Correspondence between SOC1 Genotypes and Time of Endodormancy Break in Peach (Prunus persica L. Batsch) Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. DNA Extraction, PCR Amplification and Cloning
2.3. Evaluation of the Various Phenological Stages
2.4. Determination of Chilling Requirements
2.5. Data Analysis
3. Results
3.1. PpSOC1 Genotypes of Peach Cultivars
3.2. Peach Phenology and Its Association with the Allele Variation in PpSOC1 Locus
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lang, G.A. (Ed.) Plant Dormancy: Physiology, Biochemistry and Molecular Biology; CAB International: Wallington, UK, 1996. [Google Scholar]
- Hancock, J.F.; Scorza, R.; Lobos, G.A. Peaches. In Temperate Fruit Crop Breeding; Hancock, J.F., Ed.; Springer Science + Business Media B.V.: Dordrecht, The Netherlands, 2008; pp. 265–298. [Google Scholar]
- Weinberger, J.H. Chilling requirements of peach varieties. Proc. Am. Soc. Hortic. Sci. 1950, 56, 122–128. [Google Scholar]
- Weinberger, J.H. Some temperature relations in natural breaking of the rest of peach flower buds in the San Joaquin Valley, California. Proc. Am. Soc. Hortic. Sci. 1967, 91, 84–89. [Google Scholar]
- Richardson, E.A.; Seeley, S.D.; Walker, D.R. A model for estimating the completion of rest for ‘Redhaven’ and ‘Elberta’ peach trees. HortScience 1974, 9, 331–332. [Google Scholar]
- Childers, N.F. Modern Fruit Science; Hort Public Gainesville: Gainesville, FL, USA, 1983; 538p. [Google Scholar]
- Fishman, S.; Erez, A.; Couvillon, G.A. The temperature dependence of dormancy breaking in plants: Mathematical analysis of a two-step model involving a cooperative transition. J. Theor. Biol. 1987, 124, 473–483. [Google Scholar] [CrossRef]
- Erez, A.; Fishman, S. The dynamic model for chilling evaluation in peach buds. Acta Hortic. 1998, 465, 507–510. [Google Scholar] [CrossRef]
- Okie, W.R. Handbook of Peach and Nectarine Varieties; United States Department of Agriculture: Washington, DC, USA, 1998.
- Erez, A. (Ed.) Bud dormancy; phenomenon, problems and solutions in the tropics and subtropics. In Temperate Fruit Crops in Warm Climates; Springer: Dordrecht, The Netherlands; Kluwer Academic: Dordrecht, The Netherlands, 2000; pp. 17–48. [Google Scholar]
- Layne, D.R.; Bassi, D. The Peach; CAB International: Wallington, UK, 2008. [Google Scholar]
- Ghrab, M.; Ben Mimoun, M.; Masmoudi, M.M.; Ben Mechlia, N. Chilling trends in a warm production area and their impact on flowering and fruiting of peach trees. Sci. Hortic. 2014, 178, 87–94. [Google Scholar] [CrossRef]
- Milech, C.G.; Dini, M.; Scariotto, S.; Santos, J.; Herter, F.G.; Raseira, M.C.B. Chilling requirement of ten peach cultivars estimated by different methods. J. Exp. Agric. Int. 2018, 20, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.H.; Nam, E.Y.; Yun, S.K.; Kim, S.J.; Song, S.Y.; Lee, Y.H.; Hwang, K.D. Chilling and heat requirement of peach cultivars and changes in chilling accumulation spectrums based on 100-year records in Republic of Korea. Agric. For. Meteorol. 2020, 288, 108009. [Google Scholar] [CrossRef]
- Lang, G.A.; Early, J.D.; Martin, G.C.; Darnell, R.L. Endo-, para-, and ecodormancy: Physiological terminology and classification for dormancy research. HortScience 1987, 22, 371–377. [Google Scholar]
- Fadón, E.; Fernandez, E.; Behn, H.; Luedeling, E. A conceptual framework for winter dormancy in deciduous trees. Agronomy 2020, 10, 241. [Google Scholar] [CrossRef] [Green Version]
- Fadón, E.; Herrera, S.; Guerrero, B.I.; Guerra, M.E.; Rodrigo, J. Chilling and heat requirements of temperate stone fruit trees (Prunus sp). Agronomy 2020, 10, 409. [Google Scholar] [CrossRef] [Green Version]
- Faust, M.; Erez, A.; Rowland, L.J.; Wang, S.Y.; Norman, H.A. Bud dormancy in perennial fruit trees: Phisiological basis for dormancy induction, maintance and release. HortScience 1997, 32, 623–629. [Google Scholar] [CrossRef] [Green Version]
- Dennis, F.G., Jr. Problems in standardizing models for evaluating the chilling requirements for the breaking of dormancy in buds of woody plants. HortScience 2003, 38, 347–350. [Google Scholar] [CrossRef] [Green Version]
- Tromp, J. Dormancy. In Fundamentals of Temperate Zone Tree Fruit Production; Tromp, J., Webster, A.D., Wertheim, S.J., Eds.; Backhuys Publishers: Leiden, The Netherlands, 2005; pp. 65–73. [Google Scholar]
- Bartolini, S.; Piccolo, E.L.; Remorini, D. Different summer and autumn water deficit affect the floral differentiation and flower bud growth in apricot (Prunus armeniaca L.). Agronomy 2020, 10, 914. [Google Scholar] [CrossRef]
- Bartolini, S.; Massai, R.; Viti, R. The influence of autumn-winter temperatures on endodormancy release and blooming performance of apricot (Prunus armeniaca L.) in central Italy based on long-term observations. J. Hortic. Sci. Biotechnol. 2020, 95, 794–803. [Google Scholar] [CrossRef]
- Fernandez, E.; Whitney, C.; Cuneo, I.F.; Luedeling, E. Prospects of decreasing winter chill in Chile throughout the 21st century. Clim. Chang. 2020, 159, 423–439. [Google Scholar] [CrossRef]
- Ramina, A.; Colauzzi, M.; Masia, A.; Pitacco, A.; Caruso, T.; Messina, R.; Scarabelli, G. Hormonal and climatological aspects of dormancy in peach buds. Acta Hort 1995, 395, 35–46. [Google Scholar] [CrossRef]
- Draczynski, M. Die zeitliche Verlauf der Pollendifferenzierung bei Mandel, Pfirsich und Aprikose und der Einfluss der Knospentemperaturen auf diese Vorgänge. Gartenbauwissenschaft 1958, 23, 327–341. [Google Scholar]
- Szalay, L.; Timon, B.; Szabó, Z.; Papp, J. Microsporogenesis of peach (Prunus persica L. Batsch) varieties. Int. J. Hortic. Sci. 2002, 8, 7–10. [Google Scholar] [CrossRef]
- Szalay, L. Comparison of flower bud development in almond, apricot and peach genotypes. Int. J. Hortic. Sci. 2006, 12, 93–98. [Google Scholar] [CrossRef]
- Szalay, L. Development and cold hardiness of flower buds of stone fruits. In Morphology, Biology and Fertility of Flowers in Temperate Zone Fruits; Nyéki, J., Soltész, M., Szabó, Z., Eds.; Akadémiai Kiadó: Budapest, Hungary, 2008; pp. 63–82. ISBN 978-963-05-8591-0. [Google Scholar]
- Szalay, L.; Timon, B.; Végvári, G. Modelling the phenological process of dormancy in frost-sensitive stone fruit species in the central part of the Carpathian Basin. Acta Hort 2008, 803, 117–122. [Google Scholar] [CrossRef]
- Szalay, L.; Froemel-Hajnal, V.; Bakos, J.; Ladányi, M. Changes of the microsporogenesis process and blooming time of three apricot genotypes (Prunus armeniaca L.) in Central Hungary based on long-term observation (1994–2018). Sci. Hortic. 2019, 246, 279–288. [Google Scholar] [CrossRef]
- Cirilli, M.; Gattolin, S.; Chiozzotto, R.; Baccichet, I.; Pascal, T.; Quilot-Turion, B.; Rossini, L.; Bassi, D. The Di2/pet variant in PETALOSA gene underlies a major heat requirement-related QTL for blooming date in peach (P. persica L. Batsch). Plant Cell Physiol. 2021, 62, 356–365. [Google Scholar] [CrossRef]
- Leida, C.; Terol, J.; Martí, G.; Agustí, M.; Llácer, G.; Badenes, M.L.; Ríos, G. Identification of genes associated with bud dormancy release in Prunus persica by suppression subtractive hybridization. Tree Physiol. 2010, 30, 655–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castède, S.; Campoy, J.A.; Le Dantec, L.; Quero-García, J.; Barreneche, T.; Wenden, B.; Dirlewanger, E. Mapping of candidate genes involved in bud dormancy and flowering time in sweet cherry (Prunus avium). PLoS ONE 2015, 10, e0143250. [Google Scholar] [CrossRef]
- Chen, M.; Liu, X.; Huan, L.; Sun, M.; Liu, L.; Chen, X.; Li, L. Genome-wide analysis of Dof family genes and their expression during bud dormancy in peach (Prunus persica). Sci. Hortic. 2017, 214, 18–26. [Google Scholar] [CrossRef]
- Wells, C.E.; Vendramin, E.; Tarodo, S.J.; Verde, I.; Bielenberg, D.G. A genome-wide analysis of MADS-box genes in peach [Prunus persica (L.) Batsch]. BMC Plant Biol. 2015, 15, 41. [Google Scholar] [CrossRef] [Green Version]
- Tuan, P.A.; Bai, S.; Saito, T.; Ito, A.; Moriguchi, T. Dormancy-Associated MADS-Box (DAM) and the abscisic acid pathway regulate pear endodormancy through a feedback mechanism. Plant Cell Physiol. 2017, 58, 1378–1390. [Google Scholar] [CrossRef]
- Yang, Q.; Gao, Y.; Wu, X.; Moriguchi, T.; Bai, S.; Teng, Y. Bud endodormancy in deciduous fruit trees: Advances and prospects. Hortic. Res. 2021, 8, 1–11. [Google Scholar] [CrossRef]
- Yamane, H.; Ooka, T.; Jotatsu, H.; Hosaka, Y.; Sasaki, R.; Tao, R. Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. J. Exp. Bot. 2011, 62, 3481–3488. [Google Scholar] [CrossRef]
- Balogh, E.; Halász, J.; Soltész, A.; Erős-Honti, Z.; Gutermuth, A.; Szalay, L.; Höhn, M.; Vágujfalvi, A.; Galiba, G.; Hegedűs, A. Identification, structural and functional characterization of dormancy regulator genes in apricot (Prunus armeniaca L.). Front. Plant Sci. 2019, 10, 402. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, Y.; Takeuchi, T.; Yamane, H.; Tao, R. Simultaneous down-regulation of DORMANCY-ASSOCIATED MADS-box6 and SOC1 during dormancy release in Japanese apricot (Prunus mume) flower buds. J. Hortic. Sci. Biotechnol. 2016, 91, 476–482. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Z.; Li, H.; Jiu, S.; Qu, Y.; Wang, L.; Ma, C.; Xu, W.; Wang, S.; Zhang, C. Dormancy-associated MADS-Box (DAM) genes influence chilling requirement of sweet cherries and co-regulate flower development with SOC1 gene. Int. J. Mol. Sci. 2020, 21, 921. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Song, I.J.; Fukuda, T.; Yokoyama, J.; Maki, M.; Ochiai, T.; Kameya, T.; Kanno, A. Characterization of TrcMADS1 gene of Trillium camtschatcense (Trilliaceae) reveals functional evolution of the SOC1/TM3-like gene family. J. Plant Res. 2005, 118, 229–234. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Zhang, Y.; Guan, S.; Liu, C.; Zheng, G.; Gai, S. Isolation and characterization of a SOC1-Like gene from tree peony (Paeonia suffruticosa). Plant Mol. Biol. Report. 2015, 33, 855–866. [Google Scholar] [CrossRef]
- Trainin, T.; Bar-Ya’akov, I.; Holland, D. ParSOC1, a MADS-box gene closely related to Arabidopsis AGL20/SOC1, is expressed in apricot leaves in a diurnal manner and is linked with chilling requirements for dormancy break. Tree Genet. Genomes 2013, 9, 753–766. [Google Scholar] [CrossRef]
- Martínez-Gómez, P.; Sozzi, G.O.; Sánchez-Pérez, R.; Rubio, M.; Gradziel, T.M. New approaches to Prunus tree crop breeding. J. Food Agric. Environ. 2003, 1, 52–63. [Google Scholar]
- Timon, B. Őszibarack; Mezőgazda Kiadó: Budapest, Hungary, 2000. [Google Scholar]
- Meier, U. Growth stages of mono- and dicotyledonous plants. In BBCH Monograph, 2nd ed.; Federal Biological Research Centre for Agriculture and Forestry: Berlin, Germany, 2001. [Google Scholar]
- Morgulis, A.; Coulouris, G.; Raytselis, Y.; Madden, T.L.; Agarwala, R.; Schaffer, A.A. Database indexing for production. MegaBLAST searches. Bioinformatics 2008, 15, 1757–1764. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucl. Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Maulión, E.; Valentini, G.H.; Kovalevski, L.; Prunello, M.; Monti, L.L.; Daorden, M.E.; Cervigni, G.D.L. Comparison of methods for estimation of chilling and heat requirements of nectarine and peach genotypes for flowering. Sci. Hortic. 2014, 177, 112–117. [Google Scholar] [CrossRef]
- Viti, R.; Andreini, L.; Ruiz, D.; Egea, J.; Bartolini, S.; Iacona, C.; Campoy, J.A. Effect of climatic conditions on the overcoming of dormancy in apricot flower buds in two Mediterranean areas: Murcia (Spain) and Tuscany (Italy). Sci. Hortic. 2010, 124, 217–224. [Google Scholar] [CrossRef]
- Horsáková, J.; Krska, B. Evaluation of the course of microsporogenesis in some selected peach (Prunus persica L./Batsch) cultivars. Acta Agric. Serbica 2014, 37, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Castède, S.; Campoy, J.A.; García, J.Q.; Dantec, L.; Lafargue, M.; Barreneche, T.; Wenden, B.; Dirlewanger, E. Genetic determinism of phenological traits highly affected by climate change in Prunus avium: Flowering date dissected into chilling and heat requirements. New Phytol. 2014, 202, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Hajnal, V.; Zarif, O.; Ladanyi, M.; Tóth, M.; Szalay, L. Microsporogenesis of Apricot Cultivars in Hungary. Not. Bot. Horti Agrobot. Cluj-Napoca 2013, 41, 434–439. [Google Scholar] [CrossRef] [Green Version]
- Salama, A.M.; Ezzat, A.; El-Ramady, H.; Alam-Eldein, S.M.; Okba, S.K.; Elmenofy, H.M.; Hassan, I.F.; Illés, A.; Holb, I.J. Temperate fruit trees under climate change: Challenges for dormancy and chilling requirements in warm winter regions. Horticulture 2021, 7, 86. [Google Scholar] [CrossRef]
- Olukolu, B.A.; Trainin, T.; Fan, S.; Kole, C.; Bielenberg, D.G.; Reighard, G.L.; Abbott, A.G.; Holland, D. Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). Genome 2009, 52, 819–828. [Google Scholar] [CrossRef]
- Verde, I.; Abbott, A.G.; Scalabrin, S.; Jung, S.; Shu, S.; Marroni, F.; Rokhsar, D.S. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat. Genet. 2013, 45, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Tao, R.; Watari, A.; Hanada, T.; Habu, T.; Yaegaki, H.; Yamaguchi, M.; Yamane, H. Self-compatible peach (Prunus persica) has mutant versions of the S haplotypes found in self-incompatible Prunus species. Plant Mol. Biol. 2007, 63, 109–123. [Google Scholar] [CrossRef]
- Hegedűs, A.; Lénárt, J.; Halász, J. Sexual incompatibility in Rosaceae fruit tree species: Molecular interactions and evolutionary dynamics. Biol. Plant. 2012, 56, 201–209. [Google Scholar] [CrossRef]
- Martínez-Gómez, P.; Arulsekar, S.; Potter, D.; Gradziel, T.M. An extended interspecific gene pool available to peach and almond breeding as characterized using simple sequence repeat (SSR) markers. Euphytica 2003, 131, 313–322. [Google Scholar] [CrossRef]
- Immink, R.G.; Posé, D.; Ferrario, S.; Ott, F.; Kaufmann, K.; Valentim, F.L.; de Folter, S.; van der Wal, F.; van Dijk, A.D.; Schmid, M.; et al. Characterization of SOC1′s central role in flowering by the identification of its upstream and downstream regulators. Plant Physiol. 2012, 160, 433–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cultivar | Pedigree * | Origin | SOC1 Genotype | End of Endodormancy 1 | Chilling Requirement | |||
---|---|---|---|---|---|---|---|---|
Date | Days from 1 January | Sign. Level 2 | CP | CV% | ||||
Kraprim | unknown | USA | 203/203 | 22 January | 21.6 | a | 64 | 4.5 |
Rich Lady | open pollinated seedling of Amparo Peach | USA | 203/203 | 22 January | 21.6 | a | 64 | 4.5 |
Venus | Stark Redgold × Flamekist | Italy | 203/203 | 22 January | 21.6 | a | 64 | 4.5 |
Springtime | (Lukens Honey × July Elberta) × Robin | USA | 203/203 | 22 January | 21.6 | a | 64 | 4.5 |
Red June | F2 hybrid of Le Grand × July Elberta | USA | 203/203 | 24 January | 24.0 | a | 65 | 3.9 |
Spring Lady | unknown | USA | 203/209 | 26 January | 25.8 | ab | 66 | 4.3 |
Redhaven | Halehaven × Kalhaven | USA | 218/218 | 29 January | 29.4 | b | 68 | 4.8 |
Early Redhaven | bud mutation of Redhaven | USA | 218/218 | 29 January | 29.4 | b | 68 | 4.8 |
Jerseyland | open pollinated seedling of J.H. Hale × (Slappey × Admiral Dewey) | USA | 218/218 | 31 January | 31.2 | b | 71 | 7.0 |
Elberta | open pollinated seedling of Chinese Cling | USA | 218/218 | 2 February | 33.1 | bc | 71 | 3.7 |
Babygold 7 | open pollinated seedling of (Lemon Free × P.I. 35201) × J.H. Hale × Goldfinch | USA | 218/218 | 2 February | 33.1 | bc | 71 | 3.7 |
Michelini | unknown seedling from Italy | Italy | 218/218 | 4 February | 34.6 | bc | 73 | 4.8 |
Champion | Oldmixon free × Early York | USA | 218/218 | 4 February | 34.6 | bc | 73 | 4.8 |
Piroska | Hungarian selection | Hungary | 218/218 | 5 February | 36.4 | c | 74 | 5.0 |
Zsoltüj | unknown | Russia | 218/218 | 7 February | 38.2 | c | 75 | 5.9 |
Cresthaven | Kalhaven × South Haven 309 | USA | 218/218 | 7 February | 38.2 | c | 75 | 5.9 |
Phenology Stages | % of Variance Explained (% of σ2) | SOC1 Marker Regression | Average Values in Days a of the SOC1 Marker Allele Groups of Peach Cultivars | ||||
---|---|---|---|---|---|---|---|
Genotype c (16) | Year (14) | r2 | p-Level | 203 b (n = 5) | 218 (n = 10) | Difference d | |
String | 21.7 *** | 77.1 *** | 0.826 | 11.1 × 10−6 | 22.1 | 33.8 | 11.7 *** |
Pollen mother cell | 19.9 *** | 78.5 *** | 0.829 | 9.9 × 10−7 | 31.2 | 41.8 | 11.6 *** |
Tetrad | 18.2 *** | 79.4 *** | 0.829 | 9.5 × 10−7 | 39.0 | 49.7 | 10.7 *** |
Microspore | 18.0 *** | 79.8 *** | 0.826 | 1.1 × 10−6 | 47.9 | 58.3 | 10.4 *** |
Pollen | 11.1 *** | 88.5 *** | 0.813 | 1.8 × 10−6 | 78.2 | 83.4 | 5.2 *** |
Start of blooming | 4.8 *** | 93.7 *** | 0.772 | 7.5 × 10−6 | 92.1 | 95.5 | 3.4 *** |
End of blooming | 5.5 *** | 92.9 *** | 0.752 | 1.4 × 10−5 | 105.0 | 108.0 | 3.0 *** |
Start of ripening | 97.9 *** | 1.9 *** | 0.307 | 0.026 | 192.7 | 221.5 | 28.8 * |
End of ripening | 98.0 *** | 1.8 *** | 0.301 | 0.028 | 200.8 | 229.5 | 28.7 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halász, J.; Hegedűs, A.; Karsai, I.; Tósaki, Á.; Szalay, L. Correspondence between SOC1 Genotypes and Time of Endodormancy Break in Peach (Prunus persica L. Batsch) Cultivars. Agronomy 2021, 11, 1298. https://doi.org/10.3390/agronomy11071298
Halász J, Hegedűs A, Karsai I, Tósaki Á, Szalay L. Correspondence between SOC1 Genotypes and Time of Endodormancy Break in Peach (Prunus persica L. Batsch) Cultivars. Agronomy. 2021; 11(7):1298. https://doi.org/10.3390/agronomy11071298
Chicago/Turabian StyleHalász, Júlia, Attila Hegedűs, Ildikó Karsai, Ágnes Tósaki, and László Szalay. 2021. "Correspondence between SOC1 Genotypes and Time of Endodormancy Break in Peach (Prunus persica L. Batsch) Cultivars" Agronomy 11, no. 7: 1298. https://doi.org/10.3390/agronomy11071298
APA StyleHalász, J., Hegedűs, A., Karsai, I., Tósaki, Á., & Szalay, L. (2021). Correspondence between SOC1 Genotypes and Time of Endodormancy Break in Peach (Prunus persica L. Batsch) Cultivars. Agronomy, 11(7), 1298. https://doi.org/10.3390/agronomy11071298