Agricultural Greenhouse Gas Emissions in a Data-Scarce Region Using a Scenario-Based Modeling Approach: A Case Study in Southeastern USA
Abstract
:1. Introduction
1.1. Background
1.1.1. Agriculture, Climate Change, and Associated Greenhouse Gas Emissions
1.1.2. GHG Mitigation Strategies with Management Options
1.1.3. Model Overview and Emission Prediction in a Data-Scarce Region
1.2. Objective and Study Overview
- Assessing the impacts of varying management practices in the present climate;
- Assessing the impacts of varying precipitations and temperature plus CO2 concentrations on the baseline management practice;
- Assessing the impacts of varying management practices in the varying temperature plus CO2 concentration and the baseline precipitation.
2. Materials and Methods
2.1. Study Area
2.2. Summary of the Process Flow
2.3. Independent Decision Unit (IDU) Preparation
2.4. Data Collection
2.5. Climate and Management Scenario Development
2.6. Scenarios and Prediction Levels
2.7. Data Aggregation to IDUs
2.8. Model Run and Validation
2.9. Output Analysis
3. Results
3.1. Model Validation Results
3.2. Level 1: Impacts of the Alternative Managements in the Present Climate
3.3. Level 2: Impacts of the Climate Change on the Base Management
3.4. Level3: Impacts of the Alternative Managements in the Projected Climate Change
4. Discussion
4.1. Plausible Impact of Climate Change on the Cropping System of the Basin
4.2. Design of Adaptation Strategies with Alternative Management Practices
4.3. Limitation and Future Scope
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Ashiq, W.; Vasava, H.; Cheema, M.; Dunfield, K.; Daggupati, P.; Biswas, A. Interactive Role of Topography and Best Management Practices on N2O Emissions from Agricultural Landscape. Soil Tillage Res. 2021, 212, 105063. [Google Scholar] [CrossRef]
- Carlson, K.M.; Gerber, J.S.; Mueller, N.D.; Herrero, M.; MacDonald, G.K.; Brauman, K.A.; Havlik, P.; O’Connell, C.S.; Johnson, J.A.; Saatchi, S.; et al. Greenhouse Gas Emissions Intensity of Global Croplands. Nat. Clim. Chang. 2017, 7, 63–68. [Google Scholar] [CrossRef]
- Pratibha, G.; Srinivas, I.; Rao, K.V.; Raju, B.M.K.; Shanker, A.K.; Jha, A.; Uday Kumar, M.; Srinivasa Rao, K.; Sammi Reddy, K. Identification of Environment Friendly Tillage Implement as a Strategy for Energy Efficiency and Mitigation of Climate Change in Semiarid Rainfed Agro Ecosystems. J. Clean. Prod. 2019, 214, 524–535. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Tubiello, F.N. Adaptation and Mitigation Strategies in Agriculture: An Analysis of Potential Synergies. Mitig. Adapt. Strat. Glob. Chang. 2007, 12, 855–873. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Lin, B. Factors Affecting CO 2 Emissions in China’s Agriculture Sector: Evidence from Geographically Weighted Regression Model. Energy Policy 2017, 104, 404–414. [Google Scholar] [CrossRef]
- Brentrup, F.; Küsters, J.; Lammel, J.; Barraclough, P.; Kuhlmann, H. Environmental Impact Assessment of Agricultural Production Systems Using the Life Cycle Assessment (LCA) Methodology II. The Application to N Fertilizer Use in Winter Wheat Production Systems. Eur. J. Agron. 2004, 20, 265–279. [Google Scholar] [CrossRef]
- Keairns, D.L.; Darton, R.C.; Irabien, A. The Energy-Water-Food Nexus. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 239–262. [Google Scholar] [CrossRef] [PubMed]
- Mannan, M.; Al-Ansari, T.; Mackey, H.R.; Al-Ghamdi, S.G. Quantifying the Energy, Water and Food Nexus: A Review of the Latest Developments Based on Life-Cycle Assessment. J. Clean. Prod. 2018, 193, 300–314. [Google Scholar] [CrossRef]
- Endo, A.; Burnett, K.; Orencio, P.M.; Kumazawa, T.; Wada, C.A.; Ishii, A.; Tsurita, I.; Taniguchi, M. Methods of the Water-Energy-Food Nexus. Water 2015, 7, 5806–5830. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Chen, X.; Li, Y.; Ding, W.; Fu, G. Water-Energy-Food Nexus: Concepts, Questions and Methodologies. J. Clean. Prod. 2018, 195, 625–639. [Google Scholar] [CrossRef]
- Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.-F.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP Greenhouse Gas Concentrations and Their Extensions from 1765 to 2300. Clim. Chang. 2011, 109, 213. [Google Scholar] [CrossRef] [Green Version]
- Myhre, G.; Shindell, D.; Bréon, F.M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.F.; Lee, D.; Mendoza, B. Anthropogenic and Natural Radiative Forcing, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 659–740. [Google Scholar]
- Alvarez, R. A Review of Nitrogen Fertilizer and Conservation Tillage Effects on Soil Organic Carbon Storage. Soil Use Manag. 2005, 21, 38–52. [Google Scholar] [CrossRef]
- Fang, J.; Yu, G.; Liu, L.; Hu, S.; Chapin, F.S. Climate Change, Human Impacts, and Carbon Sequestration in China. Proc. Natl. Acad. Sci. USA 2018, 115, 4015–4020. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zheng, Z.; Wang, W.; Biederman, J.A.; Xu, X.; Ran, Q.; Qian, R.; Xu, C.; Zhang, B.; Wang, F.; et al. Terrestrial N2O Emissions and Related Functional Genes under Climate Change: A Global Meta-Analysis. Glob. Chang. Biol. 2020, 26, 931–943. [Google Scholar] [CrossRef]
- Kang, Y.; Khan, S.; Ma, X. Climate Change Impacts on Crop Yield, Crop Water Productivity and Food Security—A Review. Prog. Nat. Sci. 2009, 19, 1665–1674. [Google Scholar] [CrossRef]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Kukal, M.S.; Irmak, S. Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the U.S. Great Plains Agricultural Production. Sci. Rep. 2018, 8, 3450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, C.; Elliott, J.; Chryssanthacopoulos, J.; Deryng, D.; Folberth, C.; Pugh, T.A.M.; Schmid, E. Implications of Climate Mitigation for Future Agricultural Production. Environ. Res. Lett. 2015, 10, 125004. [Google Scholar] [CrossRef]
- Thomson, A.M.; Izaurralde, R.C.; Rosenberg, N.J.; He, X. Climate Change Impacts on Agriculture and Soil Carbon Sequestration Potential in the Huang-Hai Plain of China. Agric. Ecosyst. Environ. 2006, 114, 195–209. [Google Scholar] [CrossRef]
- Kaye, J.P.; Quemada, M. Using Cover Crops to Mitigate and Adapt to Climate Change. A Review. Agron. Sustain. Dev. 2017, 37, 4. [Google Scholar] [CrossRef]
- Climate Change 2007—Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; 1. Publ.; Parry, M.L.; IPCC (Eds.) Cambridge University Press: Cambridge, UK, 2007; ISBN 978-0-521-88010-7. [Google Scholar]
- Giltrap, D.L.; Li, C.; Saggar, S. DNDC: A Process-Based Model of Greenhouse Gas Fluxes from Agricultural Soils. Agric. Ecosyst. Environ. 2010, 136, 292–300. [Google Scholar] [CrossRef]
- Mangalassery, S.; Sjögersten, S.; Sparkes, D.L.; Sturrock, C.J.; Craigon, J.; Mooney, S.J. To What Extent Can Zero Tillage Lead to a Reduction in Greenhouse Gas Emissions from Temperate Soils? Sci. Rep. 2014, 4, 4586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sainju, U.M. A Global Meta-Analysis on the Impact of Management Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Cropland Soils. PLoS ONE 2016, 11, e0148527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapkota, T.B.; Jat, M.L.; Aryal, J.P.; Jat, R.K.; Khatri-Chhetri, A. Climate Change Adaptation, Greenhouse Gas Mitigation and Economic Profitability of Conservation Agriculture: Some Examples from Cereal Systems of Indo-Gangetic Plains. J. Integr. Agric. 2015, 14, 1524–1533. [Google Scholar] [CrossRef] [Green Version]
- Mehra, P.; Baker, J.; Sojka, R.E.; Bolan, N.; Desbiolles, J.; Kirkham, M.B.; Ross, C.; Gupta, R. Chapter Five—A Review of Tillage Practices and Their Potential to Impact the Soil Carbon Dynamics. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2018; Volume 150, pp. 185–230. [Google Scholar]
- Farahbakhshazad, N.; Dinnes, D.L.; Li, C.; Jaynes, D.B.; Salas, W. Modeling Biogeochemical Impacts of Alternative Management Practices for a Row-Crop Field in Iowa. Agric. Ecosyst. Environ. 2008, 123, 30–48. [Google Scholar] [CrossRef]
- Tabatabaie, S.M.H.; Bolte, J.P.; Murthy, G.S. A Regional Scale Modeling Framework Combining Biogeochemical Model with Life Cycle and Economic Analysis for Integrated Assessment of Cropping Systems. Sci. Total Environ. 2018, 625, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.A.; Thomson, P.E.; Clayton, H.; Mctaggart, I.P.; Conen, F. Effects of Temperature, Water Content and Nitrogen Fertilisation on Emissions of Nitrous Oxide by Soils. Atmos. Environ. 1998, 32, 3301–3309. [Google Scholar] [CrossRef]
- Tongwane, M.; Mdlambuzi, T.; Moeletsi, M.; Tsubo, M.; Mliswa, V.; Grootboom, L. Greenhouse Gas Emissions from Different Crop Production and Management Practices in South Africa. Environ. Dev. 2016, 19, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Wang, J.; Deng, N.; Lv, C.; Wang, Q.; Yu, H.; Li, W. Modeling the Effects of Farming Management Practices on Soil Organic Carbon Stock at a County-Regional Scale. CATENA 2018, 160, 76–89. [Google Scholar] [CrossRef]
- Jiang, G.; Zhang, W.; Xu, M.; Kuzyakov, Y.; Zhang, X.; Wang, J.; Di, J.; Murphy, D.V. Manure and Mineral Fertilizer Effects on Crop Yield and Soil Carbon Sequestration: A Meta-Analysis and Modeling across China. Glob. Biogeochem. Cycles 2018, 32, 1659–1672. [Google Scholar] [CrossRef]
- Goglio, P.; Smith, W.N.; Grant, B.B.; Desjardins, R.L.; McConkey, B.G.; Campbell, C.A.; Nemecek, T. Accounting for Soil Carbon Changes in Agricultural Life Cycle Assessment (LCA) Review. J. Clean. Prod. 2015, 104, 23–39. [Google Scholar] [CrossRef]
- Tabatabaie, S.M.H.; Murthy, G.S. Effect of Geographical Location and Stochastic Weather Variation on Life Cycle Assessment of Biodiesel Production from Camelina in the Northwestern USA. Int. J. Life Cycle Assess. 2017, 22, 867–882. [Google Scholar] [CrossRef]
- Li, C. Quantifying Greenhouse Gas Emissions from Soils: Scientific Basis and Modeling Approach. Soil Sci. Plant Nutr. 2007, 53, 344–352. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Frolking, S.E.; Harriss, R.C.; Terry, R.E. Modeling Nitrous Oxide Emissions from Agriculture: A Florida Case Study. Chemosphere 1994, 28, 1401–1415. [Google Scholar] [CrossRef]
- Li, C.; Frolking, S.; Frolking, T.A. A Model of Nitrous Oxide Evolution from Soil Driven by Rainfall Events: 1. Model Structure and Sensitivity. J. Geophys. Res. Atmos. 1992, 97, 9759–9776. [Google Scholar] [CrossRef]
- Uzoma, K.C.; Smith, W.; Grant, B.; Desjardins, R.L.; Gao, X.; Hanis, K.; Tenuta, M.; Goglio, P.; Li, C. Assessing the Effects of Agricultural Management on Nitrous Oxide Emissions Using Flux Measurements and the DNDC Model. Agric. Ecosyst. Environ. 2015, 206, 71–83. [Google Scholar] [CrossRef]
- Qin, F.; Zhao, Y.; Shi, X.; Xu, S.; Yu, D. Sensitivity and Uncertainty Analysis for the DeNitrification–DeComposition Model, a Case Study of Modeling Soil Organic Carbon Dynamics at a Long-Term Observation Site with a Rice–Bean Rotation. Comput. Electron. Agric. 2016, 124, 263–272. [Google Scholar] [CrossRef]
- Goglio, P.; Smith, W.N.; Grant, B.B.; Desjardins, R.L.; Gao, X.; Hanis, K.; Tenuta, M.; Campbell, C.A.; McConkey, B.G.; Nemecek, T.; et al. A Comparison of Methods to Quantify Greenhouse Gas Emissions of Cropping Systems in LCA. J. Clean. Prod. 2018, 172, 4010–4017. [Google Scholar] [CrossRef] [Green Version]
- Perlman, J.; Hijmans, R.J.; Horwath, W.R. Modelling Agricultural Nitrous Oxide Emissions for Large Regions. Environ. Model. Softw. 2013, 48, 183–192. [Google Scholar] [CrossRef]
- CPYRWMA. Characteristics of the River Basins—Choctawhatchee, Pea and Yellow Rivers Water Management Authority. Available online: https://cpyrwma.alabama.gov/river-basins/ (accessed on 15 June 2021).
- USDA-NASS. USDA—National Agricultural Statistics Service—Research and Science—Cropland Data Layer Releases. Available online: https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php (accessed on 31 May 2020).
- Franzluebbers, A.J. Soil Organic Carbon Sequestration and Agricultural Greenhouse Gas Emissions in the Southeastern USA. Soil Tillage Res. 2005, 83, 120–147. [Google Scholar] [CrossRef]
- Arango Argoti, M.A. Nitrous Oxide Emissions: Measurements in Corn and Simulations at Field and Regional Scale. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2013. [Google Scholar]
- Biswal, A. Regional Application of Process Based Biogeochemical Model DNDC in Godavari Sub-Basin. Comput. Ecol. Softw. 2016, 6, 139. [Google Scholar]
- USDA-NRCS. Geospatial Data Gateway. Available online: https://datagateway.nrcs.usda.gov/ (accessed on 31 May 2019).
- USDA-NRCS. Soil Data Viewer 6.2|NRCS Soils. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcseprd337066 (accessed on 31 May 2019).
- Butler, T.; Vermeylen, F.; Lehmann, C.M.; Likens, G.E.; Puchalski, M. Increasing Ammonia Concentration Trends in Large Regions of the USA Derived from the NADP/AMoN Network. Atmos. Environ. 2016, 146, 132–140. [Google Scholar] [CrossRef] [Green Version]
- US EPA. Clean Air Status and Trends Network (CASTNET). Available online: https://www.epa.gov/castnet (accessed on 11 January 2019).
- Thornton, P.E.; Thornton, M.M.; Mayer, B.W.; Wilhelmi, N.; Wei, Y.; Devarakonda, R.; Cook, R.B. Daymet: Daily Surface Weather Data on a 1-Km Grid for North America; Version 2; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2014. [Google Scholar]
- Del Grosso, S.J.; Parton, W.J.; Mosier, A.R.; Walsh, M.K.; Ojima, D.S.; Thornton, P.E. DAYCENT National-Scale Simulations of Nitrous Oxide Emissions from Cropped Soils in the United States. J. Environ. Qual. 2006, 35, 1451–1460. [Google Scholar] [CrossRef] [PubMed]
- Anandhi, A.; Sharma, A.; Sylvester, S. Can Meta-Analysis Be Used as a Decision-Making Tool for Developing Scenarios and Causal Chains in Eco-Hydrological Systems? Case Study in Florida. Ecohydrology 2018, 11, e1997. [Google Scholar]
- Anandhi, A.; Bentley, C. Predicted 21st Century Climate Variability in Southeastern US Using Downscaled CMIP5 and Meta-Analysis. Catena 2018, 170, 409–420. [Google Scholar] [CrossRef]
- Cammarano, D.; Tian, D. The Effects of Projected Climate and Climate Extremes on a Winter and Summer Crop in the Southeast USA. Agric. For. Meteorol. 2018, 248, 109–118. [Google Scholar] [CrossRef]
- Muhati, G.L.; Olago, D.; Olaka, L. Past and Projected Rainfall and Temperature Trends in a Sub-Humid Montane Forest in Northern Kenya Based on the CMIP5 Model Ensemble. Glob. Ecol. Conserv. 2018, 16, e00469. [Google Scholar] [CrossRef]
- Toomsan, B.; McDonagh, J.F.; Limpinuntana, V.; Giller, K.E. Nitrogen Fixation by Groundnut and Soyabean and Residual Nitrogen Benefits to Rice in Farmers’ Fields in Northeast Thailand. Plant Soil 1995, 175, 45–56. [Google Scholar] [CrossRef]
- AUBURN; Soil and Forage Testing Lab. The Basis of Soil Testing. Available online: https://ssl.acesag.auburn.edu/anr/soillab/forms/ (accessed on 10 June 2019).
- David, E.K. AESL. Available online: http://aesl.ces.uga.edu/ (accessed on 10 June 2019).
- USDA-NASS. Field Crops Usual Planting and Harvesting Dates. Available online: https://usda.library.cornell.edu/concern/publications/vm40xr56k (accessed on 11 June 2019).
- Baker, N.T. Tillage Practices in the Conterminous United States, 1989–2004–Datasets Aggregated by Watershed; U.S. Department of the Interior: Washington, WA, USA; US Geological Survey Reston: Reston, VA, USA, 2011. [Google Scholar]
- Li, C. Modeling Impact of Agricultural Practices on Soil C and N2O Emissions. In Soil Management and Greenhouse Effect; Lal, R., Kimble, J., Levine, E., Eds.; CRC Press: Boca Raton, FL, USA, 1995; pp. 101–112. [Google Scholar]
- Li, C.; Narayanan, V.; Harriss, R.C. Model Estimates of Nitrous Oxide Emissions from Agricultural Lands in the United States. Glob. Biogeochem. Cycles 1996, 10, 297–306. [Google Scholar] [CrossRef]
- USGS. Current Conditions for Florida_Groundwater. Available online: https://waterdata.usgs.gov/fl/nwis/current/?type=gw#Equipment_malfunction (accessed on 13 December 2020).
- Pirttioja, N.; Carter, T.R.; Fronzek, S.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; et al. Temperature and Precipitation Effects on Wheat Yield across a European Transect: A Crop Model Ensemble Analysis Using Impact Response Surfaces. Clim. Res. 2015, 65, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Streck, N.A. Climate Change and Agroecosystems: The Effect of Elevated Atmospheric CO2 and Temperature on Crop Growth, Development, and Yield. Ciência Rural 2005, 35, 730–740. [Google Scholar] [CrossRef] [Green Version]
- Nie, T.; Zhang, Z.; Qi, Z.; Chen, P.; Sun, Z.; Liu, X. Characterizing Spatiotemporal Dynamics of CH4 Fluxes from Rice Paddies of Cold Region in Heilongjiang Province under Climate Change. Int. J. Environ. Res. Public Health 2019, 16, 692. [Google Scholar] [CrossRef] [Green Version]
- Pribyl, D.W. A Critical Review of the Conventional SOC to SOM Conversion Factor. Geoderma 2010, 156, 75–83. [Google Scholar] [CrossRef]
- Vasques, G.M.; Grunwald, S.; Harris, W.G. Spectroscopic Models of Soil Organic Carbon in Florida, U.S.A. J. Environ. Qual. 2010, 39, 923–934. [Google Scholar] [CrossRef] [Green Version]
- Broch, A.; Hoekman, S.K.; Unnasch, S. A Review of Variability in Indirect Land Use Change Assessment and Modeling in Biofuel Policy. Environ. Sci. Policy 2013, 29, 147–157. [Google Scholar] [CrossRef]
- Ukaew, S.; Beck, E.; Meki, M.N.; Shonnard, D.R. Application of the Roundtable on Sustainable Biofuels Method to Regional Differences in Nitrous Oxide Emissions for the Rapeseed Hydrotreated Renewable Jet Life Cycle. J. Clean. Prod. 2014, 83, 220–227. [Google Scholar] [CrossRef]
- USDA-NASS, Quick Stats Lite. Available online: https://www.nass.usda.gov/Quick_Stats/Lite/index.php (accessed on 25 June 2019).
- Keeney, D.R.; Fillery, I.R.; Marx, G.P. Effect of Temperature on the Gaseous Nitrogen Products of Denitrification in a Silt Loam Soil. Soil Sci. Soc. Am. J. 1979, 43, 1124–1128. [Google Scholar] [CrossRef]
- Kirschbaum, M.U. Will Changes in Soil Organic Carbon Act as a Positive or Negative Feedback on Global Warming? Biogeochemistry 2000, 48, 21–51. [Google Scholar] [CrossRef]
- Asseng, S.; Jamieson, P.D.; Kimball, B.; Pinter, P.; Sayre, K.; Bowden, J.W.; Howden, S.M. Simulated Wheat Growth Affected by Rising Temperature, Increased Water Deficit and Elevated Atmospheric CO2. Field Crop. Res. 2004, 85, 85–102. [Google Scholar] [CrossRef]
- Eekhout, J.P.; Hunink, J.E.; Terink, W.; de Vente, J. Why Increased Extreme Precipitation under Climate Change Negatively Affects Water Security. Hydrol. Earth Syst. Sci. 2018, 22, 5935–5946. [Google Scholar] [CrossRef] [Green Version]
- Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R. Global Crop Yield Response to Extreme Heat Stress under Multiple Climate Change Futures. Environ. Res. Lett. 2014, 9, 034011. [Google Scholar] [CrossRef] [Green Version]
- Beillouin, D.; Schauberger, B.; Bastos, A.; Ciais, P.; Makowski, D. Impact of Extreme Weather Conditions on European Crop Production in 2018. Philos. Trans. R. Soc. B 2020, 375, 20190510. [Google Scholar] [CrossRef]
- Powell, J.P.; Reinhard, S. Measuring the Effects of Extreme Weather Events on Yields. Weather Clim. Extrem. 2016, 12, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Rowhani, P.; Lobell, D.B.; Linderman, M.; Ramankutty, N. Climate Variability and Crop Production in Tanzania. Agric. For. Meteorol. 2011, 151, 449–460. [Google Scholar] [CrossRef]
- Polley, H.W. Implications of Atmospheric and Climatic Change for Crop Yield and Water Use Efficiency. Crop Sci. 2002, 42, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Rötter, R.; van de Geijn, S.C. Climate Change Effects on Plant Growth, Crop Yield and Livestock. Clim. Chang. 1999, 43, 651–681. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; McGrath, J.M. Direct Effects of Rising Atmospheric Carbon Dioxide and Ozone on Crop Yields. In Climate Change and Food Security: Adapting Agriculture to a Warmer World; Lobell, D., Burke, M., Eds.; Advances in Global Change Research; Springer Netherlands: Dordrecht, The Netherlands, 2010; pp. 109–130. ISBN 978-90-481-2953-9. [Google Scholar]
- DaMatta, F.M.; Grandis, A.; Arenque, B.C.; Buckeridge, M.S. Impacts of Climate Changes on Crop Physiology and Food Quality. Food Res. Int. 2010, 43, 1814–1823. [Google Scholar] [CrossRef]
- Schaufler, G.; Kitzler, B.; Schindlbacher, A.; Skiba, U.; Sutton, M.A.; Zechmeister-Boltenstern, S. Greenhouse Gas Emissions from European Soils under Different Land Use: Effects of Soil Moisture and Temperature. Eur. J. Soil Sci. 2010, 61, 683–696. [Google Scholar] [CrossRef]
- Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J. Acceleration of Global Warming Due to Carbon-Cycle Feedbacks in a Coupled Climate Model. Nature 2000, 408, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Ise, T.; Moorcroft, P.R. The Global-Scale Temperature and Moisture Dependencies of Soil Organic Carbon Decomposition: An Analysis Using a Mechanistic Decomposition Model. Biogeochemistry 2006, 80, 217–231. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Dannenmann, M. Denitrification and Associated Soil N2O Emissions Due to Agricultural Activities in a Changing Climate. Curr. Opin. Environ. Sustain. 2011, 3, 389–395. [Google Scholar] [CrossRef]
- Singh, B.K.; Bardgett, R.D.; Smith, P.; Reay, D.S. Microorganisms and Climate Change: Terrestrial Feedbacks and Mitigation Options. Nat. Rev. Microbiol. 2010, 8, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Gill, R.A.; Anderson, L.J.; Polley, H.W.; Johnson, H.B.; Jackson, R.B. Potential Nitrogen Constraints on Soil Carbon Sequestration Under Low and Elevated Atmospheric Co2. Ecology 2006, 87, 41–52. [Google Scholar] [CrossRef] [PubMed]
- van Veen, J.A.; Liljeroth, E.; Lekkerkerk, L.J.A.; Van de Geijn, S.C. Carbon Fluxes in Plant-Soil Systems at Elevated Atmospheric CO2 Levels. Ecol. Appl. 1991, 1, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Chen, H. Modeling Impacts of Mulching and Climate Change on Crop Production and N2O Emission in the Loess Plateau of China. Agric. For. Meteorol. 2019, 268, 86–97. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, Y.; Feng, H.; Li, H.; Sun, B. Assessment of Climate Change Impacts on Soil Organic Carbon and Crop Yield Based on Long-Term Fertilization Applications in Loess Plateau, China. Plant Soil 2015, 390, 401–417. [Google Scholar] [CrossRef]
- Ludwig, B.; Jäger, N.; Priesack, E.; Flessa, H. Application of the DNDC Model to Predict N2O Emissions from Sandy Arable Soils with Differing Fertilization in a Long-Term Experiment. J. Plant Nutr. Soil Sci. 2011, 174, 350–358. [Google Scholar] [CrossRef]
- Manna, M.C.; Swarup, A.; Wanjari, R.H.; Mishra, B.; Shahi, D.K. Long-Term Fertilization, Manure and Liming Effects on Soil Organic Matter and Crop Yields. Soil Tillage Res. 2007, 94, 397–409. [Google Scholar] [CrossRef]
- Gelfand, I.; Philip Robertson, G. A Reassessment of the Contribution of Soybean Biological Nitrogen Fixation to Reactive N in the Environment. Biogeochemistry 2015, 123, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Hungria, M.; Franchini, J.C.; Campo, R.J.; Crispino, C.C.; Moraes, J.Z.; Sibaldelli, R.N.R.; Mendes, I.C.; Arihara, J. Nitrogen Nutrition of Soybean in Brazil: Contributions of Biological N2 Fixation and N Fertilizer to Grain Yield. Can. J. Plant Sci. 2011. [CrossRef] [Green Version]
- Hutchinson, J.J.; Grant, B.B.; Smith, W.N.; Desjardins, R.L.; Campbell, C.A.; Worth, D.E.; Vergé, X.P. Estimates of Direct Nitrous Oxide Emissions from Canadian Agroecosystems and Their Uncertainties. Can. J. Soil. Sci. 2007, 87, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, M.; Wattenbach, M.; Smith, P.; Ambus, P.; Jones, M.; Williams, M. Application of the DNDC Model to Predict Emissions of N2O from Irish Agriculture. Geoderma 2009, 151, 327–337. [Google Scholar] [CrossRef]
- Ingraham, P.A. Assessing Nitrous Oxide and Nitrate Leaching Mitigation Potential in US Corn Crop Systems Using the DNDC Model. Agric. Syst. 2019, 175, 79–87. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, B.; Wang, S.; Zhu, X.; Vereecken, H.; Brüggemann, N. Stimulation of N2O Emission by Manure Application to Agricultural Soils May Largely Offset Carbon Benefits: A Global Meta-Analysis. Glob. Chang. Biol. 2017, 23, 4068–4083. [Google Scholar] [CrossRef]
- Deng, Q.; Hui, D.; Wang, J.; Yu, C.-L.; Li, C.; Reddy, K.C.; Dennis, S. Assessing the Impacts of Tillage and Fertilization Management on Nitrous Oxide Emissions in a Cornfield Using the DNDC Model: Modeling N2O Emission in a Cornfield. J. Geophys. Res. Biogeosci. 2016, 121, 337–349. [Google Scholar] [CrossRef] [Green Version]
- Cui, F.; Zheng, X.; Liu, C.; Wang, K.; Zhou, Z.; Deng, J. Assessing Biogeochemical Effects and Best Management Practice for a Wheat–Maize Cropping System Using the DNDC Model. Biogeosciences 2014, 11, 91–107. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.; He, W.; Zhou, W.; Hou, Y.; Yang, J.Y.; He, P. Exploring Management Strategies to Improve Maize Yield and Nitrogen Use Efficiency in Northeast China Using the DNDC and DSSAT Models. Comput. Electron. Agric. 2019, 166, 104988. [Google Scholar] [CrossRef]
- Paustian, K.; Six, J.; Elliott, E.T.; Hunt, H.W. Management Options for Reducing CO2 Emissions from Agricultural Soils. Biogeochemistry 2000, 48, 147–163. [Google Scholar] [CrossRef]
- Hassan, W.; David, J.; Abbas, F. Effect of Type and Quality of Two Contrasting Plant Residues on CO2 Emission Potential of Ultisol Soil: Implications for Indirect Influence of Temperature and Moisture. Catena 2014, 114, 90–96. [Google Scholar] [CrossRef]
- Powlson, D.S.; Stirling, C.M.; Jat, M.L.; Gerard, B.G.; Palm, C.A.; Sanchez, P.A.; Cassman, K.G. Limited Potential of No-till Agriculture for Climate Change Mitigation. Nat. Clim. Chang. 2014, 4, 678–683. [Google Scholar] [CrossRef]
- Scialabba, N.E.-H.; Müller-Lindenlauf, M. Organic Agriculture and Climate Change. Renew. Agric. Food Syst. 2010, 25, 158–169. [Google Scholar] [CrossRef] [Green Version]
Case | Observed | Predicted-NH4NO3 | Predicted-Urea | RE-NH4NO3 | RE-Urea |
---|---|---|---|---|---|
kg dm | kg dm | kg dm | % | % | |
Corn | 8122.4 | 8072.0 | 7108.9 | −0.6 | −12.5 |
Soybean | 2367.2 | 2684.0 | 2684.0 | 13.4 | 13.4 |
Cotton | 907.9 | 1090.8 | 845.3 | 20.1 | −6.9 |
Peanut | 3692.6 | 3601.1 | 3601.1 | −2.5 | −2.5 |
Parameters | Unit | Baseline | 80% Residue | 500 kgC/ha Manure | 1000 kgC/ha Manure | 2000 kgC/ha Manure | 50% Fertilizer+ Manure | No-till-15% Residue | No-till-50% Residue |
---|---|---|---|---|---|---|---|---|---|
GWP (total) | Thousand MT CO2 eq. | 36.1 | 0.23 | 18.2 | 0.18 | −29.1 | −0.53 | 30.9 | 23.9 |
GWP (NB) | Thousand MT CO2 eq. | 0 | 33.7 | 17.8 | 34.3 | 65.1 | 41.3 | 0.51 | 0.12 |
N2O (total) | MT kg N eq. | 41 | 53 | 53 | 64 | 92 | 50 | 49 | 62 |
N2O (% change) | % | 0% | 29% | 29% | 56% | 124% | 21% | 20% | 51% |
Grain (total) | Thousand MT grain eq. | 338 | 343.2 | 348.5 | 352.8 | 355.5 | 333.9 | 344.7 | 347.1 |
Grain (% change) | % | 0 | 1.5% | 3% | 4% | 5.2% | −1.2% | 2% | 2.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afroz, M.; Li, R.; Chen, G.; Anandhi, A. Agricultural Greenhouse Gas Emissions in a Data-Scarce Region Using a Scenario-Based Modeling Approach: A Case Study in Southeastern USA. Agronomy 2021, 11, 1323. https://doi.org/10.3390/agronomy11071323
Afroz M, Li R, Chen G, Anandhi A. Agricultural Greenhouse Gas Emissions in a Data-Scarce Region Using a Scenario-Based Modeling Approach: A Case Study in Southeastern USA. Agronomy. 2021; 11(7):1323. https://doi.org/10.3390/agronomy11071323
Chicago/Turabian StyleAfroz, Mahnaz, Runwei Li, Gang Chen, and Aavudai Anandhi. 2021. "Agricultural Greenhouse Gas Emissions in a Data-Scarce Region Using a Scenario-Based Modeling Approach: A Case Study in Southeastern USA" Agronomy 11, no. 7: 1323. https://doi.org/10.3390/agronomy11071323
APA StyleAfroz, M., Li, R., Chen, G., & Anandhi, A. (2021). Agricultural Greenhouse Gas Emissions in a Data-Scarce Region Using a Scenario-Based Modeling Approach: A Case Study in Southeastern USA. Agronomy, 11(7), 1323. https://doi.org/10.3390/agronomy11071323