1), while the rest of the samples have an average of 9.6 µg g
−1 of zinc. Sodium concentrations are extremely high in the Lignohumate (43.57 µg g
−1) and Jin Tai (21.50 µg g
−1) products. The highest concentration of lead (37.9 µg g
−1) is detected in the low moor peat sample, while the rest of the samples have concentrations lower than 5 µg g
−1.
Total organic carbon content in the samples varies from 31.1 mg g
−1 (Jin Tai FA) to 188.2 mg g
−1 (Humintech product). The highest content of HA is detected in the vermicompost (92.6%) and soil compost (89.1%) samples, which are almost pure HA. The Jin Tai-produced FA product contains only 89.3% of FA. As seen in
Table 4, commercial products obtained from lignite or leonardite generally have a higher FA content, while HS obtained from peat and compost in a laboratory mostly have a higher HA content. At the same time, the two samples (raised bog peat and the Humintech product) contain equal amounts of both FA and HA.
3.2. Germination Tests in Presence of HS
Shoot length tests of white mustard without added nutrients (
Figure 1) show significant increases for some products (LMP, SC, RBP, VC), while the values of root length have high variability. Statistically significant shoot elongation occurs in the treatments with RBP at 250 to 1500 mg L
−1, VC and LMP at all concentrations, SC at 250 to 1500 mg L
−1, HGS at 250, 500 and 1500 mg L
−1, JT at 1000 mg L
−1 and LH at 1000 mg L
−1 concentrations, while treatments with HGS at 50 mg L
−1 and JT at 500 mg L
−1 concentrations lead to significant decreases. The root length shows significant increases only in the treatments with LMP at concentrations of 50 and 250 mg L
−1 and with HGS at 500 mg L
−1. Most treatments show increase in measurements, although some concentrations have lower values than the control. When comparing the tests with and without added nutrients, the latter show a more enhanced growth-stimulating activity and higher results, especially for shoot length, while data on the tests with added nutrients is more fluctuating and shows greater decreases in values.
After measuring the length of shoots and roots, the samples were dried and the dry weight was obtained. The results were calculated relative to untreated control samples. Germination tests with white mustard seeds (
Figure 2) show some stimulating effect, mostly for root weight, although some of the obtained results show decreases compared with control values. Shoot weight with added nutrients is significantly lower in the treatment with SC at 250 and 1000 mg L
−1 concentrations, while the results are significantly higher in the treatment with LH at 1000 and 1500 mg L
−1 concentrations. Significantly lower results for root weight are obtained from treatment with VC at all concentrations, as these values show a considerable reduction in sample weight, as well as from treatments with RBP and HT at a 1500 mg L
−1 concentration. Significant increases in root weight occur in treatments with SC at 250 mg L
−1, LMP at 250 and 1500 mg L
−1, HT at 50 mg L
−1, JT at 250, 500 and 1500 mg L
−1 and LH at 50, 500, 1000 and 1500 mg L
−1 concentrations.
White mustard tests without added nutrients, however, show even more significant reductions in weight, especially for shoots. Significant reductions are obtained in the treatments with RBP at 500 mg L−1, VC at 250 mg L−1 and SC at 50, 500 and 1000 mg L−1 concentrations. For root weight, there are significant decreases in the treatments with RBP at 50 mg L−1, VC and SC at 1500 mg L−1, LMP at 500 mg L−1, HGS at 250 mg L−1 and JT at 1000 mg L−1 concentrations; at the same time, a significant increase in the results occurs only in the treatment with VC at a 1000 mg L−1 concentration. When comparing the tests with and without added nutrients, it is evident that the former shows a greater growth-stimulating activity, although differences among the treatments occur. That is to say, the treatments with VC have a significant positive impact on root weight with the use of HS alone, while all of the obtained results are negative in the tests with nutrients added to the solution. In addition, the treatment with LH demonstrates the stimulating activity with nutrients present, and the impact is negative only with the use of HS alone. Comparing the effects on changes in the length and weight of samples, it can be observed that increases in the length of shoots are proportional to decreases in the dry weight values.
In the tests with watercress (
Lepidium sativum) seeds (
Figure 3), an increase in shoot and root length is detected in all tested solutions in at least some of the concentrations used. Upon examining test results for the samples with added mineral nutrients, the values of shoot length show an increase in case of all tested products in all concentrations, except for the treatment with RBP at a concentration of 50 mg L
−1. Statistically significant increases are found in the treatments with RBP at 1500 mg L
−1, VC at 250 and 1000 mg L
−1, SC at 500 to 1500 mg L
−1, LMP at 250 mg L
−1, HGS at 1000 and 1500 mg L
−1 and JT at 1500 mg L
−1 concentrations. Root length shows the optimal values between the concentrations of 500 and 1000 mg L
−1, where all treatments yield higher results. Significant increases are also found in the treatment with RBP at 1000 and 1500 mg L
−1 concentrations, while the treatments with LMP and HT show a significant decrease at a 1500 mg L
−1 concentration.
The tests without added nutrients show an increase in shoot length results in the majority of treatments, especially at highest concentrations; still, some treatments also show decreasing results. Significantly lower values of shoot length are obtained in the treatments with RBP at 50 mg L−1 and JT at 50 and 500 mg L−1 concentrations. Significant increases are observed in the treatments with RBP at 1500 mg L−1, VC at 50, 250 and 1500 mg L−1, SC at 500 to 1500 mg L−1, LMP at 500 and 1500 mg L−1 and LH at 1000 and 1500 mg L−1 concentrations. Root length variations demonstrate significantly lower values relative to the control in the treatments with SC and HT at 50 mg L−1, RBP at 1000 mg L−1 and VC at 1000 mg L−1 concentrations, whereas a significant increase in the results is seen in the treatment with LH at a 1000 mg L−1 concentration. Unlike the tests with white mustard, watercress tests show greater increases for both root and shoot lengths in the samples with added nutrients, while the tests with HS alone have greater decreases in results, especially for root length.
Results for the dry weight of watercress plants (
Figure 4) exhibit a stimulating activity in all of the treatments in at least some concentrations, except for shoot weight. In the tests with added nutrient solution, significant decrease in shoot weight takes place in the treatments with VC at 1000 mg L
−1, HT at 1500 mg L
−1, HGS at 50 and 500 mg L
−1, JT at 50, 1000 and 1500 mg L
−1 and LH at 50 and 1000 mg L
−1 concentrations. One case of a significant increase is presented in the treatment with HT at a 250 mg L
−1 concentration. These results are opposite of the increases in the length of shoots found in the watercress tests with added nutrients. Both positive and negative results are obtained for root weight. Significantly decreased values are obtained in the treatments with JT at 500 mg L
−1 and LH at 50, 250 and 1000 mg L
−1 concentrations, while significant increases in root weight are found in the treatments with RBP at 50, 1000 and 1500 mg L
−1, SC at 50 mg L
−1, LMP at 1000 mg L
−1 and HGS at 50 mg L
−1 concentrations.
Watercress tests without added nutrients show increase in results for some of the treatments used for both shoots and roots. Treatment with LH at a 1000 mg L−1 concentration produced one case of significant reduction in shoot weight. In contrast to that, significant increases in results are found in the treatments with RBP in nearly all concentrations (except for 1000 mg L−1), VC at 50, 1000 and 1500 mg L−1, SC at 50 mg L−1, HGS at 50 and 500 mg L−1 and LH at 250 mg L−1 concentrations. Dependence of the optimum results on concentration is apparently associated with the treatment applied: two peaks of effectivity can be observed at the concentrations of 250 and 1000 mg L−1. Results for root weight show a significant decrease in results in case of the treatment with SC at 1500 mg L−1 and LH at 1000 and 1500 mg L−1 concentrations. Significant increases are obtained in the treatments with RBP at 50 to 500 mg L−1 and VC at 250 and 1500 mg L−1 concentrations.
When looking at changes in both length and weight in the watercress seed tests, the optimum results for both values occur at a concentration range between 50 and 250 mg L−1, although some of the treatments also show significant increases at higher concentrations.
Germination test results (
Figure 5) for winter wheat (
Triticum aestivum) with added nutrient solution show an increase in shoot length in all treatments in most of the concentrations used. For root elongation, in turn, some treatments are more efficient. Treatment with RBP shows a significant increase in shoot length at 1500 mg L
−1; treatment with HT—a significant increase at 500 mg L
−1 and a significant decrease at 1000 mg L
−1; and treatment with LH—a significant increase at 1000 mg L
−1. Root length changes show significantly decreasing results in the treatments with RBP at 250 and 1000 mg L
−1 and LH at 50 and 250 mg L
−1 concentrations, while significantly increasing changes transpire in the treatments with SC at 50 to 500 mg L
−1, LMP at 1000 mg L
−1 and LH at 1000 mg L
−1 concentrations.
Wheat germination tests without added nutrients produce a wider range of values than tests with nutrients. Significantly lower results are obtained in the treatments with SC and LH at a 50 mg L−1 concentration, and significantly higher results—in the treatments with RBP at 1500 mg L−1, VC at 500, 1000 and 1500 mg L−1, SC at 1000 and 1500 mg L−1, LMP at 50 mg L−1, HT at 500 to 1500 mg L−1, HGS at 250 mg L−1, JT at 1000 and 1500 mg L−1 and LH at 1500 mg L−1 concentrations. Root elongation changes demonstrate a significant negative impact in samples with HGS treatment at 500 and 1500 mg L−1 concentrations and a significant increase—in the treatments with VC at 50, 500 and 1000 mg L−1, SC at 250 to 1500 mg L−1 and HT at 250 and 1500 mg L−1 concentrations.
When using HS alone, treatments with VC and SC have significantly higher rates of elongation than most of the other treatments. However, when nutrients are added, these treatments lose effectivity at increased concentrations, while other treatments show better results.
The wheat test results for changes in shoot and root weight (
Figure 6) show a positive impact on the observed parameters, except in the results of root weight without added nutrients, where decreases are obtained. Tests with added nutrients, however, produced great results in shoot elongation relative to the control—as high as 207% in the treatment with HGS at a 500 mg L
−1 concentration. All the obtained increases in shoot weight are statistically significant, except for treatments with LMP at 50 and 1500 mg L
−1, JT at 1000 mg L
−1 and LH at 50 mg L
−1 concentrations. There are practically no decreases in the dry weight (except for LH at 50 mg L
−1) of wheat shoots. The roots, however, do show some decreasing results, but these values are not significant. Increases in root weight are significant in the treatments with RBP at 50 and 1000 mg L
−1, VC at 250 mg L
−1, HT at 50 and 250 mg L
−1, HGS at 250 and 500 mg L
−1, JT at 1500 mg L
−1 and LH at 250, 1000 and 1500 mg L
−1 concentrations. Although the increases in root weight are not as high as in shoots, the treatments with HGS and HT still reach as much as an approximately 50% increase.
Wheat tests without added nutrients show increases in shoot weights in all treatments, except for HT, which has a significant negative impact at all concentrations except 1500 mg L−1, and also JT at a 50 mg L−1 concentration. All other treatments show a mostly positive impact on shoot weight. However, significantly higher values are obtained in the treatments with RBP at 1000 and 1500 mg L−1, VC at 500 and 1000 mg L−1, SC at 250 and 500 mg L−1, HGS at 500 and 1000 mg L−1, JT at 1000 and 1500 mg L−1 and LH at 250 and 1500 mg L−1 concentrations. As already mentioned, all the treatments without added nutrients show negative influence on root weight, and the values are significant in the treatments with RBP at 1500 mg L−1, VC at all concentrations except 50 mg L−1, SC at 1000 and 1500 mg L−1, HT 500 and 1000 mg L−1, JT at 50, 250 and 500 mg L−1 and LH at 500 mg L−1 concentrations. Tests with added nutrients show significantly higher results than tests with HS alone. When looking at changes in both length and weight, we found that HS with nutrients have a stimulating impact on early wheat seedling development, whereas HS used alone may cause reductions in root weight, although increases in length are also observed.
These results are in agreement with reports of other authors who also have found that HS from sources like peat [
11,
16], composts [
17] and leonardite [
12] can have a stimulating effect on plant growth. A review by Rose et al. (2014), analysing and comparing response ratios of plants to tests with differently sourced HS, found that HS from composts and soil had higher results in terms of a positive impact on shoot length than peat. Moreover, the latter was also less potent than brown-coal-derived HS [
18]. Conversely, when looking at the impact on root length, soil-based HS had a sudden decrease in effectiveness, although still being higher than peat and brown coal-based HS. Notably, the tests performed in soil gave the best results, not the tests in hydroponic or hybrid systems.
In order to eliminate the species-specific variability in the assessed effects of various HS on seed germination, an aggregate stimulating and inhibiting activity of different treatments was calculated (
Figure 7) for all concentrations using all measurements. The optimum results for plant stimulation occur between the concentrations of 500 and 1000 mg L
−1, and the greatest reductions for most treatments occur between the concentrations of 50 and 500 mg L
−1. In the samples with added nutrients, the stimulating activity reaches as high as 339% in the treatment with HGS at 500 mg L
−1, while the lowest values of 64% and 71% belong to JT and LH at a 50 mg L
−1 concentration, respectively. From the tests without added nutrients, the maximum stimulation takes place in the naturally-occurring treatments—i.e., VC, SC, RBP and LMP—at the concentrations of 1000 and 250 mg L
−1. The effect of commercially available products ranged between a maximum stimulation of 92% in the treatment with HGS and a minimum of 0% in the treatment with JT at 500 mg L
−1.
Looking at the aggregate decreases in the results of tests with added nutrients, the scores of JT at higher concentrations stand out as being significantly lower, reaching the lowest point at 1000 mg L−1 with −91% changes, whereas all other treatments have minimal decreases in results (e.g., −16% in the treatment with HT). The smallest percentage of decrease (−3%) is seen in the treatment with LMP at 500 mg L−1. At smaller concentrations, on the contrary, the treatment with JT showed minimal decreases (−16%), while all treatments except JT and LMP display increased rates of inhibition. The aggregate relative decreases in tests without added nutrients show a different tendency in the treatment with JT, where the maximum inhibition (−112%) is attained with lower concentrations. In addition, the inhibition subsided with increasing concentrations. The same was the case in the treatment with RBP, reaching the maximum inhibition among all treatments, which is −114% at a 50 mg L−1 concentration. Treatment with VC also had a peak negative effect at 250 mg L−1. On the other hand, other treatments, like SC and HGS with −21%, showed minimal decreases in results at 250 mg L−1 and 500 mg L−1 concentrations, respectively. Treatments with RBP (−27%), VC (−37%) and LMP (−22%) show minimal decreases at a concentration of 1000 mg L−1. Treatment with LH caused about −72% changes for all concentrations used. Comparing both stimulating and inhibiting effects of treatments with and without nutrients, for most treatments the addition of nutrients increase the efficiency, as the total stimulation rates are higher in these tests. Moreover, the maximum efficiency rates begin to appear at lower product concentrations.