Biomass Yield of Selected Herbaceous and Woody Industrial Crops across Marginal Agricultural Sites with Shallow Soil
Abstract
:1. Introduction
2. Material and Methods
2.1. Identification of Most Relevant Herbaceous and Woody Industrial Crops in Europe
2.2. Literature Search
- camelina: Camelina;
- cardoon: Cynara cardunculus, artichoke thistle,
- cardoon; crambe: crambe;
- cup plant: Silphium perfoliatum, cup plant;
- giant reed: Arundo donax, giant reed;
- hemp: Cannabis sativa, hemp;
- Miscanthus: Miscanthus;
- poplar: Populus, poplar;
- reed canary grass: Phalaris arundinacea, reed canary grass;
- sorghum: Sorghum bicolor;
- switchgrass: Panicum virgatum, switchgrass;
- willow: Salix, willow.
2.3. Suitability Ranking of the Identified Crops
3. Results and Discussion
3.1. Field Trial Observations
3.1.1. Giant Reed
3.1.2. Hemp
3.1.3. Miscanthus
3.1.4. Poplar
3.1.5. Reed Canary Grass
3.2. Presumptions on Crops Where No Studies Were Found
3.2.1. Camelina
3.2.2. Cardoon
3.2.3. Crambe
3.2.4. Cup Plant
3.2.5. Sorghum
3.2.6. Switchgrass
3.2.7. Willow
3.3. Recommendations for Cultivation of Herbaceous and Woody Industrial Crops under LRD Conditions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Industrial Crop (Common Name) | Sum | a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Miscanthus | 12 | X | X | X | X | X | X | X | X | X | X | X | X | ||||||||||||
Giant reed | 9 | X | X | X | X | X | X | X | X | X | |||||||||||||||
Poplar | 7 | X | X | X | X | X | X | X | |||||||||||||||||
Hemp | 6 | X | X | X | X | X | X | ||||||||||||||||||
Switchgrass | 6 | X | X | X | X | X | X | ||||||||||||||||||
Camelina | 5 | X | X | X | X | X | |||||||||||||||||||
Cardoon | 5 | X | X | X | X | X | |||||||||||||||||||
Sorghum | 5 | X | X | X | X | X | |||||||||||||||||||
Willow | 5 | X | X | X | X | X | |||||||||||||||||||
Crampe | 4 | X | X | X | X | ||||||||||||||||||||
Reed canary grass | 4 | X | X | X | X | ||||||||||||||||||||
Black locust | 3 | X | X | X | |||||||||||||||||||||
Castor | 3 | X | X | X | |||||||||||||||||||||
Eucalyptus | 3 | X | X | X | |||||||||||||||||||||
Kenaf | 3 | X | X | X | |||||||||||||||||||||
Lupin | 3 | X | X | X | |||||||||||||||||||||
Safflower | 3 | X | X | X | |||||||||||||||||||||
Cup plant | 2 | X | X | ||||||||||||||||||||||
Ethiopian mustard | 2 | X | X | ||||||||||||||||||||||
Flax | 2 | X | X | ||||||||||||||||||||||
Sunflower | 2 | X | X | ||||||||||||||||||||||
Alfa-alfa | 1 | X | |||||||||||||||||||||||
Cocksfoot | 1 | X | |||||||||||||||||||||||
Columbus grass | 1 | X | |||||||||||||||||||||||
Common reed | 1 | X | |||||||||||||||||||||||
Cuphea | 1 | X | |||||||||||||||||||||||
Festulolium | 1 | X | |||||||||||||||||||||||
Giant Knotweed | 1 | X | |||||||||||||||||||||||
Guayule | 1 | X | |||||||||||||||||||||||
Indian fig opuntia | 1 | X | |||||||||||||||||||||||
Jatropha | 1 | X | |||||||||||||||||||||||
Jerusalem artichoke | 1 | X | |||||||||||||||||||||||
Lavender | 1 | X | |||||||||||||||||||||||
Lesquella | 1 | X | |||||||||||||||||||||||
Paulownia | 1 | X | |||||||||||||||||||||||
Pennycress | 1 | X | |||||||||||||||||||||||
Peppermint | 1 | X | |||||||||||||||||||||||
Pine | 1 | X | |||||||||||||||||||||||
Rapeseed (HEAR) | 1 | X | |||||||||||||||||||||||
Rosemary | 1 | X | |||||||||||||||||||||||
Russian dandelion | 1 | X | |||||||||||||||||||||||
Siberian elm | 1 | X | |||||||||||||||||||||||
Sugarbeet | 1 | X | |||||||||||||||||||||||
Sugarcane | 1 | X | |||||||||||||||||||||||
Tall fescue | 1 | X | |||||||||||||||||||||||
Tall wheat grass | 1 | X | |||||||||||||||||||||||
Tobacco | 1 | X | |||||||||||||||||||||||
Tree of heaven | 1 | X | |||||||||||||||||||||||
Triticale | 1 | X | |||||||||||||||||||||||
Virginia mallow | 1 | X | |||||||||||||||||||||||
Wild sugarcane | 1 | X |
Botanical Name | Trivial Name | Life Cycle | Photosynthetic Pathway | Use | Projects | Frequency of Studies |
---|---|---|---|---|---|---|
Arundo donax L. | Giant reed | Perennial | C3 | L | 9 | 8 |
Camelina sativa (L.) Crantz | Camelina | Annual | C3 | O | 5 | 6 |
Cannabis sativa L. | Hemp | Annual | C3 | L/O | 6 | 10 |
Crambe abyssinica Hochst ex R.E.Fr. | Crambe | Annual | C3 | O | 4 | 3 |
Cynara cardunculus L. | Cardoon | Perennial | C3 | L/O | 5 | 5 |
Miscanthus Andersson | Miscanthus | Perennial | C4 | L | 12 | 13 |
Panicum virgatum L. | Switchgrass | Perennial | C4 | L | 6 | 10 |
Phalaris arundinacea L. | Phalaris | Perennial | C3 | L | 4 | 6 |
Populus L. | Poplar | Perennial | C3 | W | 7 | 11 |
Salix L. | Willow | Perennial | C3 | W | 5 | 13 |
Silphium perfoliatum L. a | Cup plant | Perennial | C3 | L/C | 2 | 4 |
Sorghum bicolor L. Moench | Sorghum | Annual | C4 | L/C | 5 | 7 |
Field Trial Period | Sowing or Planting Density | Irrigation | N Fertilization Per Year | ||||||
---|---|---|---|---|---|---|---|---|---|
Reference Number | Begin | End | Sowing | Harvest | Variety | Precrop | [Seeds or Pants m−2] | [mm] | [kg ha−1] |
1 | 2011 | 2014 | March 2011 | Heights and basal diameter were measured bevor the growing season in 2014; harvest were carried out when the terminal buds of main shoots of poplars had been formed | Max 1 (P. nigra × P. maximowiczii) and H275 (P. trichocarpa × P. maximowiczii) | unmanaged grassland | 13,333 | Watered just after planting and in August 2011 | 0 |
2 | 2009 | 2015 | April 2001 | 2015 (first harvest later in autumn 2008) | Populus nigra × P. maximowiczii | potatoes and cereals | 9316 | 0 | 0 |
3 | 1991 | 1995 | May 1991 | February 1995 | First two vegetation periods | 0 | |||
4 | 2012 | 2015 | May 2012 | February to April | Miscanthus × giganteus Greef et Deu. | grassland (low quality) | 1.96 | 0 | 60 |
5 | 2016 | 2017 | April 2016 | 8 varieties | 2016: wheat; 2017: Oat | 130 | 45 | 80 | |
6 | 2015 | 2017 | 1 | 0 | 0 | ||||
7 | 2012 | 2014 | May 2012 | (4–7 June, 29–31 July, 24–23 September) 2013, (27–29 June, 29–31 July, 18 September) 2014 (end of 2012 growing season pruning took place). | Bamse, Cheifton | long term cereal cultivation | 30 | 0 | 325 |
Aboveground Biomass Dry Matter Yield | Grain Yield | Stem Dry Matter | Oil Yield | Thousand Kernel Weight | ||||
---|---|---|---|---|---|---|---|---|
Reference Number | Number of Vegetation Periods or Number of Cuts | Year of Cultivation | Age of the Tree | [Mg ha−1] | [Mg ha−1] | [Mg ha−1] | [L ha−1] | [g] |
1 | 1 | 3 | 0.1 | 0.17 | ||||
2 | 1 | 7 | 11.7 | |||||
3 | 4 | 8.9 | ||||||
4 | 4 | 16.0 | ||||||
5 | 2 | 0.55 | 6.1 | 110 | 7.6 | |||
6 | 2–3 | 8.3 | ||||||
7 | 2–3 | 13 |
References
- Gerwin, W.; Repmann, F.; Galatsidas, S.; Vlachaki, D.; Gounaris, N.; Baumgarten, W.; Volkmann, C.; Keramitzis, D.; Kiourtsis, F.; Freese, D. Assessment and Quantification of Marginal Lands for Biomass Production in Europe Using Soil-Quality Indicators. Soil 2018, 4, 267–290. [Google Scholar] [CrossRef] [Green Version]
- von Cossel, M.; Lewandowski, I.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Iqbal, Y.; Mantel, S.; Scordia, D.; Testa, G.; Cosentino, S.L.; et al. Marginal Agricultural Land Low-Input Systems for Biomass Production. Energies 2019, 12, 3123. [Google Scholar] [CrossRef] [Green Version]
- Elbersen, B.; Van Eupen, M.; Alexopoulou, E.; Bai, Z.; Boogaard, H.; Carrasco, J.E.; Ceccarelli, T.; Ciria Ramos, C.; Ciria, P.; Cosentino, S.L.; et al. Mapping Marginal Land Potentially Available for Industrial Crops in Europe. In Proceedings of the European Biomass Conference and Exhibition Proceedings 26thEUBCE, Copenhagehn, Denmark, 14–18 May 2018. [Google Scholar] [CrossRef]
- Elbersen, B.; Hart, K.; Koper, M.; van Eupen, M.; Keenleyside, C.; Verzandvoort, S.; Kort, K.; Cormont, A.; Giadrossi, A.; Baldock, D. Analysis of Actual Land Availability in the EU Trends in Unused, Abandoned and Degraded (Non-)Agricultural Land and Use for Energy and Other Non-Food Crops; Wageningen Environmental Research: Wageningen, The Netherlands, 2020. [Google Scholar]
- Ramirez-Almeyda, J.; Elbersen, B.; Monti, A.; Staritsky, I.; Panoutsou, C.; Alexopoulou, E.; Schrijver, R.; Elbersen, W. Assessing the Potentials for Nonfood Crops. In Modeling and Optimization of Biomass Supply Chains; Panoutsou, C., Ed.; Academic Press: Cambridge, MA, USA, 2017; Chapter 9; pp. 219–251. ISBN 978-0-12-812303-4. [Google Scholar]
- Dahmen, N.; Lewandowski, I.; Zibek, S.; Weidtmann, A. Integrated Lignocellulosic Value Chains in a Growing Bioeconomy: Status Quo and Perspectives. GCB Bioenergy 2019, 11, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Lange, L.; Connor, K.O.; Arason, S.; Bundgård-Jørgensen, U.; Canalis, A.; Carrez, D.; Gallagher, J.; Gøtke, N.; Huyghe, C.; Jarry, B.; et al. Developing a Sustainable and Circular Bio-Based Economy in EU: By Partnering Across Sectors, Upscaling and Using New Knowledge Faster, and For the Benefit of Climate, Environment & Biodiversity, and People & Business. Front. Bioeng. Biotechnol. 2021, 8. [Google Scholar] [CrossRef]
- Clark, L.J.; Whalley, W.R.; Barraclough, P.B. How Do Roots Penetrate Strong Soil? Plant Soil 2003, 255, 93–104. [Google Scholar] [CrossRef]
- Place, G.; Bowman, D.; Burton, M.; Rufty, T. Root Penetration through a High Bulk Density Soil Layer: Differential Response of a Crop and Weed Species. Plant Soil 2008, 307, 179–190. [Google Scholar] [CrossRef]
- Schweiger, P.; Petrasek, R.; Ableidinger, C.; Hartl, W. Tiefenverteilung von Wurzeln bei Winterweizen. In Beiträge zur 10. Wissenschaftstagung Ökologischer Landbau: Zürich, 11–13 Februar 2009; Werte–Wege–Wirkungen: Biolandbau im Spannungsfeld zwischen Ernährungssicherung, Markt und Klimawandel; Mayer, J., Alföldi, T., Leiber, F., Dubois, D., Fried, P., Heckendorn, F., Hillmann, E., Klocke, P., Lüscher, A., Riedel, S., et al., Eds.; Köster: Berlin, Germany, 2009; ISBN 978-3-03736-033-0. [Google Scholar]
- Rossiter, D.; Schulte, R.; van Velthuizen, H.; Le-Bas, C.; Nachtergaele, F.; Jones, R.; van Orshoven, J. Updated Common Bio-Physical Criteria to Define Natural Constraints for Agriculture in Europe; Terres, J., Toth, T., Van Orshoven, J., Eds.; EUR, Scientific and Technical Research Series; Publications Office: Luxembourg, 2014; Volume 26638, ISBN 92-79-38190-3. [Google Scholar]
- Kirkegaard, J.A.; Lilley, J.M. Root Penetration Rate—A Benchmark to Identify Soil and Plant Limitations to Rooting Depth in Wheat. Aust. J. Exp. Agric. 2007, 47, 590. [Google Scholar] [CrossRef]
- Parenti, A.; Lambertini, C.; Monti, A. Areas with Natural Constraints to Agriculture: Possibilities and Limitations for The Cultivation of Switchgrass (Panicum Virgatum L.) and Giant Reed (Arundo Donax L.) in Europe. In Land Allocation for Biomass Crops: Challenges and Opportunities with Changing Land Use; Li, R., Monti, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 39–63. ISBN 978-3-319-74536-7. [Google Scholar]
- Mueller, L.; Schindler, U.; Behrendt, A.; Eulenstein, F.; Dannowski, R.; Schlindwein, S.L.; Shepherd, T.G.; Smolentseva, E.; Rogasik, J. The Muencheberg Soil Quality Rating (SQR): Field Manual for Detecting and Assessing Properties and Limitations of Soils for Cropping and Grazing; Leibniz-Centre for Agricultural Landscape Research (ZALF) e. V.: Muencheberg, Germany, 2007. [Google Scholar]
- Panoutsou, C.; Singh, A. A Value Chain Approach to Improve Biomass Policy Formation. GCB Bioenergy 2020, 12, 464–475. [Google Scholar] [CrossRef] [Green Version]
- Fernando, A.L.; Rettenmaier, N.; Soldatos, P.; Panoutsou, C. Sustainability of Perennial Crops Production for Bioenergy and Bioproducts. In Perennial Grasses for Bioenergy and Bioproducts; Alexopoulou, E., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 245–283. ISBN 978-0-12-812900-5. [Google Scholar]
- Ferreira, J.A.; Brancoli, P.; Agnihotri, S.; Bolton, K.; Taherzadeh, M.J. A Review of Integration Strategies of Lignocelluloses and Other Wastes in 1st Generation Bioethanol Processes. Process Biochem. 2018, 75, 173–186. [Google Scholar] [CrossRef]
- Ubando, A.T.; Felix, C.B.; Chen, W.-H. Biorefineries in Circular Bioeconomy: A Comprehensive Review. Bioresour. Technol. 2020, 299, 122585. [Google Scholar] [CrossRef]
- Vogelpohl, T. Transnational Sustainability Certification for the Bioeconomy? Patterns and Discourse Coalitions of Resistance and Alternatives in Biomass Exporting Regions. Energy Sustain. Soc. 2021, 11, 3. [Google Scholar] [CrossRef]
- Baum, G. Betriebswirtschaftliche Betrachtung der Wildpflanzennutzung für Biogasbetriebe 2019. Available online: https://baden-wuerttemberg.nabu.de/natur-und-landschaft/landwirtschaft/biogas/index.html (accessed on 25 June 2021).
- Winkler, B.; Mangold, A.; Von Cossel, M.; Clifton-Brown, J.; Pogrzeba, M.; Lewandowski, I.; Iqbal, Y.; Kiesel, A. Implementing Miscanthus into Farming Systems: A Review of Agronomic Practices, Capital and Labour Demand. Renew. Sustain. Energy Rev. 2020, 132, 110053. [Google Scholar] [CrossRef]
- Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. Moving towards the Second Generation of Lignocellulosic Biorefineries in the EU: Drivers, Challenges, and Opportunities. Renew. Sustain. Energy Rev. 2019, 101, 590–599. [Google Scholar] [CrossRef] [Green Version]
- Von Cossel, M.; Iqbal, Y.; Scordia, D.; Cosentino, S.L.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Mantel, S.; Prysiazhniuk, O.; Maliarenko, O.; et al. Low-Input Agricultural Practices for Industrial Crops on Marginal Land; University of Hohenheim: Stuttgart, Germany, 2018. [Google Scholar]
- Haberzettl, J.; Hilgert, P.; Von Cossel, M. A Critical Assessment of Lignocellulosic Biomass Yield Modeling and the Bioenergy Potential from Marginal Land–A Review. Agron. Sustain. Dev. (under review).
- BMEL. Agrarexporte Verstehen-Fakten Und Hintergründe; BMEL: Berlin, Germany, 2018. [Google Scholar]
- UBA, (Umweltbundesamt). Toward Ecofriendly Farming. Available online: https://www.umweltbundesamt.de/en/topics/soil-agriculture/toward-ecofriendly-farming (accessed on 20 August 2020).
- European Commission CORDIS EU Research Results. Available online: https://cordis.europa.eu/projects/en (accessed on 25 June 2021).
- Elsevier How Can I Best Use the Advanced Search? Available online: https://service.elsevier.com/app/answers/detail/a_id/11365/c/10546/supporthub/scopus/ (accessed on 20 August 2020).
- Euring, D.; Ayegbeni, S.; Jansen, M.; Tu, J.; Gomes Da Silva, C.; Polle, A. Growth Performance and Nitrogen Use Efficiency of Two Populus Hybrid Clones (P. Nigra × P. Maximowiczii and P. Trichocarpa × P. Maximowiczii) in Relation to Soil Depth in a Young Plantation. iForest Biogeosci. For. 2016, 9, 847. [Google Scholar] [CrossRef]
- Orság, M.; Fischer, M.; Tripathi, A.M.; Žalud, Z.; Trnka, M. Sensitivity of Short Rotation Poplar Coppice Biomass Productivity to the Throughfall Reduction–Estimating Future Drought Impacts. Biomass Bioenergy 2018, 109, 182–189. [Google Scholar] [CrossRef]
- Lewandowski, I.; Kicherer, A. Combustion Quality of Biomass: Practical Relevance and Experiments to Modify the Biomass Quality of Miscanthus x Giganteus. Eur. J. Agron. 1997, 6, 163–177. [Google Scholar] [CrossRef]
- Kalinina, O.; Nunn, C.; Sanderson, R.; Hastings, A.F.S.; van der Weijde, T.; Özgüven, M.; Tarakanov, I.; Schüle, H.; Trindade, L.M.; Dolstra, O.; et al. Extending Miscanthus Cultivation with Novel Germplasm at Six Contrasting Sites. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldini, M.; Ferfuia, C.; Piani, B.; Sepulcri, A.; Dorigo, G.; Zuliani, F.; Danuso, F.; Cattivello, C. The Performance and Potentiality of Monoecious Hemp (Cannabis Sativa L.) Cultivars as a Multipurpose Crop. Agronomy 2018, 8, 162. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, S.; Yetilmezsoy, K.; Nuhoglu, N.N.; Dede, O.H.; Turp, S.M. Effects of Poultry Abattoir Sludge Amendment on Feedstock Composition, Energy Content, and Combustion Emissions of Giant Reed (Arundo Donax L.). J. King Saud Univ. Sci. 2020, 32, 149–155. [Google Scholar] [CrossRef]
- Meehan, P.; Burke, B.; Doyle, D.; Barth, S.; Finnan, J. Exploring the Potential of Grass Feedstock from Marginal Land in Ireland: Does Marginal Mean Lower Yield? Biomass Bioenergy 2017, 107, 361–369. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Montalba, R. Technological Approaches to Sustainable Agriculture at a Crossroads: An Agroecological Perspective. Sustainability 2017, 9, 349. [Google Scholar] [CrossRef] [Green Version]
- Laurent, A.; Pelzer, E.; Loyce, C.; Makowski, D. Ranking Yields of Energy Crops: A Meta-Analysis Using Direct and Indirect Comparisons. Renew. Sustain. Energy Rev. 2015, 46, 41–50. [Google Scholar] [CrossRef]
- Scordia, D.; Testa, G.; Cosentino, S.L. Perennial Grasses as Lignocellulosic Feedstock for Second-Generation Bioethanol Production in Mediterranean Environment. Ital. J. Agronomy 2014, 9, 84. [Google Scholar] [CrossRef]
- Angelini, L.G.; Ceccarini, L.; Di Nassi o Nasso, N.; Bonari, E. Comparison of Arundo Donax L. and Miscanthus x Giganteus in a Long-Term Field Experiment in Central Italy: Analysis of Productive Characteristics and Energy Balance. Biomass Bioenergy 2009, 33, 635–643. [Google Scholar] [CrossRef]
- Pilu, R.; Manca, A.; Landoni, M. Arundo Donax as an Energy Crop: Pros and Cons of the Utilization of This Perennial Plant. Maydica 2013, 58, 54–59. [Google Scholar]
- Bócsa, I.; Karus, M.; Lohmeyer, D. Der Hanfanbau; Vollst. überarb. und erg. 2. Aufl.; Landwirtschaftsverl.: Münster-Hiltrup, Germany, 2000; ISBN 3-7843-3066-5. [Google Scholar]
- Struik, P.C.; Amaducci, S.; Bullard, M.J.; Stutterheim, N.C.; Venturi, G.; Cromack, H.T.H. Agronomy of Fibre Hemp (Cannabis Sativa L.) in Europe. Ind. Crop. Prod. 2000, 11, 107–118. [Google Scholar] [CrossRef]
- Manevski, K.; Lærke, P.E.; Jiao, X.; Santhome, S.; Jørgensen, U. Biomass Productivity and Radiation Utilisation of Innovative Cropping Systems for Biorefinery. Agric. For. Meteorol. 2017, 233, 250–264. [Google Scholar] [CrossRef]
- Amaducci, S.; Zatta, A.; Raffanini, M.; Venturi, G. Characterisation of Hemp (Cannabis Sativa L.) Roots under Different Growing Conditions. Plant Soil 2008, 313, 227. [Google Scholar] [CrossRef]
- Lewandowski, I.; CLIFTON-BROWN, J.C.; Scurlock, J.M.O.; Huisman, W. Miscanthus: European Experience with a Novel Energy Crop. Biomass Bioenergy 2000, 19, 209–227. [Google Scholar] [CrossRef]
- Amaducci, S.; Facciotto, G.; Bergante, S.; Perego, A.; Serra, P.; Ferrarini, A.; Chimento, C. Biomass Production and Energy Balance of Herbaceous and Woody Crops on Marginal Soils in the Po Valley. GCB Bioenergy 2017, 9, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Bufe, C.; Korevaar, H. Evaluation of Additional Crops for Dutch List of Ecological Focus Area; Report/WPR; Wageningen Research Foundation (WR) Business Unit Agrosystems Research: Lelystad, The Netherlands, 2018; Volume 793. [Google Scholar]
- Confalonieri, R.; Jones, B.; Van Diepen, K.; Van Orshoven, J. Scientific Contribution on Combining Biophysical Criteria Underpinning the Delineation of Agricultural Areas Affected by Specific Constraints: Methodology and Factsheets for Plausible Criteria Combinations; Terres, J., Hagyo, A., Wania, A., Eds.; Publications Office: Luxembourg, 2014. [Google Scholar]
- Lewandowski, I.; Scurlock, J.M.O.; Lindvall, E.; Christou, M. The Development and Current Status of Perennial Rhizomatous Grasses as Energy Crops in the US and Europe. Biomass Bioenergy 2003, 25, 335–361. [Google Scholar] [CrossRef]
- Ferrarini, A.; Fornasier, F.; Serra, P.; Ferrari, F.; Trevisan, M.; Amaducci, S. Impacts of Willow and Miscanthus Bioenergy Buffers on Biogeochemical N Removal Processes along the Soil–Groundwater Continuum. GCB Bioenergy 2017, 9, 246–261. [Google Scholar] [CrossRef]
- Panacea. Scientific Papers and Training Materials–Panacea. Summary Factsheet Miscanthus; Agricultural University of Athens: Athens, Greece, 2020. [Google Scholar]
- Berendonk, C.; Dahlhoff, A.; Dickeduisberg, M.; Dissemond, A.; Erhardt, N.; Gruber, W.; Hartmann, H.-B.; Holz, J.; Günter, J.; Kasten, P.; et al. Nachwachsende Rohstoffe Vom Acker; Landwirtschaftskammer Nordrhein-Westfalen: Münster, Germnay, 2012. [Google Scholar]
- Paris, P.; Mareschi, L.; Sabatti, M.; Pisanelli, A.; Ecosse, A.; Nardin, F.; Scarascia-Mugnozza, G. Comparing Hybrid Populus Clones for SRF across Northern Italy after Two Biennial Rotations: Survival, Growth and Yield. Biomass Bioenergy 2011, 35, 1524–1532. [Google Scholar] [CrossRef]
- Moffat, A.; Houston, T. Tree Establishment and Growth at Pitsea Landfill Site, Essex, U.K. Waste Manag. Res. 1991, 9, 35–46. [Google Scholar] [CrossRef]
- Tilvikiene, V.; Kadziuliene, Z.; Dabkevicius, Z.; Venslauskas, K.; Navickas, K. Feasibility of Tall Fescue, Cocksfoot and Reed Canary Grass for Anaerobic Digestion: Analysis of Productivity and Energy Potential. Ind. Crop. Prod. 2016, 84, 87–96. [Google Scholar] [CrossRef]
- Usťak, S.; Šinko, J.; Muňoz, J. Reed Canary Grass (Phalaris Arundinacea L.) as a Promising Energy Crop. J. Cent. Eur. Agric. 2019, 20, 1143–1168. [Google Scholar] [CrossRef]
- Strašil, Z. Evaluation of Reed Canary Grass (Phalaris Arundinacea L.) Grown for Energy Use. Res. Agr. Eng. 2012, 58, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Gesch, R.W.; Johnson, J.M.-F. Water Use in Camelina–Soybean Dual Cropping Systems. Agron. J. 2015, 107, 1098–1104. [Google Scholar] [CrossRef]
- Hunsaker, D.J.; French, A.N.; Clarke, T.R.; El-Shikha, D.M. Water Use, Crop Coefficients, and Irrigation Management Criteria for Camelina Production in Arid Regions. Irrig. Sci. 2011, 29, 27–43. [Google Scholar] [CrossRef]
- Gominho, J.; Curt, M.D.; Lourenço, A.; Fernández, J.; Pereira, H. Cynara Cardunculus L. as a Biomass and Multi-Purpose Crop: A Review of 30 Years of Research. Biomass Bioenergy 2018, 109, 257–275. [Google Scholar] [CrossRef]
- Archontoulis, S.V.; Struik, P.C.; Vos, J.; Danalatos, N.G. Phenological Growth Stages of Cynara Cardunculus: Codification and Description According to the BBCH Scale. Ann. Appl. Biol. 2010, 156, 253–270. [Google Scholar] [CrossRef]
- Curt, M.D.; Mosquera, F.; Sanz, M.; Sánchez, J.; Sánchez, G.; Esteban, B.; Fernández, J. Effect of Land Slope on Biomass Production of Cynara Cardunculus L. In Proceedings of the 20th EU Biomass Conference and Exhibition, Milan, Italy, 18–22 June 2012; pp. 186–190. [Google Scholar]
- Merrill, S.D.; Tanaka, D.L.; Hanson, J.D. Root Length Growth of Eight Crop Species in Haplustoll Soils. Soil Sci. Soc. Am. J. 2002, 66, 913. [Google Scholar] [CrossRef]
- Merrill, S.D.; Tanaka, D.L.; Hanson, J.D. Comparison of Fixed-Wall and Pressurized-Wall Minirhizotrons for Fine Root Growth Measurements in Eight Crop Species. Agron. J. 2005, 97, 1367–1373. [Google Scholar] [CrossRef]
- Favorite, J. Cup Plant; USDA NRCS National Plant Data Center: Washington, DC, USA, 2003. [Google Scholar]
- Schittenhelm, S.; Schoo, B.; Schroetter, S. Yield physiology of biogas crops: Comparison of cup plant, maize, and lucerne-grass. J. Kult. 2016, 68, 378–384. [Google Scholar]
- Schoo, B.; Schroetter, S.; Kage, H.; Schittenhelm, S. Root Traits of Cup Plant, Maize and Lucerne Grass Grown under Different Soil and Soil Moisture Conditions. J. Agron. Crop Sci. 2017, 203, 345–359. [Google Scholar] [CrossRef]
- Panoutsou, C.; Singh, A. Training Materials for Agronomists and Students; Imperial College London: London, UK, 2019. [Google Scholar]
- Zeller, F.J. Sorghum (Sorghum Bicolor L. Moench): Utilization, Genetics, Breeding. Bodenkultur 2000, 51, 71–85. [Google Scholar]
- Alexopoulou, E.; Monti, A.; Elbersen, H.W.; Zegada-Lizarazu, W.; Millioni, D.; Scordia, D.; Zanetti, F.; Papazoglou, E.G.; Christou, M. Switchgrass: From Production to End Use. In Perennial Grasses for Bioenergy and Bioproducts; Alexopoulou, E., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 61–105. ISBN 978-0-12-812900-5. [Google Scholar]
- Parrish, D.J.; Fike, J.H. The Biology and Agronomy of Switchgrass for Biofuels. Crit. Rev. Plant Sci. 2005, 24, 423–459. [Google Scholar] [CrossRef]
- Porensky, L.M.; Davison, J.; Leger, E.A.; Miller, W.W.; Goergen, E.M.; Espeland, E.K.; Carroll-Moore, E.M. Grasses for Biofuels: A Low Water-Use Alternative for Cold Desert Agriculture? Biomass Bioenergy 2014, 66, 133–142. [Google Scholar] [CrossRef]
- Moore, K.J.; Kling, C.L.; Raman, D.R. A Midwest USA Perspective on Von Cossel et Al.’s Prospects of Bioenergy Cropping Systems for a More Social-Ecologically Sound Bioeconomy. Agronomy 2020, 10, 1658. [Google Scholar] [CrossRef]
- Von Cossel, M.; Wagner, M.; Lask, J.; Magenau, E.; Bauerle, A.; Von Cossel, V.; Warrach-Sagi, K.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; et al. Prospects of Bioenergy Cropping Systems for a More Social-Ecologically Sound Bioeconomy. Agronomy 2019, 9, 605. [Google Scholar] [CrossRef] [Green Version]
- Teuling, A.J. A Hot Future for European Droughts. Nat. Clim. Chang. 2018, 8, 364. [Google Scholar] [CrossRef]
- Stützel, H.; Brüggemann, N.; Inzé, D. The Future of Field Trials in Europe: Establishing a Network Beyond Boundaries. Trends Plant Sci. 2016, 21, 92–95. [Google Scholar] [CrossRef] [PubMed]
- European Commission. (EC) COMMISSION DELEGATED REGULATION (EU) 2018/1784–of 9 July 2018–Amending Delegated Regulation (EU) No 639/2014 as Regards Certain Provisions on the Greening Practices Established by Regulation (EU) No 1307/2013 of the European Parliament and of the Council. 2018, p. 4. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:32018R1784 (accessed on 25 June 2021).
Constraints Other Than LRD | |||||||
---|---|---|---|---|---|---|---|
Site Number | Crop | Country | City | m a.s.l. | UST | Steep Slope | Reference |
1 | Poplar | Germany | Göttingen | 206 | [29] | ||
2 | Poplar | Czech Republic | Domanínek | 578 | 1 | [30] | |
3 | Miscanthus | Germany | Durmersheim | 118 | 1 S | [31] | |
4 | Miscanthus | Great Britain | Aberystwyth | 39 | 1 St | [32] | |
5 | Hemp | Italy | Udine | 109 | [33] | ||
6 | Giant reed | Turkey | Sakarya | 244 | [34] | ||
7 | Reed canary grass | Ireland | Carlow | 15 | 1S St | [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reinhardt, J.; Hilgert, P.; von Cossel, M. Biomass Yield of Selected Herbaceous and Woody Industrial Crops across Marginal Agricultural Sites with Shallow Soil. Agronomy 2021, 11, 1296. https://doi.org/10.3390/agronomy11071296
Reinhardt J, Hilgert P, von Cossel M. Biomass Yield of Selected Herbaceous and Woody Industrial Crops across Marginal Agricultural Sites with Shallow Soil. Agronomy. 2021; 11(7):1296. https://doi.org/10.3390/agronomy11071296
Chicago/Turabian StyleReinhardt, Jana, Pia Hilgert, and Moritz von Cossel. 2021. "Biomass Yield of Selected Herbaceous and Woody Industrial Crops across Marginal Agricultural Sites with Shallow Soil" Agronomy 11, no. 7: 1296. https://doi.org/10.3390/agronomy11071296
APA StyleReinhardt, J., Hilgert, P., & von Cossel, M. (2021). Biomass Yield of Selected Herbaceous and Woody Industrial Crops across Marginal Agricultural Sites with Shallow Soil. Agronomy, 11(7), 1296. https://doi.org/10.3390/agronomy11071296