Productive Characteristics and Fruit Quality Traits of Cherry Tomato Hybrids as Modulated by Grafting on Different Solanum spp. Rootstocks under Ralstonia solanacearum Infested Greenhouse Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Conditions and Plant Material
2.2. Measurement of Vegetative and Generative Growth Parameters
2.3. Determination of Fruit Yield and Fruit Quality Parameters
2.4. Bacterial Wilt Incidence
2.5. Assessment of Cost: Benefit Ratio
2.6. Experimental Design and Statistical Analyses
3. Results and Discussion
3.1. Bacterial Wilt Incidence
3.2. Vegetative Growth Parameters
3.3. Generative Growth Parameter
3.3.1. Flowering and Fruit Set
3.3.2. Fruit Yield and Yield Attributing Traits
3.4. Fruit Quality Traits
3.4.1. Fruit Physical Characteristics
3.4.2. Fruit Chemical Characteristics
3.5. Cost: Benefit Ratio
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rick, C.M. Origin of cultivated tomato and status of the problem. Internat. Bot. 1969, 37, 59–68. [Google Scholar]
- Prema, G.; Indiresh, K.K.; Santosha, H.M. Evaluation of cherry tomato (Solanum lycopersicum var. cerasiforme) genotypes for growth, yield and quality traits. Asian J. Hortic. 2011, 6, 181–184. [Google Scholar]
- FAOSTAT 2021: Food and Agricultural Organization of United Nation. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 15 April 2021).
- Kumar, P.; Khapte, P.; Saxena, A.; Singh, A.; Panwar, N. Intergeneric grafting for enhanced growth, yield and nutrient acquisition in greenhouse cucumber during winter. J. Environ. Biol. 2019, 40, 295–301. [Google Scholar] [CrossRef]
- Singh, T.H.; Reddy, D.L.; Reddy, C.A.; Sadashiva, A.T.; Pandyaraj, P.; Manoj, Y.B. Evaluation of Solanum species and egg-plant cultivated varieties for bacterial wilt resistance. Int. J. Hortic. Sci. 2019, 14, 13–19. [Google Scholar] [CrossRef]
- Kumar, B.A.; Pandey, A.K.; Raja, P.; Singh, S.; Wangchu, L. Grafting in Brinjal (Solanum melongena L.) for Growth, Yield and Quality Attributes. Int. J. Bio-Res. Stress Manag. 2017, 8, 611–616. [Google Scholar] [CrossRef]
- Flores, F.B.; Sanchez-Bel, P.; Estañ, M.T.; Martinez-Rodriguez, M.M.; Moyano, E.; Morales, B.; Campos, J.F.; Garcia-Abellán, J.O.; Egea, M.I.; Garcia, N.F.; et al. The effectiveness of grafting to improve tomato fruit quality. Sci. Hortic. 2010, 125, 211–217. [Google Scholar] [CrossRef]
- Al-Harbi, A.R.; Al-Omran, A.M.; Alqardaeai, T.A.; Abdel-Rassak, H.S.; Al-Harbi, K.R.; Obadi, A.; Saad, M.A. Grafting affects tomato growth, productivity, and water use efficiency under different water regimes. J. Agril. Sci. Tech. 2018, 20, 1227–1241. [Google Scholar]
- Kumar, P.; Lucini, L.; Rouphael, Y.; Cardarelli, M.; Kalunke, R.M.; Colla, G. Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato. Front. Plant Sci. 2015, 6, 477. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.; Kumar, P.; Chaudhari, S.; Edelstein, M. Tomato grafting: A Global perspective. HortScience 2017, 52, 1328–1336. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.; Kumar, P.; Kumar, A.; Kyriacou, M.C.; Colla, G.; Rouphael, Y. Grafting Tomato as a Tool to Improve Salt Tolerance. Agronomy 2020, 10, 263. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.M.; Oda, M. Grafting of herbaceous vegetable and ornamental crops. Hort. Rev. 2003, 28, 61–124. [Google Scholar]
- Colla, G.; Rouphael, Y.; Jawad, R.; Kumar, P.; Rea, E.; Cardarelli, M. The effectiveness of grafting to improve NaCl and CaCl2 tolerance in cucumber. Sci. Hortic. 2013, 164, 380–391. [Google Scholar] [CrossRef]
- Rivero, R.M.; Ruiz, J.M.; Sanchez, E.; Romero, L. Does grafting provide tomato plants an advantage against H2O2 production under conditions of thermal shock? Physiol. Plant. 2003, 117, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Venema, J.H.; Dijk, B.E.; Bax, J.M.; Van Hasselt, P.R.; Elzenga, J.T.M. Grafting tomato (Solanum lycopersicum) onto the rootstock of a high-altitude accession of Solanum habrochaites improves suboptimal-temperature tolerance. Environ. Exp. Bot. 2008, 63, 359–367. [Google Scholar] [CrossRef]
- Colla, G.; Suãrez, C.M.C.; Cardarelli, M.; Rouphael, Y. Improving nitrogen use efficiency in melon by grafting. HortScience 2010, 45, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Rouphael, Y.; Cardarelli, M.; Salerno, A.; Rea, E. The effectiveness of grafting to improve alkalinity tolerance in watermelon. Environ. Exp. Bot. 2010, 68, 283–291. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Colla, G.; Rea, E. Yield, mineral composition, water relations, and water use efficiency of grafted mini watermelon plants under deficit irrigation. HortScience 2008, 43, 730–736. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, R.M.; Upreti, K.K.; Divya, M.H.; Bhat, S.; Pavithra, C.B.; Sadashiva, A.T. Interspecific grafting to enhance physiological resilience to flooding stress in tomato (Solanum lycopersicum L.). Sci. Hortic. 2015, 182, 8–17. [Google Scholar] [CrossRef]
- Kumar, P.; Rouphael, Y.; Cardarelli, M.; Colla, G. Effect of nickel and grafting combination on yield, fruit quality, antioxidative enzyme activities, lipid peroxidation, and mineral composition of tomato. J. Plant Nutr. Soil Sci. 2015, 178, 848–860. [Google Scholar] [CrossRef]
- Salehi-Mohammadi, R.; Khasi, A.; Lee, S.G.; Huh, Y.C.; Lee, J.M.; Delshad, M. Assessing survival and growth performance of Iranian melon to grafting onto Cucurbita rootstocks. Korean J. Hort. Sci. Technol. 2009, 27, 1–6. [Google Scholar]
- Ioannou, N. Integrating soil solarization with grafting on resistant rootstocks for management of soil-borne pathogens of eggplant. J. Hort. Sci. Biotechnol. 2001, 76, 396–401. [Google Scholar] [CrossRef]
- Morra, L.; Bilotto, M. Evaluation of new rootstocks for resistance to soil-borne pathogens and productive behaviour of pepper (Capsicum annuum L.). J. Hort. Sci. Biotechnol. 2006, 81, 518–524. [Google Scholar] [CrossRef]
- Crino, P.; Bianco, C.L.; Rouphael, Y.; Colla, G.; Saccardo, F.; Paratore, A. Evaluation of rootstock resistance to Fusarium wilt and gummy stem blight and effect on yield and quality of a grafted ‘Inodorus’ melon. HortScience 2007, 42, 521–525. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishnan, C.; Singh, T.H.; Rashmi, B. Artal. Evaluation of eggplant accessions for resistance to bacterial wilt caused by Ralstonia solanacearum (E.F. Smith). J. Hortl. Sci. 2014, 9, 202–205. [Google Scholar]
- Scott, J.W.; Wang, J.; Hanson, P. Breeding tomatoes for resistance to bacterial wilt, a global view. Int. Symp. Tomato Dis. Orlando 2005, 10, 161–172. [Google Scholar] [CrossRef]
- Lin, C.; Hsu, S.; Tzeng, K.; Wang, J. Application of a preliminary screen to select locally adapted resistant rootstock and soil amendment for integrated management of tomato bacterial wilt in Taiwan. Plant Dis. 2008, 92, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Matsuzoe, N.; Okubo, H.; Fujieda., K. Resistance of tomato plants grafted on Solanum rootstocks to bacterial wilt and root-knot nematode. J. Jpn. Soc. Hort. Sci. 1993, 61, 865–872. [Google Scholar] [CrossRef]
- Rivard, C.L.; Connell, S.O.; Peet, M.M.; Welker, R.M.; Louws, F.J. Grafting tomato to manage bacterial wilt caused by Ral-stonia solanacearum in the southeastern United States. Plant Dis. 2012, 96, 973–978. [Google Scholar]
- Rivard, C.L.; Louws, F.J. Grafting to manage soilborne diseases in heirloom tomato production. HortScience 2008, 43, 2104–2111. [Google Scholar] [CrossRef] [Green Version]
- Anushma, P.L.; Rajasekharan, P.E.; Singh, T.H. A review on availability, utilization and future of egg plant genetic resources in India. J. Plant Dev. Sci. 2018, 10, 645–657. [Google Scholar]
- Ranganna, S. Handbook of Analysis and Quality Control for Fruit and Vegetable Products; Tata McGraw Hill Publishing Co. Ltd.: New Delhi, India, 1986; pp. 190–210. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Nagata, M.; Yamashita, I. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaishi. 1992, 39, 925–928. [Google Scholar] [CrossRef] [Green Version]
- AVRDC. Annual Progress Report, Screening of Pest and Diseases in Tomato; Asian Vegetable Research and Development Centre (AVRDC): Tainan, Taiwan, 2000; pp. 110–115. [Google Scholar]
- Tsitsigiannis, D.I.; Antoniou, P.P.; Tjamos, S.E.; Paplomatas, E.J. Major diseases of tomato, pepper and egg plant in green houses. Eur. J. Plant Sci. Biotechnol. 2008, 2, 106–124. [Google Scholar]
- Praveen, N.R. Evaluation of different Brinjal (Solanum Melongena L.) Grafts for Bacterial Wilt Resistance. Master’s Thesis, College of Horticulture, Bengaluru, University of Horticultural Sciences, Bagalkot, India, 2019. [Google Scholar]
- Peregrine, W.T.H.; Bin Ahmad, K. Grafting—A simple technique for overcoming bacterial wilt in tomato. Int. J. Pest Manag. 1982, 28, 71–76. [Google Scholar] [CrossRef]
- Cardoso, S.C.; Soares, A.C.F.; Dos Santos Brito, A.; Santos, A.P.; Laranjeira, F.F.; De Carvalho, L.A. Evaluation of tomato rootstocks and its use to control bacterial wilt disease. Semin. Ciências Agrar. 2012, 33, 595–603. [Google Scholar] [CrossRef] [Green Version]
- Clain, C.; Da Silva, D.; Fock, I.; Vaniet, S.; Carmeille, A.; Gousset, C.; Sihachakr, D.; Luisetti, J.; Kodja, H.; Besse, P. RAPD genetic homogeneity and high levels of bacterial wilt tolerance in Solanum torvum Sw.(Solanaceae) accessions from Reunion Island. Plant Sci. 2004, 166, 1533–1540. [Google Scholar] [CrossRef]
- Fock, I.; Collonnier, A.; Purwito, J.; Luisetti, V.; Souvannavong, F.; Vedel, A.; Servaes, A.; Ambroise, H.; Kodja, G.; Ducreux, D.; et al. Use of Solanum stenotomum for introduction of resistance to bacterial wilt in somatic hybrids of potato. Plant Sci. 2001, 39, 899–908. [Google Scholar] [CrossRef]
- Bletsos, F.; Thanassoulopoulos, C.; Roupakias, D. Effect of grafting on growth, yield, and Verticillium wilt of eggplant. HortScience 2003, 38, 183–186. [Google Scholar] [CrossRef]
- Voutsela, S.; Yarsi, G.; Petropoulos, S.A.; Khan, E.M. The effect of grafting of five different rootstocks on plant growth and yield of tomato plants cultivated outdoors and indoors under salinity stress. Afr. J. Agric. Res. 2012, 7, 5553–5557. [Google Scholar]
- Taller, J.; Hirata, Y.; Yagishita, N.; Kita, M.; Ogata, S. Graft-induced genetic changes and the inheritance of several charac-teristics in pepper (Capsicum annuum L.). Theor. Appl. Genet. 1998, 97, 705–713. [Google Scholar] [CrossRef]
- Manickam, R.; Chen, J.R.; Sotelo-Cardona, P.; Kenyon, L.; Srinivasan, R. Evaluation of Different Bacterial Wilt Resistant Eggplant Rootstocks for Grafting Tomato. Plants 2021, 10, 75. [Google Scholar] [CrossRef]
- Dhivya, R. Screening Studies of Wild Rootstocks for Biotic Stresses and its Performance on Grafting in Tomato (Solanum lyco-persicon L.). Ph.D. Thesis, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India, 2013. [Google Scholar]
- Gisbert, C.; Prohens, J.; Raigón, M.D.; Stommel, J.R.; Nuez, F. Eggplant relatives as sources of variation for developing new rootstocks: Effects of grafting on eggplant yield and fruit apparent quality and composition. Sci. Hortic. 2011, 128, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Musa, I.; Rafii, M.Y.; Ahmad, K.; Ramlee, S.I.; Md Hatta, M.A.; Oladosu, Y.; Muhammad, I.I.; Chukwu, S.C.; Mat Sulaiman, N.N.; Ayanda, A.F.; et al. Effects of Grafting on Morphophysiological and Yield Characteristic of Eggplant (Solanum melongena L.) Grafted onto Wild Relative Rootstocks. Plants 2020, 9, 1583. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, L.; Iapichino, G.; Rotino, G.L.; Palazzolo, E.; Mennella, G.; D’Anna, F. Solanum aethiopicum gr. gilo and its interspe-cific hybrid with S. melongena as alternative rootstocks for eggplant: Effects on vigor, yield, and fruit physicochemical properties of cultivar ‘Scarlatti’. Agronomy 2019, 9, 223. [Google Scholar] [CrossRef] [Green Version]
- Cohen, R.; Horev, C.; Burger, Y.; Shriber, S.; Hershenhorn, J.; Katanand, J.; Edelstein, M. Horticultural and pathological aspects of Fusarium wilt management using grafted melons. HortScience 2002, 37, 1069–1073. [Google Scholar] [CrossRef] [Green Version]
- Fita, A.; Picó, B.; Roig, C.; Nuez, F. Performance of Cucumis melo spp. agrestis as a rootstock for melon. J. Hortic. Sci. Biotechnol. 2004, 82, 184–190. [Google Scholar] [CrossRef]
- Sabatino, L.; Iapichino, G.; D’Anna, F.; Palazzolo, E.; Mennella, G.; Rotino, G.L. Hybrids and allied species as potential root-stocks for eggplant: Effect of grafting on vigour, yield and overall fruit quality traits. Sci. Hortic. 2018, 228, 81–90. [Google Scholar] [CrossRef]
- Mohammed, S.M.T.; Humidan, M.; Boras, M.; Abdalla, O.A. Effect of grafting tomato on different rootstocks on growth and productivity under glasshouse conditions. Asian J. Agril. Res. 2009, 3, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Arefin, S.M.; Zeba, N.; Solaiman, A.H.; Naznin, M.T.; Azad, M.O.K.; Tabassum, M.; Park, C.H. Evaluation of compatibility, growth characteristics and yield of tomato grafted on potato (‘Pomato’). Horticulturae 2019, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Yarsi, G. Effects of grafted seedling use on yield, growth and quality parameters of tomato growing in greenhouse. Hort. Sci. 2011, 45, 76–82. [Google Scholar] [CrossRef]
- Sudesh, K.S. Evaluation of Brinjal (Solanum melongena L.) Grafts for Growth, Yield and Yield Attributing Characters. Master’s Thesis, College of Horticulture, Bengaluru, University of Horticultural Sciences, Bagalkot, India, 2019. [Google Scholar]
- Opena, R.; Hartman, G.L.; Chen, J.; Yang, C. Breeding for Bacterial Wilt Resistance in Tropical Tomato. In Proceedings of the 3rd International Conference Plant Protection in the Tropics Genting Highlands, Kuala Lumpur, Malaysia, 20–23 March 1990; pp. 44–50. [Google Scholar]
- Walter, J.M. Hereditary resistance to disease in tomato. Annu. Rev. Phytopathol. 1967, 5, 131–160. [Google Scholar] [CrossRef]
- Wang, J.F.; Hanson, P.; Barnes, J. Worldwide Evaluation of an International Set of Resistance Sources to Bacterial Wilt in Tomato. Bacterial Wilt Disease: Molecular and Ecological Aspects; Prior, P., Allen, C., Elphinstone, J., Eds.; Springer: Berlin, Germany, 1998; pp. 269–275. [Google Scholar]
- Ruiz, J.M.; Romero, L. Nitrogen efficiency and metabolism in grafted melon plants. Sci. Hortic. 1999, 81, 113–123. [Google Scholar] [CrossRef]
- Leoni, S.; Grudina, R.; Cadinu, M.; Madeddu, B.; Carletti, M.G. The influence of four rootstocks on some melon hybrids and a cultivar in greenhouse. Acta Hortic. 1990, 559, 127–134. [Google Scholar] [CrossRef]
- Zijlstra, S.; Groot, S.P.C.; Jansen, J. Genotypic variation of rootstocks for growth and production in cucumber; possibilities for improving the root system by plant breeding. Sci. Hortic. 1994, 56, 185–196. [Google Scholar] [CrossRef]
- Pulgar, G.; Villora, G.; Moreno, D.A.; Romero, L. Improving the mineral nutrition in grafted watermelon plants: Nitrogen metabolism. Biol. Plant. 2000, 43, 607–609. [Google Scholar] [CrossRef]
- Mohamed, F.M.; Wasfy, M.; Elwan, M.; El-Sayed, K.; El-Hamed, A.; Hussien, M.-A.N. Comparative growth, yield and fruit quality of grafted and non-grafted cherry tomato plants under protected cultivation. Agric. Res. J. 2012, 12, 21–29. [Google Scholar]
- Ivanchenko, M.G.; Zhu, J.; Wang, B.; Medvecka, E.; Du, Y.; Azzarello, E. The cyclophilin A DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation. Development 2015, 142, 712–721. [Google Scholar] [CrossRef] [Green Version]
- Aloni, B.; Cohen, R.; Karni, L.; Aktas, H.; Edelstein, M. Hormonal signaling in rootstock–scion interactions. Sci. Hortic. 2010, 127, 119–126. [Google Scholar] [CrossRef]
- Lockard, R.G.; Schneider, G.W. Stock and scion growth relationships and the dwarfing mechanism in apple. Hortic. Rev. 1981, 3, 315–375. [Google Scholar]
- Jones, O.P. Endogenous growth regulators and rootstock/scion interactions in apple and cherry trees. Acta Hortic. 1986, 179, 177–184. [Google Scholar] [CrossRef]
- Albacete, A.; Ghanem, M.E.; Martínez-Andújar, C.; Acosta, M.; Sánchez-Bravo, J.; Martínez, V.; Lutts, S.; Dodd, I.C.; Pé-rez-Alfocea, F. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato. J. Exp. Bot. 2008, 59, 4119–4131. [Google Scholar] [CrossRef] [PubMed]
- Passam, H.C.; Stylianou, M.; Kotsiras, A. Performance of eggplant grafted on tomato and eggplant rootstocks. Eur. J. Hort. Sci. 2005, 70, 130–134. [Google Scholar]
- Cassaniti, C.; Giuffrida, F.; Scuderi, D.; Leonardi, C. Effect of rootstock and nutrient solution concentration on eggplant grown in a soilless system. J. Food Agric. Environ. 2011, 9, 252–256. [Google Scholar]
- Colla, G.; Rouphael, Y.; Cardarelli, M.; Rea, E. Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral com-position of grafted watermelon plants. HortScience 2006, 41, 622–627. [Google Scholar] [CrossRef] [Green Version]
- Soteriou, G.A.; Kyriacou, M.C. Rootstock mediated effects on watermelon field performance and fruit quality characteris-tics. Int. J. Veg. Sci. 2014, 21, 344–362. [Google Scholar] [CrossRef]
- Schwarz, D.; Oztekin, G.B.; Tuzel, Y.; Bruckner, B.; Krumbein, A. Rootstocks can enhance tomato growth and quality char-acteristics at low potassium supply. Sci. Hortic. 2013, 149, 70–79. [Google Scholar] [CrossRef]
- Turhan, A.; Ozmen, N.; Serbeci, M.S.; Seniz, V. Effects of grafting on different rootstocks on tomato fruit yield and quality. HortScience 2011, 38, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Romano, D.; Paratore, A.; Vindigni, G. Caratteristiche dei fruttidi pomodoro in rapporto a diversi portinnesti. In Proceedings of the Workshop on ‘Applicazione di Tecnologie Innovative per il Miglioramentodell’ Orticoltura Meridionale’, Consiglio Nazionale delle Ricerche, Rome, Italy, 18 July 2000; pp. 113–114. [Google Scholar]
- Imazu, T. On the symbiotic affinity caused by grafting among Cucurbitaceous species. J. Jpn. Soc. Hort. Sci. 1949, 18, 42. [Google Scholar]
- Matsuzoe, N.; Aida, H.; Hanada, K.; Ali, M.; Okubo, H.; Fujieda, K. Fruit quality of tomato plants grafted on Solanum rootstocks. J. Jpn. Soc. Hortic. Sci. 1996, 65, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.M. Cultivation of grafted vegetables. I. Current status, grafting methods, and benefits. Hort. Sci. 1994, 29, 235–239. [Google Scholar] [CrossRef]
- Yamasaki, A.; Yamashita, M.; Furuya, S. Mineral concentrations and cytokinin activity in the xylem exudate of grafted watermelons as affected by rootstocks and crop load. J. Jpn. Soc. Hortic. Sci. 1994, 62, 817–826. [Google Scholar] [CrossRef]
- Bie, Z.; Han, X.; Zhu, J.; Tang, M.; Huang, Y. Effect of nine rootstocks on the plant growth and fruit quality of melon. Acta Hortic. 2010, 856, 77–81. [Google Scholar]
- Milenkovi, L.; Mastilovi, J.; Kevrešan, Z.; Jakši, A.; Gledi, A.; Sunic, L.J.; Stanojevic, L.J.; Ilic, S.Z. Tomato Fruit Yield and Quality as Affected by Grafting and Shading. J. Food Sci. Nutr. 2018, 4, 42. [Google Scholar]
- Gioia, F.D.; Serio, F.; Buttaro, D.; Ayala, O.; Santamaria, P. Influence of rootstock on vegetative growth, fruit yield and quality in ‘Cuore di Bue’, an heirloom tomato. J. Hort. Sci. Biotecnol. 2010, 85, 477–482. [Google Scholar] [CrossRef]
- Mauro, R.P.; Agnello, M.; Onofri, A.; Leonardi, C.; Giurida, F. Scion and Rootstock Differently Influence Growth, Yield and Quality Characteristics of Cherry Tomato. Plants 2020, 9, 1725. [Google Scholar] [CrossRef]
- Helyes, L.; Lugasi, A.; Pogonyi, A.; Pek, Z. Effect of variety and grafting on lycopene content of tomato (Solanum lycopersicum L. Karsten) fruit. Acta Aliment. 2009, 38, 27–34. [Google Scholar] [CrossRef]
- Pek, Z.; Pogonyi, A.; Helyes, L. Effects of rootstock on yield and fruit quality of indeterminate tomato (Solanum lycopersicum (L.) Karsten). Cer. Res. Comm. 2007, 35, 913–916. [Google Scholar]
- Moncada, A.; Miceli, A.; Vetrano, F.; Mineo, V.; Planeta, D.; D’Anna, F. Effect of grafting on yield and quality of eggplant (Solanum melongena L.). Sci. Hortic. 2013, 149, 108–114. [Google Scholar] [CrossRef]
- Dixon, R.A.; Paiva, N. Stress-lnduced phenylpropanoid metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef] [PubMed]
- Moglia, A.; Lanteri, S.; Comino, C.; Acquadro, A.; De Vos, R.; Beekwilder, J. Stress-induced biosynthesis of dicaffeoylquinic acids in globe artichoke. J. Agric. Food Chem. 2008, 56, 8641–8649. [Google Scholar] [CrossRef]
- Vrcek, I.V.; Samobor, V.; Bojic, M.; Saric, M.M.; Vukobratovic, M.; Erhatic, R.; Horvat, D.; Matotan, Z. The effect of grafting on the antioxidant properties of tomato (Solanum lycopersicum L.). Span. J. Agric. Res. 2011, 3, 844–851. [Google Scholar] [CrossRef]
- Bai, Y.; Lindhout, P. Domestication and breeding of tomatoes: What have we gained and what can we gain in the future? Ann. Bot. 2007, 100, 1085–1094. [Google Scholar] [CrossRef] [PubMed]
- Rouphael, Y.; Schwarz, D.; Krumbein, A.; Colla, G. Impact of grafting on product quality of fruit vegetables. Sci. Hortic. 2010, 127, 172–179. [Google Scholar] [CrossRef]
- Lee, J.M.; Kubota, C.; Tsao, S.G.; Bie, Z.; Hoyos Echevarria, P.; Morra, L.; Oda, M. Current status of vegetable grafting: Dif-fusion, grafting techniques, automation. Sci. Hortic. 2010, 127, 93–105. [Google Scholar] [CrossRef]
Sl. No. | Genotype | Crop Species | Characteristics | Source |
---|---|---|---|---|
Scion | ||||
1. | ‘Sheeja’ | Cherry tomato | Indeterminate growth, attractive orange/yellow grape-type cylindrical fruits and crispy with sweet taste | Known-You Seed Co., Ltd. Kaohsiung, Taiwan. |
2. | ‘Cheramy’ | Indeterminate growth, and red colored, round fruits | Rijk Zwaan India Seeds Pvt. Ltd., Bengaluru, India | |
Rootstocks | ||||
1. | ‘Ponny’ | Eggplant | Vigorous growth and non-spiny in nature, resistant to bacterial wilt | KAU, Thrissur, India |
2. | ‘Surya’ | Vigorous growth habit, resistant to bacterial wilt, | KAU, Thrissur, India | |
3. | ‘Haritha’ | Resistant to bacterial wilt | KAU, Thrissur, India | |
4. | ‘Arka Neelkanth’ | Resistant to bacterial wilt | IIHR, Bengaluru, India | |
5. | ‘Sotor’ | Resistant to biotic and abiotic stresses | Local genotype | |
6. | ‘Anagha’ | Tomato | Resistant to bacterial wilt | KAU, Thrissur, India |
7. | ‘Abhilash’ | Commercial tomato cultivar with semi-determinate growth | Seminis Vegetable Seeds (India) Pvt. Ltd., Aurangabad, India | |
8. | ‘Sopim’ | Vigorous growth with profuse foliage | Local genotype |
Scion | Rootstock | Incidence % | Reaction |
---|---|---|---|
‘Sheeja’ | Non-grafted | 82.22a | Highly susceptible |
‘Ponny’ | 5.13c | Resistant | |
‘Surya’ | 0.00c | Resistant | |
‘Arka Neelkanth’ | 0.00c | Resistant | |
‘Abhilash’ | 77.78a | Highly susceptible | |
‘Sotor’ | 0.00c | Resistant | |
‘Sopim’ | 48.45b | Moderately susceptible | |
‘Haritha’ | 11.11c | Moderately resistant | |
‘Cheramy’ | Non-grafted | 80.00a | Highly susceptible |
‘Ponny’ | 0.00c | Resistant | |
‘Surya’ | 0.00c | Resistant | |
‘Arka Neelkanth’ | 0.00c | Resistant | |
‘Anagha’ | 0.00c | Resistant | |
‘Sotor’ | 0.00c | Resistant | |
‘Sopim’ | 43.92b | Moderately susceptible | |
‘Haritha’ | 0.00c | Resistant | |
Significance | *** |
Scion | Rootstock | Plant Height (cm) | No. of Nodes Plant−1 | Days to Flowering | |||||
---|---|---|---|---|---|---|---|---|---|
30 DAT | 60 DAT | 90 DAT | 120 DAT | 90 DAT | 120 DAT | 1st | 50% | ||
‘Sheeja’ | Non-grafted | 122.33c | 151.00i | 181.88i | NA | 11.99f | NA | 30.66bc | 39.00bcdef |
‘Ponny’ | 114.44e | 201.11f | 273.77f | 354.55g | 16.66e | 20.55e | 29.13cd | 40.33abcd | |
‘Surya’ | 118.66cd | 174.66g | 255.22g | 352.77g | 16.44e | 19.55e | 23.53hi | 37.00defg | |
‘Arka Neelkanth’ | 113.88de | 210.66e | 295.22e | 386.00e | 17.33e | 20.44e | 25.93fg | 36.00efg | |
‘Abhilash’ | 78.11hi | 105.77k | 171.11k | 260.55j | 15.33e | 18.88e | 33.00a | 39.33bcde | |
‘Sotor’ | 82.44h | 97.55i | 159.11l | 262.88j | 17.33e | 21.33e | 33.40a | 43.00a | |
‘Sopim’ | 97.88g | 128.55j | 176.55j | 240.33k | 16.55e | 20.77e | 28.13def | 36.66efg | |
‘Haritha’ | 107.55f | 215.33d | 254.00g | 319.22i | 17.21e | 20.88e | 26.53efg | 35.66fg | |
‘Cheramy’ | Non-grafted | 142.66a | 199.22f | 325.33d | NA | 38.55c | NA | 33.13a | 40.66abc |
‘Ponny’ | 106.11f | 225.00c | 357.33a | 469.00a | 43.44b | 57.21ab | 29.80cd | 37.00defg | |
‘Surya’ | 111.00ef | 226.44cd | 327.22d | 414.00d | 47.44a | 59.66a | 25.33gh | 35.66fg | |
‘Arka Neelkanth’ | 108.44f | 229.66b | 342.00b | 439.44c | 45.44ab | 58.99ab | 28.00def | 38.00cdefg | |
‘Anagha’ | 134.77b | 247.00a | 358.22a | 454.77b | 39.99c | 52.44c | 22.60i | 32.00h | |
‘Sotor’ | 76.66i | 130.66j | 236.00h | 337.77h | 28.66d | 39.33d | 32.33ab | 41.66ab | |
‘Sopim’ | 110.22ef | 169.55h | 294.66e | 373.77f | 39.44c | 51.10c | 28.53cde | 35.33g | |
‘Haritha’ | 99.22g | 207.77e | 333.77c | 441.55c | 44.66b | 56.44b | 30.66bc | 39.00bcdef | |
Significance | * | ** | *** | ** | ** | * | ** | ** |
Grafting Treatments | Plant Height (cm) | Flowering (DAT) | First Fruit Harvest | Flower per Truss | Fruits per Truss | Fruit Set | Truss Plant −1 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
30 DAT | 60 DAT | 90 DAT | 120 DAT | 1st | 50% | DAT | (No.) | (No.) | (%) | (No.) | ||
‘Sheeja’ | Non-grafted | 122.33c | 151.00g | 181.88h | NA | 30.66abc | 39.0ab | 72.55d | 9.81g | 7.17c | 72.94a | 19.11d |
Egg plant | 107.4d | 179.86d | 247.46f | 335.08e | 27.70de | 38.4abc | 73.48cd | 12.91ced | 8.19cde | 63.66c | 32.06ab | |
Tomato | 88.0g | 117.16h | 173.83i | 250.44g | 30.56abcd | 38.0abc | 81.44a | 11.18fg | 7.13e | 64.57bc | 29.66ab | |
Grafted | 101.86ef | 161.95f | 226.42g | 310.90f | 28.52cd | 38.28abc | 75.76b | 12.42def | 7.88de | 63.92c | 31.38ab | |
‘Cheramy’ | Non-grafted | 142.66a | 199.22b | 325.33a | NA | 33.13a | 40.66f | 67.66f | 13.05bcde | 9.01cd | 69.03abc | 26.0bc |
Egg plant | 100.28f | 203.91a | 319.26b | 420.35a | 29.22cd | 38.26bc | 75.02bc | 14.31abc | 10.35ab | 72.32a | 33.55a | |
Tomato | 122.5c | 208.27a | 326.44a | 414.27b | 25.56e | 33.66e | 70.38c | 15.67a | 10.65a | 68.01abc | 35.0a | |
Grafted | 106.6d | 205.15a | 321.31ab | 418.61ab | 28.18cde | 36.95bcd | 73.69bcd | 14.70ab | 10.43ab | 71.09ab | 33.96a | |
‘Sheeja’ + ‘Cheramy’ | Non-grafted | 132.50b | 175.11e | 253.61e | NA | 31.9ab | 39.83e | 70.11e | 11.43ef | 8.09cde | 70.99ab | 22.55cd |
Egg plant | 103.84def | 191.88c | 283.36c | 377.72c | 28.46cd | 38.33abc | 74.25bcd | 13.61bcd | 9.27bc | 67.99abc | 32.81a | |
Tomato | 105.25de | 162.72f | 250.13ef | 332.36e | 28.06cde | 35.83cd | 75.91b | 13.43bcd | 8.89cd | 66.29abc | 32.33ab | |
Grafted | 104.24de | 183.55d | 273.87d | 364.76d | 28.35cde | 37.61bc | 74.73bcd | 13.56bcd | 9.16c | 67.51abc | 32.67a | |
Significance | ** | *** | *** | * | *** | *** | ** | ** | *** | * | * |
Scion | Rootstock | Days to First Fruit Harvest | No. of Flowers per Truss | No. of Fruits per Truss | Fruit Set (%) | No. of Truss per Plant | No. of Fruits per Plant | Average Fruit Weight (g) | Yield (kg m−2) |
---|---|---|---|---|---|---|---|---|---|
‘Sheeja’ | Non-grafted | 72.55ef | 9.81h | 7.17f | 73.09bc | 19.11e | 132.05m | 11.32de | 3.08j |
‘Ponny’ | 66.44h | 10.47gh | 7.18f | 68.81cdef | 34.55ab | 247.44h | 10.82de | 5.36g | |
‘Surya’ | 70.55g | 16.63a | 10.65b | 64.04cdefg | 31.00bcd | 329.13d | 10.56ef | 6.99f | |
‘Arka Neelkanth’ | 71.33fg | 13.55cde | 8.30ef | 61.25defg | 31.44bcd | 263.79g | 9.79f | 5.10gh | |
‘Abhilash’ | 82.44b | 10.36h | 7.10f | 68.54cdef | 30.22cd | 214.72j | 10.64def | 4.57i | |
‘Sotor’ | 86.66a | 11.20fgh | 7.40f | 66.07cdefg | 31.22bcd | 232.17i | 10.82de | 5.00h | |
‘Sopim’ | 80.44c | 12.00efg | 7.15f | 59.59fg | 29.11d | 208.48k | 10.88de | 4.52i | |
‘Haritha’ | 72.44ef | 12.72ef | 7.40f | 58.17g | 32.11bcd | 237.54i | 10.51ef | 5.00h | |
‘Cheramy’ | Non-grafted | 67.66h | 13.05de | 9.01de | 69.04cdef | 21.33e | 192.13l | 12.78b | 4.91h |
‘Ponny’ | 70.00g | 14.75bc | 10.30bc | 69.84bcde | 33.77abc | 348.88c | 12.62b | 8.77c | |
‘Surya’ | 71.77efg | 14.51bcd | 8.78e | 60.50efg | 33.55abc | 294.80f | 12.75b | 7.53e | |
‘Arka Neelkanth’ | 73.22e | 13.12cde | 9.25cde | 70.50bcd | 34.11ab | 314.13e | 11.13de | 7.05f | |
‘Anagha’ | 63.88i | 15.48ab | 10.04bcd | 64.86cdefg | 36.88a | 369.46b | 14.21a | 10.5a | |
‘Sotor’ | 87.33a | 13.46cde | 10.57b | 78.53ab | 33.10bc | 350.84c | 12.20bc | 8.59c | |
‘Sopim’ | 76.88d | 15.87ab | 11.25b | 70.89bc | 33.11bc | 372.70b | 10.69de | 7.97d | |
‘Haritha’ | 72.77ef | 15.71ab | 12.84a | 81.74a | 33.22bc | 427.86a | 11.51cd | 9.83b | |
Significance | * | ** | *** | ** | * | *** | * | *** |
GraftingTreatments | No. of Fruits (plant−1) | Average Fruit Weight (g) | Yield (kg m−2) | Fruit Length (cm) | Fruit Diameter (cm) | Fruit Shape Index | Pericarp Thickness (mm) | Fruit Volume (cc) | |
---|---|---|---|---|---|---|---|---|---|
‘Sheeja’ | Non-grafted | 132.06j | 11.33cd | 3.09 h | 3.48 b | 2.16 f | 1.62b | 2.83a | 10.08ef |
Egg plant | 262.02e | 10.50 e | 5.49 d | 4.04 a | 2.37 ef | 1.71a | 2.76a | 9.60f | |
Tomato | 211.60g | 10.77 de | 4.55 f | 4.06 a | 2.34 ef | 1.73a | 2.74a | 9.58f | |
Grafted | 247.61f | 10.58 de | 5.22 d | 4.05 a | 2.36 ef | 1.72a | 2.75a | 9.59f | |
‘Cheramy’ | Non-grafted | 192.14h | 12.79 a | 4.91 e | 2.56 d | 2.71 c | 0.94d | 2.36c | 12.91a |
Egg plant | 347.31b | 12.04 bc | 8.36 b | 2.78 cd | 2.98ab | 0.93d | 2.35c | 12.16abcd | |
Tomato | 371.08a | 12.45 a | 9.25 a | 2.98 c | 3.15a | 0.95d | 2.34c | 12.57ab | |
Grafted | 354.10b | 12.16 ab | 8.61 b | 2.84 cd | 3.03a | 0.94d | 2.35c | 12.28abc | |
‘Sheeja’ + ‘Cheramy’ | Non-grafted | 162.10i | 12.06 abc | 4.00 g | 3.02 c | 2.43de | 1.28c | 2.60b | 11.50bcd |
Egg plant | 304.66c | 11.27 cde | 6.93 c | 3.41 b | 2.67cd | 1.32c | 2.56b | 10.88def | |
Tomato | 291.34d | 11.61 bc | 6.90 c | 3.52 b | 2.74bc | 1.34c | 2.54b | 11.08cde | |
Grafted | 300.86cd | 11.37 abce | 6.92 c | 3.44 b | 2.69 cd | 1.33c | 2.55b | 10.94cdef | |
Significance | *** | *** | ** | ** | *** | ** | * | ** |
Scion | Rootstock | Fruit Length (cm) | Fruit Diameter (cm) | Fruit Shape Index | Pericarp Thickness (mm) | Fruit Volume (cc) |
---|---|---|---|---|---|---|
‘Sheeja’ | Non-grafted | 3.48c | 2.15ef | 1.61b | 2.83a | 10.08fgh |
‘Ponny’ | 4.13a | 2.44d | 1.69ab | 2.77ab | 9.63ghi | |
‘Surya’ | 4.16a | 2.45d | 1.69ab | 2.70b | 9.39hi | |
‘Arka Neelkanth’ | 3.99ab | 2.38de | 1.67ab | 2.79ab | 8.71i | |
‘Abhilash’ | 3.95ab | 2.30def | 1.72ab | 2.75ab | 9.47hi | |
‘Sotor’ | 3.76b | 2.10f | 1.78a | 2.78ab | 9.63ghi | |
‘Sopim’ | 4.16a | 2.38de | 1.74a | 2.73b | 9.68ghi | |
‘Haritha’ | 4.15a | 2.43d | 1.70ab | 2.72b | 10.61efgh | |
‘Cheramy’ | Non-grafted | 2.55e | 2.71c | 0.94c | 2.36c | 12.91b |
‘Ponny’ | 2.78de | 3.09ab | 0.90c | 2.37c | 12.74bc | |
‘Surya’ | 2.78de | 3.03ab | 0.91c | 2.33c | 12.87b | |
‘Arka Neelkanth’ | 2.71de | 2.93bc | 0.92c | 2.36c | 11.23def | |
‘Anagha’ | 2.99d | 3.19a | 0.93c | 2.37c | 14.34a | |
‘Sotor’ | 2.84de | 2.86bc | 0.99c | 2.35c | 12.31bcd | |
‘Sopim’ | 2.97d | 3.09ab | 0.96c | 2.30c | 10.79efg | |
‘Haritha’ | 2.78de | 2.96ab | 0.93c | 2.35c | 11.62cde | |
Significance | ** | * | ** | ** | *** |
Scions | Rootstocks | Species | Seedling Cost (INR Plant−1) |
---|---|---|---|
‘Cheramy’ | ‘Ponny’, ‘Surya’, ‘Haritha’, ‘Arka Neelkanth’ | S. melongena | 8.93 |
‘Sotor’ | S. torvum | 9.06 | |
‘Anagha’ | S. lycopersicum | 8.77 | |
Sopim | S. pimpinellifolium | 9.06 | |
‘Sheeja’ | ‘Ponny’, ‘Surya’, ‘Haritha’, ‘Arka Neelkanth’ | S. melongena | 8.03 |
‘Sotor’ | S. torvum | 8.16 | |
‘Abhilash’ | S. lycopersicum | 7.87 | |
‘Sopim’ | S. pimpinellifolium | 8.16 |
Scion | Rootstock | Cost of Cultivation (INR) | Yield (kg 500 m−2) | Total Returns (INR) | Net Income | C:B Ratio |
---|---|---|---|---|---|---|
‘Sheeja’ | Non-grafted | 38,065.7 | 1540 | 46,200 | 8134.3 | 1:1.21 |
‘Ponny’ | 43,055.9 | 2680 | 80,400 | 37,344.1 | 1:1.86 | |
‘Surya’ | 43,055.9 | 3490 | 104,700 | 61,644.1 | 1:2.43 | |
‘Arka Neelkanth’ | 43,537.5 | 2550 | 76,500 | 32,962.5 | 1:1.75 | |
‘Abhilash’ | 43,022.6 | 2280 | 68,400 | 25,377.4 | 1:1.58 | |
‘Sotor’ | 43,305.9 | 2500 | 75,000 | 31,694.1 | 1:1.73 | |
‘Sopim’ | 43,305.9 | 2260 | 67,800 | 24,494.1 | 1:1.56 | |
‘Haritha’ | 43,055.9 | 2500 | 75,000 | 31,944.1 | 1:1.74 | |
‘Cheramy’ | Non-grafted | 38,965.7 | 2450 | 73,500 | 34,534.3 | 1:1.88 |
‘Ponny’ | 43,955.9 | 4380 | 131,400 | 87,444.1 | 1:2.98 | |
‘Surya’ | 43,955.9 | 3760 | 112,800 | 68,844.1 | 1:2.56 | |
‘Arka Neelkanth’ | 44,437.5 | 3520 | 105,600 | 61,162.5 | 1:2.37 | |
‘Anagha’ | 43,905.9 | 5260 | 157,800 | 113,894.1 | 1:3.59 | |
‘Sotor’ | 44,205.9 | 4290 | 128,700 | 84,494.1 | 1:2.91 | |
‘Sopim’ | 44,205.9 | 3980 | 119,400 | 75,194.1 | 1:2.70 | |
‘Haritha’ | 43,955.9 | 4910 | 147,300 | 103,344.1 | 1:3.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naik, S.A.T.S.; Hongal, S.; Harshavardhan, M.; Chandan, K.; Kumar, A.J.S.; Ashok; Kyriacou, M.C.; Rouphael, Y.; Kumar, P. Productive Characteristics and Fruit Quality Traits of Cherry Tomato Hybrids as Modulated by Grafting on Different Solanum spp. Rootstocks under Ralstonia solanacearum Infested Greenhouse Soil. Agronomy 2021, 11, 1311. https://doi.org/10.3390/agronomy11071311
Naik SATS, Hongal S, Harshavardhan M, Chandan K, Kumar AJS, Ashok, Kyriacou MC, Rouphael Y, Kumar P. Productive Characteristics and Fruit Quality Traits of Cherry Tomato Hybrids as Modulated by Grafting on Different Solanum spp. Rootstocks under Ralstonia solanacearum Infested Greenhouse Soil. Agronomy. 2021; 11(7):1311. https://doi.org/10.3390/agronomy11071311
Chicago/Turabian StyleNaik, Sanmathi A.T.S., Shivanand Hongal, Mahantesh Harshavardhan, Kalegowda Chandan, Aravinda J.S. Kumar, Ashok, Marios C. Kyriacou, Youssef Rouphael, and Pradeep Kumar. 2021. "Productive Characteristics and Fruit Quality Traits of Cherry Tomato Hybrids as Modulated by Grafting on Different Solanum spp. Rootstocks under Ralstonia solanacearum Infested Greenhouse Soil" Agronomy 11, no. 7: 1311. https://doi.org/10.3390/agronomy11071311
APA StyleNaik, S. A. T. S., Hongal, S., Harshavardhan, M., Chandan, K., Kumar, A. J. S., Ashok, Kyriacou, M. C., Rouphael, Y., & Kumar, P. (2021). Productive Characteristics and Fruit Quality Traits of Cherry Tomato Hybrids as Modulated by Grafting on Different Solanum spp. Rootstocks under Ralstonia solanacearum Infested Greenhouse Soil. Agronomy, 11(7), 1311. https://doi.org/10.3390/agronomy11071311