The Effect of Different Soil Tillage Systems and Crop Residues on the Composition of Weed Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experiment Design and Agricultural Practices
2.3. Methods and Analysis
3. Results
3.1. Weed Communities Based on Soil pH Requirements
3.1.1. Composition of Weed Communities
3.1.2. Clustering of Soil Tillage Systems without/with Crop Residues Considering the Estimated Weed Communities
3.1.3. Homogeneity Analysis of Weed Communities
3.2. Weed Communities Based on Soil Moisture Requirements
3.2.1. Composition of Weed Communities
3.2.2. Clustering of Soil Tillage Systems without/with Crop Residues Considering the Estimated Weed Communities
3.2.3. Homogeneity Analysis of Weed Communities
3.3. Weed Communities Based on Soil Nitrogen Requirements
3.3.1. Composition of Weed Communities
3.3.2. Clustering of Soil Tillage Systems without/with Crop Residues Considering the Estimated Weed Communities
3.3.3. Homogeneity Analysis of Weed Communities
4. Discussion
4.1. The Effect of Different Tillage Systems and Crop Residue in the Soil on Weed Community Composition
4.2. Clustering of Soil Tillage Systems without/with Crop Residues Considering the Estimated Weed Communities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kassam, A.; Friedrich, T.; Shaxson, F.; Pretty, J. The spread of concervation agriculture: Justification, sustainability and uptake. Int. J. Agric. Sustain. 2009, 7, 292–320. [Google Scholar] [CrossRef]
- Lapins, D.; Kopmanis, J.; Dinaburga, G.; Berzins, A.; Plume, A.; Melngalvis, I. Efficacy of soil deep loosening if growing winter oil seed rape and winter wheat in conditions of uneven relief. Eng. Rural Dev. 2012, 11, 139–144. [Google Scholar]
- Carr, P.M.; Gramig, G.G.; Liebig, M.A. Impacts of organic zero tillage systems on crops, weeds, and soil quality. Sustainability 2013, 5, 3172–3201. [Google Scholar] [CrossRef] [Green Version]
- Knežević, M.; Baličević, R.; Ravlić, M.; Ranogajec, L.J. Effects of reduced herbicide doses on annual weeds and winter wheat yield by two tillage system. Herbologia 2012, 13, 7–46. [Google Scholar]
- Håkansson, S. Weeds and Weed Management on Arable Land: An Ecological Approach; CABI Publishing: Wallingford, UK, 2003; p. 274. [Google Scholar]
- Tørresen, K.S.; Salonen, J.; Fogelfords, H.; Håkansson, S.; Melander, B. Weed problems in various tillage systems in the Nordic countries. In Extended Abstracts; Nordic Association of Agricultural Scientists: Odense, Denmark, 2006; pp. 54–60. [Google Scholar]
- Salonen, J.; Hyvönen, T. Effect of rotational fallows on weed flora of subsequent winter rye. J. Plant Dis. Prot. 2006, 20, 651–656. [Google Scholar]
- Chetan, F.; Rusu, T.; Chetan, C.; Moraru, P.I. Influence of soil tillage upon weeds, production and economical efficiency of corn crop. AgroLife Sci. J. 2016, 5, 36–43. [Google Scholar]
- Travlos, I.S.; Cheimona, N.; Roussis, I.; Bilalis, D.J. Weed-species abundance and diversity indices in relation to tillage systems and fertilization. Front. Environ. Sci. 2018, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Santín-Montanyá, I.M.; Catalán, G.; Tenorio-Pasamón, J.L.; García-Baudín, J.M. Effect of the tillage systems on weed flora composition. ResearchGate 2014, 69, 143–147. [Google Scholar]
- Armengot, L.; Blanco-Moreno, J.M.; Bàrberi, P.; Bocci, G.; Carlesi, S.; Aendekerk, R.; Berner, A.; Cellete, F.; Grosse, M.; Huiting, H.; et al. Tillage as a driver of change in weed communities: A functional perspective. Agric. Ecosyst. Environ. 2016, 222, 276–285. [Google Scholar] [CrossRef]
- Légère, A.; Stevenson, F.C.; Benoit, D.L. The selective memory of weed seedbanks after 18 years of conservation tillage. Weed Sci. 2011, 59, 98–106. [Google Scholar] [CrossRef]
- Nichols, V.; Verhulst, N.; Cox, R.; Govaerts, B. Weed dynamics and conservation agriculture principles: A review. Field Crop Res. 2015, 183, 56–68. [Google Scholar] [CrossRef] [Green Version]
- Nikolić, N.; Loddo, D.; Masin, R. Effect of crop residues on weed emergence. Agronomy 2021, 11, 163. [Google Scholar] [CrossRef]
- Mohammaddoust-e-Chamanabad, H.R.; Baghestani, M.A.; Tulikov, A.M. The impact of agronomic practices on weed community in winter rye. Pak. J. Weed Sci. Res. 2006, 12, 281–291. [Google Scholar]
- Mass, M.T.; Verdu, A.M. Tillage system effects on weed communities in a 4-year crop rotation under Mediterranean dryland conditions. Soil Tillage Res. 2003, 74, 15–24. [Google Scholar] [CrossRef]
- Velykis, A.; Satkus, A. Effect of reduced clay loam tillage on weed infestation and spring barley yield. Agric. Sci. 2012, 19, 236–248. (In Lithuanian) [Google Scholar]
- Calado, J.M.G.; Basch, G.; ·De Carvalho, M. Weed emergence as influenced by soil moisture and air temperature. J. Pest Sci. 2009, 82, 81–88. [Google Scholar] [CrossRef]
- Ellenberg, H.; Weber, H.E.; Düll, R.; Wirth, V.; Werner, W. Zeigerwerte von Pflanzen in Mitteleuropa. Scr. Geobot. 1992, 18, 1–248. (In Germany) [Google Scholar]
- Lososová, Z.; Chytrý, M.; Cimalová, Š.; Kropáč, Z.; Otýpková, Z.; Pyšek, P.; Tichý, L. Weed vegetation of arable land in Central Europe: Gradients of diversity and species composition. J. Veg. Sci. 2004, 15, 415–422. [Google Scholar] [CrossRef]
- Travlos, I.; Gazoulis, I.; Kanatas, P.; Tsekoura, A.; Zannopoulos, S.; Papastylianou, P. Key factors affecting weed seeds’ germination, weed emergence, and their possible role for the efficacy of false seedbed technique as weed management practice. Front. Agron. 2020, 2, 1–9. [Google Scholar] [CrossRef]
- Santín-Montanyá, I.M.; Zambrana-Quesada, E.; Tenorio-Pasamón, J.L. Weed abundance and soil seedbank responses to tillage systems in continuous maize crops. Arch. Agron. Soil Sci. 2018, 64, 1705–1713. [Google Scholar] [CrossRef]
- Franczuk, J.; Kosterna, E.; Zaniewicz-Bajkowska, A. Weed-control effects on different types of cover-crop mulches. Acta Agric. Scand. Sect. B Plant Soil Sci. 2010, 60, 472–479. [Google Scholar] [CrossRef]
- Juchnevičienė, A.; Raudonius, S.; Avižienytė, D.; Romaneckas, K.; Bogužas, V. Effect of long-term reduced soil tillage and direct seeding on winter wheat crop. Agric. Sci. 2012, 19, 139–150. (In Lithuanian) [Google Scholar]
- Skuodienė, R.; Karčauskienė, R.; Čiuberkis, S.; Repšienė, R.; Ambrazaitienė, D. The influence of primary soil tillage on soil weed seed bank and weed incidence in a cereal-grass crop rotation. Zemdirb. Agric. 2013, 100, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Seibutis, V.; Feiza, V. The influence of short crop rotations, monocrop and reduced soil tillage on weed population dynamics. Zemdirb. Agric. 2008, 95, 123–129. [Google Scholar]
- Cordeau, S.; Smith, R.G.; Gallandt, E.R.; Brown, B.; Salon, P.; DiTommaso, A.; Ryan, M.R. Timing of Tillage as a Driver of Weed Communities. Weed Sci. 2017, 65, 504–514. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wu, L.-F. Impact of Tillage and Crop Residue Management on the Weed Community and Wheat Yield in a Wheat–Maize Double Cropping System. Agriculture 2021, 11, 265. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B.; Smagacz, J.; Kwiatkowski, C.A.; Harasim, E.; Woźniak, A. Weed Flora and Soil Seed Bank Composition as Affected by Tillage System in Three-Year Crop Rotation. Agriculture 2020, 10, 186. [Google Scholar] [CrossRef]
No | Soil Tillage Treatments | Direct Drilling of Cover Crops | Shallow Discing after Harvest | Primary Tillage | Seedbed Preparation |
---|---|---|---|---|---|
1. | Conventional deep ploughing (control, CP) | no | yes | ploughing at 23–25 cm depth | cultivation |
2. | Shallow ploughing (SP) | no | yes | ploughing at 12–15 cm depth | cultivation |
3. | Shallow loosening (SL) | no | yes | discing at 8–10 cm depth | cultivation |
4. | Shallow rotovating (SR) | no | no | no | rotovating at 5–6 cm depth |
5. | Catch cropping of green manure and rotovating (GMR) | yes | no | no | rotovating at 5–6 cm depth |
6. | No-tillage, direct drilling (NT) | no | no | no | no |
No | Species | Communities | R | S | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | N | M | CP | SP | SL | SR | GMR | NT | CP | SP | SL | SR | GMR | NT | ||
1 | Apera spica-venti L. | 5 | x | 6 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/x | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/x | 0/0/0 | 0/0/x | 0/0/0 | 0/0/0 |
2 | Chenopodium album L. | x | 7 | 4 | x/x/0 | x/0/x | x/x/x | x/0/x | x/x/0 | x/x/0 | x/x/0 | x/x/x | x/x/x | x/0/0 | x/0/0 | x/0/0 |
3 | Cirsium arvense L. | x | 7 | x | 0/0/0 | 0/0/0 | 0/0/0 | x/x/x | x/x/x | 0/x/0 | 0/x/0 | 0/0/x | x/x/0 | x/x/x | x/x/x | x/x/x |
4 | Elytrigia repens L. | x | 7 | x | x/x/x | x/x/0 | x/x/x | x/x/0 | x/x/x | x/0/x | x/x/0 | x/x/x | x/x/0 | x/x/0 | x/x/x | x/x/0 |
5 | Equisetum arvense L. | x | 3 | x | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/x | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/x | 0/0/x |
6 | Fallopia convolvulus L. | x | 6 | 5 | 0/x/0 | x/x/0 | x/x/0 | x/0/0 | x/x/0 | x/0/0 | x/x/0 | x/x/0 | x/x/0 | 0/0/0 | x/x/0 | x/0/0 |
7 | Galium aparine L. | 6 | x | 8 | 0/x/0 | 0/x/0 | x/x/x | x/x/x | x/x/x | x/x/x | 0/x/x | x/x/x | x/x/x | x/x/x | x/x/x | x/x/x |
8 | Lamium purpureum L. | 7 | 7 | 5 | x/x/x | x/x/x | x/x/x | x/x/x | x/x/x | x/0/x | x/x/x | x/x/x | x/x/x | x/x/x | x/x/x | x/x/x |
9 | Persicaria lapathifolia L. | x | 8 | 8 | x/x/x | x/x/x | x/x/x | x/x/x | x/x/0 | x/x/0 | x/x/x | x/x/x | x/x/x | x/x/0 | x/x/0 | x/x/0 |
10 | Poa annua L. | x | 8 | 6 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/x | 0/0/x | 0/0/x | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/x | 0/0/x | 0/0/x |
11 | Rumex crispus L. | x | 6 | 7 | 0/0/0 | 0/0/0 | 0/0/0 | x/0/0 | x/0/0 | x/0/0 | 0/0/0 | 0/0/0 | 0/0/x | x/0/x | x/0/x | x/0/x |
12 | Sinapis arvensis L. | 8 | 6 | x | 0/x/0 | 0/x/x | 0/x/x | 0/0/0 | 0/0/0 | 0/0/0 | 0/x/x | 0/x/0 | 0/x/x | 0/0/0 | 0/x/0 | 0/x/0 |
13 | Sonchus arvensis L. | 7 | x | 5 | 0/0/0 | 0/0/0 | x/0/0 | x/x/0 | x/x/0 | x/0/0/ | 0/x/0 | 0/0/0 | 0/x/0 | x/x/0 | x/x/0 | x/x/0 |
14 | Taraxacum officinale L. | x | 8 | 5 | 0/0/0 | x/0/0 | 0/0/0 | x/x/x | x/0/x | x/x/x | 0/x/0 | 0/0/0 | 0/x/0 | x/0/x | x/0/x | x/0/x |
Evaluation | Factors | Weed Communities | |||||
---|---|---|---|---|---|---|---|
5 | 6 | 7 | 8 | x | |||
Quantitative, biomass of weed, g m−2 | R | CP | 27.7 | 0 | 34.5 | 0 | 38.8 |
SP | 41.1 | 0 | 29.8 | 0 | 64.6 | ||
SL | 8.30 | 26.5 | 30.6 | 25.8 | 36.5 | ||
SR * | 2.60 | 21.7 | 2.60 | 0 | 59.6 | ||
GMR *** | 10.6 | 1.70 | 35.0 | 13.3 | 8.80 | ||
NT ** | 21.6 | 1.80 | 19.9 | 0 | 15.1 | ||
S *** | CP | 0 | 34.6 | 45.5 | 24.6 | 36.9 | |
SP *** | 37.6 | 32.6 | 28.7 | 0 | 28.9 | ||
SL *** | 0 | 0 | 48.8 | 28.4 | 20.0 | ||
SR | 34.8 | 13.8 | 12.9 | 0 | 10.3 | ||
GMR *** | 12.9 | 20.3 | 11.8 | 0 | 2.60 | ||
NT *** | 17.5 | 15.6 | 11.8 | 0 | 10.8 |
Evaluation | Factors | Weed Communities | ||||
---|---|---|---|---|---|---|
6 | 7 | 8 | x | |||
Quantitative, biomass of weed, g m−2 | R | CP | 0.10 | 0.30 | 3.60 | 2.70 |
SP | 0.30 | 1.20 | 3.30 | 5.80 | ||
SL | 0.20 | 0.90 | 1.30 | 16.0 | ||
SR * | 7.20 | 2.80 | 0 | 21.4 | ||
GMR *** | 22.8 | 1.00 | 0 | 22.8 | ||
NT * | 22.7 | 0.60 | 5.00 | 6.90 | ||
S ***. | CP | 0.50 | 0.30 | 0.70 | 1.70 | |
SP | 1.40 | 0.10 | 1.00 | 5.00 | ||
SL | 1.40 | 0.70 | 1.60 | 10.6 | ||
SR | 8.20 | 4.40 | 0 | 4.30 | ||
GMR | 5.30 | 2.00 | 0.90 | 12.8 | ||
NT | 10.3 | 3.90 | 0.10 | 1.50 |
Evaluation | Factors | Weed Communities | |||||
---|---|---|---|---|---|---|---|
5 | 6 | 7 | 8 | x | |||
Quantitative, biomass of weed, g m−2 | R | CP | 0 | 0 | 14.6 | 0 | 3.40 |
SP | 6.10 | 0 | 12.6 | 0.40 | 1.70 | ||
SL | 0 | 1.10 | 10.3 | 0.40 | 6.50 | ||
SR | 2.60 | 11.0 | 0 | 0 | 5.40 | ||
GMR | 0 | 14.8 | 0 | 0 | 3.40 | ||
NT | 0 | 19.5 | 0 | 0 | 7.20 | ||
S *** | CP | 0 | 0 | 20.0 | 0.80 | 1.30 | |
SP | 2.70 | 0 | 10.2 | 0 | 2.50 | ||
SL | 0 | 0 | 19.6 | 0 | 2.50 | ||
SR | 2.70 | 0 | 0 | 0 | 9.60 | ||
GMR | 0 | 6.60 | 0 | 0 | 15.4 | ||
NT | 0 | 10.3 | 0 | 0 | 21.1 |
Evaluation | Factors | Weed Communities | ||||||
---|---|---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | 8 | x | |||
Quantitative, biomass of weed, g m−2 | R | CP | 0 | 0.10 | 0 | 0 | 100.6 | 0.30 |
SP *** | 16.0 | 0.70 | 0 | 0 | 115.3 | 3.50 | ||
SL * | 22.8 | 2.00 | 0 | 0 | 85.3 | 17.6 | ||
SR *** | 2.60 | 30.3 | 1.40 | 4.90 | 46.8 | 0.50 | ||
GMR *** | 0 | 34.5 | 6.70 | 26.6 | 0 | 1.60 | ||
NT *** | 0 | 34.8 | 12.9 | 6.80 | 0 | 3.90 | ||
S *** | CP | 0 | 7.90 | 0 | 0 | 114.9 | 18.8 | |
SP *** | 19.5 | 2.40 | 6.40 | 0 | 95.6 | 3.90 | ||
SL *** | 49.1 | 3.20 | 0 | 0 | 34.3 | 10.6 | ||
SR *** | 0 | 6.90 | 4.90 | 56.6 | 0 | 3.40 | ||
GMR *** | 0 | 12.3 | 1.90 | 30.8 | 0 | 2.60 | ||
NT *** | 0 | 19.0 | 0.20 | 33.4 | 0 | 3.10 |
Evaluation | Factors | Weed Communities | |||||
---|---|---|---|---|---|---|---|
4 | 5 | 7 | 8 | x | |||
Quantitative, biomass of weed, g m−2 | R | CP | 0.10 | 0.60 | 0 | 2.00 | 4.00 |
SP | 0 | 1.40 | 0 | 2.70 | 6.50 | ||
SL | 0.30 | 1.00 | 0 | 3.40 | 13.7 | ||
SR | 0 | 5.70 | 0 | 4.00 | 21.7 | ||
GMT *** | 0 | 2.30 | 0 | 9.70 | 34.6 | ||
NT ** | 4.30 | 0 | 2.90 | 0.70 | 27.3 | ||
S *** | CP | 0.20 | 0.40 | 0.80 | 0.30 | 1.50 | |
SP | 0.10 | 0.20 | 0 | 1.40 | 5.80 | ||
SL *** | 0.10 | 0.80 | 0 | 7.50 | 5.90 | ||
SR | 0 | 4.40 | 0 | 0 | 12.5 | ||
GMR | 0 | 2.10 | 0 | 2.00 | 16.9 | ||
NT | 0 | 2.90 | 0 | 0.80 | 12.1 |
Evaluation | Factors | Weed Communities | ||||
---|---|---|---|---|---|---|
4 | 5 | 6 | x | |||
Quantitative, biomass of weed, g m−2 | R | CP | 0.10 | 1.50 | 0 | 16.4 |
SP | 0.10 | 5.60 | 0 | 15.1 | ||
SL | 0.40 | 6.60 | 10.2 | 1.10 | ||
SR | 0 | 5.30 | 6.00 | 7.70 | ||
GMR | 0 | 3.70 | 0.80 | 13.7 | ||
NT * | 0 | 7.40 | 0 | 19.3 | ||
S *** | CP | 0.80 | 2.10 | 0 | 19.2 | |
SP *** | 0 | 8.50 | 2.70 | 4.20 | ||
SL | 0.10 | 9.40 | 0 | 12.6 | ||
SR | 0 | 3.30 | 0 | 9.00 | ||
GMR | 0 | 10.8 | 2.30 | 8.90 | ||
NT ** | 0 | 19.8 | 3.10 | 8.50 |
Evaluation | Factors | Weed Communities | |||||
---|---|---|---|---|---|---|---|
3 | 6 | 7 | 8 | x | |||
Quantitative, biomass of weed, g m−2 | R | CP | 0 | 0 | 0.10 | 100.9 | 0 |
SP *** | 0 | 8.30 | 0.70 | 126.5 | 0 | ||
SL *** | 0 | 6.70 | 20.3 | 100.7 | 0 | ||
SR *** | 12.8 | 0 | 20.1 | 46.8 | 6.80 | ||
GMR *** | 0.20 | 0 | 21.7 | 47.5 | 0 | ||
NT *** | 0.20 | 20.1 | 16.8 | 21.3 | 0 | ||
S *** | CP | 0 | 18.8 | 7.90 | 114.9 | 0 | |
SP * | 0 | 0 | 12.1 | 95.6 | 20.1 | ||
SL *** | 0 | 4.90 | 15.8 | 76.5 | 0 | ||
SR *** | 0 | 14.6 | 17.6 | 22.8 | 16.8 | ||
GMR *** | 15.5 | 1.90 | 19.4 | 10.8 | 0 | ||
NT *** | 3.30 | 3.30 | 16.3 | 32.8 | 0 |
Evaluation | Factors | Weed Communities | ||||
---|---|---|---|---|---|---|
6 | 7 | 8 | x | |||
Quantitative, biomass of weed, g m−2 | R | CP | 3.90 | 0.80 | 2.00 | 0 |
SP | 3.20 | 4.50 | 2.90 | 0 | ||
SL | 1.50 | 10.4 | 6.50 | 0 | ||
SR | 3.70 | 14.6 | 10.2 | 2.70 | ||
GMR *** | 0.80 | 12.5 | 32.8 | 0.50 | ||
NT ** | 2.90 | 8.90 | 23.4 | 0 | ||
S *** | CP | 1.60 | 0.80 | 0.60 | 0.20 | |
SP | 1.10 | 3.50 | 2.60 | 0.30 | ||
SL | 1.70 | 3.70 | 8.80 | 0.10 | ||
SR | 0 | 4.30 | 8.20 | 4.40 | ||
GMR | 1.00 | 12.7 | 7.20 | 0.10 | ||
NT ** | 0.10 | 1.50 | 12.1 | 2.10 |
Evaluation | Factors | Weed Communities | ||||
---|---|---|---|---|---|---|
6 | 7 | 8 | x | |||
Quantitative, biomass of weed, g m−2 | R | CP | 0 | 16.9 | 1.10 | 0 |
SP | 15.5 | 5.20 | 0.10 | 0 | ||
SL | 5.60 | 7.60 | 5.10 | 0 | ||
SR | 0 | 5.70 | 13.3 | 0 | ||
GMR | 0 | 6.60 | 11.6 | 0 | ||
NT | 0 | 7.20 | 19.5 | 0 | ||
S *** | CP | 18.8 | 2.10 | 1.20 | 0 | |
SP | 0 | 11.2 | 2.40 | 1.80 | ||
SL | 15.1 | 3.90 | 0.50 | 2.60 | ||
SR | 1.30 | 3.30 | 5.00 | 2.70 | ||
GMR | 8.10 | 7.30 | 6.60 | 0 | ||
NT | 15.9 | 7.70 | 7.80 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steponavičienė, V.; Marcinkevičienė, A.; Butkevičienė, L.M.; Skinulienė, L.; Bogužas, V. The Effect of Different Soil Tillage Systems and Crop Residues on the Composition of Weed Communities. Agronomy 2021, 11, 1276. https://doi.org/10.3390/agronomy11071276
Steponavičienė V, Marcinkevičienė A, Butkevičienė LM, Skinulienė L, Bogužas V. The Effect of Different Soil Tillage Systems and Crop Residues on the Composition of Weed Communities. Agronomy. 2021; 11(7):1276. https://doi.org/10.3390/agronomy11071276
Chicago/Turabian StyleSteponavičienė, Vaida, Aušra Marcinkevičienė, Lina Marija Butkevičienė, Lina Skinulienė, and Vaclovas Bogužas. 2021. "The Effect of Different Soil Tillage Systems and Crop Residues on the Composition of Weed Communities" Agronomy 11, no. 7: 1276. https://doi.org/10.3390/agronomy11071276
APA StyleSteponavičienė, V., Marcinkevičienė, A., Butkevičienė, L. M., Skinulienė, L., & Bogužas, V. (2021). The Effect of Different Soil Tillage Systems and Crop Residues on the Composition of Weed Communities. Agronomy, 11(7), 1276. https://doi.org/10.3390/agronomy11071276