Efficacy of the Nitrification Inhibitor 3,4 Dimethylpyrazol Succinic Acid (DMPSA) when Combined with Calcium Ammonium Nitrate and Ammonium Sulphate—A Soil Incubation Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sample Collection and Preparation
2.2. Design of the Incubation Experiment
2.3. Extraction and Analysis
2.4. Calculation
2.5. Statistical Analysis
3. Results
3.1. Soil Mineral N Dynamics in Different Soils during Incubation
3.1.1. Sandy Loam Soil
3.1.2. Sandy Soil
3.2. Changes in the Total Mineral Nitrogen in the Soil
4. Discussion
4.1. Efficacy of DMPSA as a Nitrification Inhibitor (Treatment Interaction with Time)
4.2. Temporal Effect of DMPSA on Soil N Dynamics
4.3. Efficacy of the Nitrification Inhibitor in Different N Formulations (Treatment Effect)
4.4. Efficacy of the Nitrification Inhibitor in Different Soil Types
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Erisman, J.; Bleeker, A.; Galloway, J.; Sutton, M. Reduced nitrogen in ecology and the environment. Environ. Pollut. 2007, 150, 140–149. [Google Scholar] [CrossRef] [Green Version]
- UNFCCC (United Nations Framework Convention on Climate Change). Available online: https://unfccc.int/process/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories/submissions-of-annual-greenhouse-gas-inventories-for-2017/submissions-of-annual-ghg-inventories-2016 (accessed on 15 December 2020).
- Leip, A.; Britz, W.; Weiss, F.; de Vries, W. Farm, land, and soil nitrogen budgets for agriculture in Europe calculated with CAPRI. Environ. Pollut. 2011, 159, 3243–3253. [Google Scholar] [CrossRef]
- Allison, F.E. The fate of nitrogen applied to soils. Adv. Agron. 1966, 18, 219–258. [Google Scholar]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Glob. Biogeochem. Cycles 2002, 16, 1–13. [Google Scholar] [CrossRef]
- Rahman, N.; Richards, K.G.; Harty, M.A.; Watson, C.J.; Carolan, R.; Krol, D.; Lanigan, G.J.; Forrestal, P.J. Differing effects of increasing calcium ammonium nitrate, urea and urea+ NBPT fertiliser rates on nitrous oxide emission factors at six temperate grassland sites in Ireland. Agric. Ecosyst. Environ. 2021, 313, 107382. [Google Scholar] [CrossRef]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Coskun, D.; Britto, D.T.; Shi, W.; Kronzucker, H.J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat. Plants 2017, 3, 17074. [Google Scholar] [CrossRef]
- Taylor, A.E.; Giguere, A.T.; Zoebelein, C.M.; Myrold, D.D.; Bottomley, P.J. Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria. ISME J. 2017, 11, 896–908. [Google Scholar] [CrossRef]
- Taylor, A.E.; Myrold, D.D.; Bottomley, P.J. Temperature affects the kinetics of nitrite oxidation and nitrification coupling in four agricultural soils. Soil Biol. Biochem. 2019, 136, 107523. [Google Scholar] [CrossRef]
- Shaw, L.J.; Nicol, G.W.; Smith, Z.; Fear, J.; Prosser, J.I.; Baggs, E.M. Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environ. Microbiol. 2006, 8, 214–222. [Google Scholar] [CrossRef]
- Firestone, M.K.; Davidson, E.A. Microbiological basis of NO and N2O production and consumption in soil. In Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere: Report of the Dahlem Workshop on Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere; Andreae, M.O., Schimel, D.S., Eds.; Wiley: New York, NY, USA, 1989; Volume 47, pp. 7–21. [Google Scholar]
- Eurostat. 2021. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 23 April 2020).
- CSO 2020; Statistical Yearbook of Ireland 2019; Central Statistics Office. Farm Structure Survey–Survey Coverage. Available online: http://www.cso.ie/en/media/csoie/releasespublications/documents/statisticalyearbook/2019/c10agriculture.pdf (accessed on 14 December 2020).
- Harty, M.A.; Forrestal, P.J.; Watson, C.J.; McGeough, K.L.; Carolan, R.; Elliot, C.; Krol, D.; Laughlin, R.J.; Richards, K.G.; Lanigan, G.J. Reducing nitrous oxide emissions by changing N fertiliser use from calcium ammonium nitrate (CAN) to urea based formulations. Sci. Total Environ. 2016, 563, 576–586. [Google Scholar] [CrossRef] [Green Version]
- Font-Palma, C. Methods for the treatment of cattle manure—A review. C—J. Carbon Res. 2019, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Rose, T.J.; Wood, R.H.; Rose, M.T.; Van Zwieten, L. A re-evaluation of the agronomic effectiveness of the nitrification inhibitors DCD and DMPP and the urease inhibitor NBPT. Agric. Ecosyst. Environ. 2018, 252, 69–73. [Google Scholar] [CrossRef]
- Gilsanz, C.; Báez, D.; Misselbrook, T.H.; Dhanoa, M.S.; Cárdenas, L.M. Development of emission factors and efficiency of two nitrification inhibitors, DCD and DMPP. Agric. Ecosyst. Environ. 2016, 216, 1–8. [Google Scholar] [CrossRef]
- Dai, Y.; Di, H.J.; Cameron, K.C.; He, J.Z. Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on ammonia oxidizers and N2O emissions in a grazed pasture soil. Sci. Total Environ. 2013, 465, 125–135. [Google Scholar] [CrossRef]
- Singh, J.; Saggar, S.; Giltrap, D.L.; Bolan, N.S. Decomposition of dicyandiamide (DCD) in three contrasting soils and its effect on nitrous oxide emission, soil respiratory activity, and microbial biomass—An incubation study. Soil Res. 2008, 46, 517–525. [Google Scholar] [CrossRef]
- Keener, W.K.; Arp, D.J. Kinetic Studies of Ammonia Monooxygenase Inhibition in Nitrosomonas europaea by Hydrocarbons and Halogenated Hydrocarbons in an Optimized Whole-Cell Assay. Appl. Environ. Microbiol. 1993, 59, 2501–2510. [Google Scholar] [CrossRef] [Green Version]
- Ruser, R.; Schulz, R. The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils—A review. J. Plant Nutr. Soil Sci. 2015, 178, 171–188. [Google Scholar] [CrossRef]
- Singh, S.; Verma, A. Environmental review: The potential of nitrification inhibitors to manage the pollut. effect of nitrogen fertilizers in agricultural and other soils: A review. Environ. Pract. 2007, 9, 266–279. [Google Scholar] [CrossRef]
- Pasda, G.; Hähndel, R.; Zerulla, W. Effect of fertilizers with the new nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) on yield and quality of agricultural and horticultural crops. Biol. Fertil. Soils 2001, 34, 85–97. [Google Scholar] [CrossRef]
- McCarty, G.; Bremner, J. Inhibition of nitrification in soil by heterocyclic nitrogen compounds. Biol. Fertil. Soils 1989, 8, 204–211. [Google Scholar] [CrossRef]
- Torralbo, F.; Menéndez, S.; Barrena, I.; Estavillo, J.M.; Marino, D.; González-Murua, C. Dimethyl pyrazol-based nitrification inhibitors effect on nitrifying and denitrifying bacteria to mitigate N2O emission. Sci. Rep. 2017, 7, 13810. [Google Scholar] [CrossRef]
- Guardia, G.; Vallejo, A.; Cardenas, L.M.; Dixon, E.R.; García-Marco, S. Fate of 15N-labelled ammonium nitrate with or without the new nitrification inhibitor DMPSA in an irrigated maize crop. Soil Biol. Biochem. 2018, 116, 193–202. [Google Scholar] [CrossRef]
- Pacholski, A.; Berger, N.; Bustamante, I.; Ruser, R.; Guardia, G.; Mannheim, T. Effects of the novel nitrification inhibitor DMPSA on yield, mineral N dynamics and N2O emissions. Solutions to Improve Nitrogen Use Efficiency for the World, Proceedings of the 2016 International Nitrogen Initiative Conference, Melbourne, Australia, 4–8 December 2016. Melbourne, Australia. 2016. Available online: www.ini2016.com (accessed on 21 April 2020).
- Recio, J.; Alvarez, J.M.; Rodriguez-Quijano, M.; Vallejo, A. Nitrification inhibitor DMPSA mitigated N2O emission and promoted NO sink in rainfed wheat. Environ. Pollut. 2019, 245, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Recio, J.; Vallejo, A.; Le-Noe, J.; Garnier, J.; García-Marco, S.; Álvarez, J.M.; Sanz-Cobena, A. The effect of nitrification inhibitors on NH3 and N2O emissions in highly N fertilized irrigated Mediterranean cropping systems. Sci. Total Environ. 2018, 636, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Guardia, G.; Cangani, M.T.; Andreu, G.; Sanz-Cobena, A.; García-Marco, S.; Álvarez, J.M.; Recio-Huetos, J.; Vallejo, A. Effect of inhibitors and fertigation strategies on GHG emissions, NO fluxes and yield in irrigated maize. Field Crops Res. 2017, 204, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Huérfano, X.; Fuertes-Mendizábal, T.; Fernández-Diez, K.; Estavillo, J.M.; González-Murua, C.; Menéndez, S. The new nitrification inhibitor 3,4-dimethylpyrazole succinic (DMPSA) as an alternative to DMPP for reducing N2O emissions from wheat crops under humid Mediterranean conditions. Eur. J. Agron. 2016, 80, 78–87. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014. [Google Scholar]
- Krol, D.J.; Minet, E.; Forrestal, P.J.; Lanigan, G.J.; Mathieu, O.; Richards, K.G. The interactive effects of various nitrogen fertiliser formulations applied to urine patches on nitrous oxide emissions in grassland. Irish J. Agric. Food Res. 2017, 56, 54–64. [Google Scholar] [CrossRef]
- Standing Committee of Analysts. Ammonia in Waters. In Methods for the Examination of Water and Associated Materials; HMSO: London, UK, 1981; p. 48. ISBN 0117516139. [Google Scholar]
- Askew, E.F.; Smith, R.R. Inorganic nonmetallic constituents. In Standard Methods for the Examination of Water and Wastewater; Eaton, A.D., Clesceri, L.S., Greenberg, A.E., Eds.; Port City Press: Baltimore, MD, USA, 2005; p. 123. [Google Scholar]
- Owen, J.S.; King, H.B.; Wang, M.K.; Sun, H.L. Net nitrogen mineralization and nitrification rates in forest soil in northeastern Taiwan. Soil Sci. Plant Nutr. 2010, 56, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Hart, S.C.; Stark, J.M.; Davidson, E.A.; Firestone, M.K. Nitrogen mineralization, immobilization, and nitrification. In Methods of Soil Analysis, 2nd ed.; Weaver, R.W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., Wollum, A., Eds.; Soil science society of America: Madison, WI, USA, 1994; Volume 5, pp. 985–1018. [Google Scholar]
- Linn, D.M.; Doran, J.W. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. J. 1984, 48, 1267–1272. [Google Scholar] [CrossRef] [Green Version]
- Arp, D.J.; Stein, L.Y. Metabolism of inorganic N compounds by ammonia-oxidizing bacteria. Crit. Rev. Biochem. Mol. Biol. 2003, 38, 471–495. [Google Scholar] [CrossRef]
- Skiba, U.; Smith, K.A. Nitrification and denitrification as sources of nitric oxide and nitrous oxide in a sandy loam soil. Soil Biol. Biochem. 1993, 25, 1527–1536. [Google Scholar] [CrossRef]
- Prasad, R.; Power, J.F. Nitrification inhibitors for agriculture, health, and the environment. Adv. Agron. 1995, 54, 233–281. [Google Scholar]
- Guiraud, G.; Marol, C. Influence of temperature on mineralization kinetics with a nitrification inhibitor (mixture of dicyandiamide and ammonium thiosulphate). Biol. Fertil. Soils 1992, 13, 1–5. [Google Scholar] [CrossRef]
- Huerfano, X.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Torralbo, F.; Gonzalez-Murua, C.; Menendez, S. DMPSA and DMPP equally reduce N2O emissions from a maize-ryegrass forage rotation under Atlantic climate conditions. Atmos. Environ. 2018, 187, 255–265. [Google Scholar] [CrossRef]
- Zerulla, W.; Barth, T.; Dressel, J.; Erhardt, K.; von Locquenghien, K.H.; Pasda, G.; Rädle, M.; Wissemeier, A. 3,4-Dimethylpyrazole phosphate (DMPP)–A new nitrification inhibitor for agriculture and horticulture. Biol. Fertil. Soils 2001, 34, 79–84. [Google Scholar] [CrossRef]
- De Armas, R.; Valadier, M.H.; Champigny, M.L.; Lamaze, T. Influence of ammonium and nitrate on the growth and photosynthesis of sugarcane. J. Plant Physiol. 1992, 140, 531–535. [Google Scholar] [CrossRef]
- Parashar, K.S.; Prasad, R.; Sharma, R.P.; Sharma, S.N.; Singh, S. Efficiency of urea, nitrification inhibitor treated urea and slow release nitrogen fertilizers for sugarcane. J. Plant Nutr. Soil Sci. 1980, 143, 262–267. [Google Scholar] [CrossRef]
- Britto, D.T.; Kronzucker, H.J. Ecological significance and complexity of N-source preference in plants. Ann. Bot. 2013, 112, 957–963. [Google Scholar] [CrossRef] [Green Version]
- Salsac, L.; Chaillou, S.; Morot-Gaudry, J.F.; Lesaint, C.H.; Jolivet, E. Nitrate and ammonium nutrition in plants. Plant Physiol. Biochem. 1987, 25, 805–812. [Google Scholar]
- Scheer, C.; Rowlings, D.W.; Firrel, M.; Deuter, P.; Morris, S.; Grace, P.R. Impact of nitrification inhibitor (DMPP) on soil nitrous oxide emissions from an intensive broccoli production system in sub-tropical Australia. Soil Biol. Biochem. 2014, 77, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Cébron, A.; Berthe, T.; Garnier, J. Nitrification and nitrifying bacteria in the lower Seine River and estuary (France). Appl. Environ. Microbiol. 2003, 69, 7091–7100. [Google Scholar] [CrossRef] [Green Version]
- Slangen, J.H.G.; Kerkhoff, P. Nitrification inhibitors in agriculture and horticulture: A literature review. Fertil. Res. 1984, 5, 1–76. [Google Scholar] [CrossRef]
- Cahalan, E.; Minet, E.; Ernfors, M.; Müller, C.; Devaney, D.; Forrestal, P.J.; Richards, K.G. The effect of precipitation and application rate on dicyandiamide persistence and efficiency in two Irish grassland soils. Soil Use Manag. 2015, 31, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Barth, G.; von Tucher, S.; Schmidhalter, U.; Otto, R.; Motavalli, P.; Ferraz-Almeida, R.; Sattolo, T.M.S.; Cantarella, H.; Vitti, G.C. Performance of nitrification inhibitors with different nitrogen fertilizers and soil textures. J. Plant. Nutr. Soil Sci. 2019, 182, 694–700. [Google Scholar] [CrossRef]
- Barth, G.; von Tucher, S.; Schmidhalter, U. Influence of soil parameters on the effect of 3,4-dimethylpyrazole-phosphate as a nitrification inhibitor. Biol. Fertil. Soils 2001, 34, 98–102. [Google Scholar]
Soil Properties | Soil 1 | Soil 2 |
---|---|---|
Sand % | 52 | 73 |
Silt % | 34 | 17 |
Clay % | 14 | 10 |
Textural class | Sandy loam | Sandy |
Bulk density (g cm−3) | 1.4 | 1.3 |
Soil pH | 5.3 | 5.7 |
Organic matter (%) | 5.3 | 3.7 |
Organic carbon (%) | 2.1 | 1.4 |
Total N (%) | 0.22 | 0.13 |
NH4+-N (mg kg−1) | 4.6 | 1.2 |
NO3−-N (mg kg−1) | 11.2 | 13.7 |
Available * P (mg/L) | 2.1 | 9.2 |
Available * K (mg/L) | 56 | 70 |
Available * Mg(mg/L) | 96 | 76 |
SO42- (mg/L) | 1.2 | 0.0 |
Experimental Factor | NH4+N | NO3−-N | ||
---|---|---|---|---|
p Value | df | p Value | df | |
Sandy loam soil | ||||
Fertiliser type | *** | 4 | *** | 4 |
Time | *** | 8 | *** | 8 |
Fertiliser type X time | * | 32 | * | 32 |
Sandy soil | ||||
Fertiliser type | *** | 4 | *** | 4 |
Time | *** | 8 | *** | 8 |
Fertiliser type X time | * | 32 | * | 32 |
Net Nitrification Rate Calculated from NO3−-N Formation (mg NO3−-N kg−1 Dry Soil Day−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sandy Loam Soil | Sandy Soil | |||||||||
Days | Control | CAN | CAN + DMPSA | AS | AS + DMPSA | Control | CAN | CAN + DMPSA | AS | AS + DMPSA |
D 2 | 0.50 | - | - | 1.81 | 1.96 | 0.57 | - | - | 2.27 | 1.55 |
D 5 | −0.02 | −2.45 | 1.07 | 3.30 | 2.09 | 0.06 | −0.07 | 4.65 | 1.72 | 1.63 |
D 8 | 0.47 | 4.30 | −5.11 | 2.50 | 2.12 | 0.82 | 3.25 | −8.14 | 4.41 | 0.62 |
D 12 | 0.11 | −1.88 | 0.11 | 0.60 | 2.18 | 0.22 | 1.65 | 2.42 | 0.03 | 0.87 |
D 19 | 0.19 | 2.31 | 1.01 | 3.84 | 0.98 | 0.45 | 1.34 | 1.23 | 4.68 | 0.36 |
D 30 | 0.47 | 3.28 | 1.82 | 2.12 | 0.70 | 0.41 | 3.01 | −0.42 | 3.12 | −0.58 |
D 45 | 0.05 | 1.02 | 1.04 | 3.45 | 1.00 | 0.40 | 2.45 | 1.46 | 3.08 | 0.60 |
D 60 | 0.35 | 4.13 | 2.38 | 4.31 | 1.80 | −0.08 | 2.09 | 1.79 | 2.68 | 0.76 |
D 80 | 0.06 | 1.89 | 3.22 | 3.45 | 2.34 | 1.61 | 2.66 | 2.68 | 2.90 | 1.63 |
Average * | 0.03 | 0.19 | 0.08 | 0.35 | 0.20 | 0.06 | 0.25 | 0.09 | 0.34 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, N.; Henke, C.; Forrestal, P.J. Efficacy of the Nitrification Inhibitor 3,4 Dimethylpyrazol Succinic Acid (DMPSA) when Combined with Calcium Ammonium Nitrate and Ammonium Sulphate—A Soil Incubation Experiment. Agronomy 2021, 11, 1334. https://doi.org/10.3390/agronomy11071334
Rahman N, Henke C, Forrestal PJ. Efficacy of the Nitrification Inhibitor 3,4 Dimethylpyrazol Succinic Acid (DMPSA) when Combined with Calcium Ammonium Nitrate and Ammonium Sulphate—A Soil Incubation Experiment. Agronomy. 2021; 11(7):1334. https://doi.org/10.3390/agronomy11071334
Chicago/Turabian StyleRahman, Niharika, Catarina Henke, and Patrick J. Forrestal. 2021. "Efficacy of the Nitrification Inhibitor 3,4 Dimethylpyrazol Succinic Acid (DMPSA) when Combined with Calcium Ammonium Nitrate and Ammonium Sulphate—A Soil Incubation Experiment" Agronomy 11, no. 7: 1334. https://doi.org/10.3390/agronomy11071334
APA StyleRahman, N., Henke, C., & Forrestal, P. J. (2021). Efficacy of the Nitrification Inhibitor 3,4 Dimethylpyrazol Succinic Acid (DMPSA) when Combined with Calcium Ammonium Nitrate and Ammonium Sulphate—A Soil Incubation Experiment. Agronomy, 11(7), 1334. https://doi.org/10.3390/agronomy11071334