Soil Organic Carbon Changes for Croplands across China from 1991 to 2012
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Soil Organic Carbon Density and Stock
3. Results
3.1. Changes of SOCD in Croplands from 1991 to 2012
3.2. Temporal and Spatial Changes of SOCD and SOCS
3.3. Changes of SOCD under Different Soil Types
4. Discussion
4.1. Changes of SOCD and SOCS at National Scale
4.2. Changes of SOCD and SOCS at Regional Scale
4.3. Changes of SOCD under Different Soil Types
4.4. Uncertainty and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Ewaran, H.E.; Berg, V.D.; Reich, P. Organic carbon in soil of the world. Soil Sci. Soc. Am. J. 1993, 57, 192–194. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Rumpel, C.; Amiraslani, F.; Koutika, L.S.; Smith, P.; Whitehead, D.; Wollenberg, E. Put more carbon in soils to meet Paris climate pledges. Nature 2018, 564, 32–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldfield, E.E.; Bradford, M.A.; Wood, S.A. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil 2019, 5, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Soil organic matter content and crop yield. J. Soil Water Conserv. 2020, 75, 27A–32A. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xin, X.; Zhu, A.; Yang, W.; Zhang, J.; Ding, S.; Mu, L.; Shao, L. Linking macroaggregation to soil microbial community and organic carbon accumulation under different tillage and residue managements. Soil Tillage Res. 2018, 178, 99–107. [Google Scholar] [CrossRef]
- Yost, J.L.; Hartemink, A.E. Chapter Four-Soil organic carbon in sandy soils: A review. Adv. Agron. 2019, 158, 217–310. [Google Scholar]
- Rawls, W.J.; Pachepsky, Y.A.; Ritchie, J.C.; Sobecki, T.M.; Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 2003, 116, 61–76. [Google Scholar] [CrossRef]
- Malhi, S.S.; Nyborg, M.; Solberg, E.D.; Mcconkey, B.G.; Dyck, M.; Puurveen, D. Long-term straw management and N fertilizer rate effects on quantity and quality of organic C and N and some chemical properties in two contrasting soils in Western Canada. Biol. Fertil. Soils 2011, 47, 785–800. [Google Scholar] [CrossRef]
- Tang, X.; Zhao, X.; Bai, Y.; Tang, Z.; Wang, W.; Zhao, Y.; Wan, H.; Xie, Z.; Shi, X.; Wu, B.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, K.; Zhao, Y.; Xu, X.; Hai, N.; Huang, B.; Deng, W. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis. Agric. Ecosyst. Environ. 2015, 204, 40–50. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgense, H.B.; Isberg, P.E. How does tillage intensity affect soil organic carbon? A systematic review. Environ. Evid. 2017, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lia, X.; Gregorich, E.G.; McLaughlin, N.B.; Zhang, X.; Guo, Y.; Liang, A.; Fand, R.; Sun, B. No-tillage with continuous maize cropping enhances soil aggregation and organic carbon storage in Northeast China. Geoderma 2018, 330, 204–211. [Google Scholar] [CrossRef]
- Ogle, S.M.; Alsaker, C.; Baldock, F.; Bernoux, M.; Breidt, F.J.; McConkey, B.; Regina, K. Vazquez-Amabile, G. Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions. Sci. Rep. 2019, 9, 11665. [Google Scholar] [CrossRef] [PubMed]
- VandenBygaart, A.J.; McConkey, B.G.; Angers, D.A.; Smith, W.; de Gooijer, H.; Bentham, M.; Martin, T. Soil carbon change factors for the Canadian agriculture national greenhouse gas inventory. Can. J. Soil Sci. 2008, 88, 671–680. [Google Scholar] [CrossRef]
- Berhane, M.; Xu, M.; Liang, Z.; Shi, J.; Wei, G.; Tian, X. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis. Glob. Chang. Biol. 2020, 26, 2686–2701. [Google Scholar] [CrossRef]
- Kirschbaum, M.U.F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic storage. Soil Bid Biochem. 1995, 27, 753–760. [Google Scholar] [CrossRef]
- Choudhury, B.U.; Fiyaz, A.R.; Mohapatra, K.P.; Ngachan, S. Impact of land uses, agrophysical variables and altitudinal gradient on soil organic carbon concentration of north-eastern Himalayan region of India. Land Degrad. Dev. 2016, 27, 1163–1174. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Xia, X.; Yang, Z.; Xue, Y.; Shao, X.; Yu, T.; Hou, Q. Spatial analysis of land use change effect on soil organic carbon stocks in the eastern regions of China between 1980 and 2000. Geosci. Front. 2016, 8, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Minasny, B.; McBratney, A.B.; Hong, S.Y.; Sulaeman, Y.; Kim, M.S.; Zhang, Y.S.; Kim, Y.H.; Han, K.H. Continuous rice cropping has been sequestering carbon in soils in Java and South Korea for the past 30 years. Glob. Biogeochem. Cycles 2012, 26, GB3027. [Google Scholar] [CrossRef]
- Meersmans, J.; Martin, P.M.; Lacarce, E.; De Baets, S.; Jolivet, C.; Boulonne, L.; Lehmann, S.; Saby, N.P.A.; Bispo, A.; Arrouays, D. A high resolution map of French soil organic carbon. Agron. Sustain. Dev. 2012, 32, 841–851. [Google Scholar] [CrossRef]
- Li, Z.; Liu, S.; Tan, Z.; Sohl, T.L.; Wu, Y. Simulating the effects of management practices on cropland soil organic carbon changes in the Temperate Prairies Ecoregion of the United States from 1980 to 2012. Ecol. Model. 2017, 365, 68–79. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, M.; Hu, S.; Zhang, X.; Ouyang, Z.; Zhang, G.; Huang, B.; Zhao, S.; Wu, J.; Xie, D.; et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl. Acad. Sci. USA 2018, 115, 4045–4050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database; FAO: Rome, Italy, 2020. [Google Scholar]
- China Statistical Yearbook; Editorial Board of National Bureau of Statistics of China; China Statistics Press: Beijing, China, 2020.
- Huang, Y.; Sun, W. Changes in topsoil organic carbon of croplands in mainland China over the last two decades. Chin. Sci. Bull. 2006, 51, 1785–1803. [Google Scholar] [CrossRef]
- Xie, Z.B.; Zhu, J.G.; Liu, G.; Cadisch, G.; Hasegawa, T.; Chen, C.M.; Sun, H.F.; Tang, H.Y.; Zeng, Q. Soil organic carbon stocks in China and changes from 1980s to 2000s. Glob. Chang. Biol. 2007, 13, 1989–2007. [Google Scholar] [CrossRef]
- Pan, G.; Xu, X.; Smith, O.; Pan, W.; Rattan, L. An increase in topsoil SOC stock of China’s croplands between 1985 and 2006 revealed by soil monitoring. Agric. Ecosyst. Environ. 2010, 136, 133–138. [Google Scholar] [CrossRef]
- He, P.; Yang, L.; Xu, X.; Zhao, S.; Chen, F.; Li, S.; Tu, S.; Jin, J.; Johnston, A.M. Temporal and spatial variation of soil available potassium in China (1990–2012). Field Crop. Res. 2015, 173, 49–56. [Google Scholar] [CrossRef]
- Ma, J.; He, P.; Xu, X.; He, W.; Liu, Y.; Yang, F.; Chen, F.; Li, S.; Tu, S.; Jin, J.; et al. Temporal and spatial changes in soil available phosphorus in China (1990–2012). Field Crop. Res. 2016, 192, 13–20. [Google Scholar] [CrossRef]
- Portch, S.; Hunter, A. A Systematic Approach to Soil Fertility Evaluation and Improvement; Special Publ. No. 5; PPIC China Program: Hong Kong, China, 2002. [Google Scholar]
- Huang, X.; Du, L.; Hong, J.; Chen, G.; Wang, S.; Lian, Z.; Zhang, G.; Juang, L.; Zhang, L.; Ye, L. Study on the correlation between potassium dichromate external heating method and ASI for soil organic matter determination. Hubei Agric. Sci. 2002, 59, 122–125. [Google Scholar]
- Sun, W.; Huang, Y.; Zhang, W.; Yu, Y. Carbon sequestration and its potential in agricultural soils of China. Glob. Biogeochem. Cycles 2010, 24, GB3001. [Google Scholar] [CrossRef]
- Qin, Z.; Huang, Y.; Zhuang, Q. Soil organic carbon sequestration potential of cropland in China. Glob. Biogeochem. Cycles 2013, 27, 1–12. [Google Scholar] [CrossRef]
- Song, G.H.; Li, L.Q.; Pan, G. Topsoil organic carbon storage of China and its loss by cultivation. Biogeochemistry 2005, 74, 47–62. [Google Scholar] [CrossRef]
- Yang, Y.; Mohammat, A.; Feng, J.; Zhou, R.; Fang, J. Storage, patterns and environmental controls of soil organic carbon in China. Biogechemistry 2007, 84, 131–141. [Google Scholar] [CrossRef]
- He, W.; Jiang, R.; He, P.; Yang, J.Y.; Zhou, W.; Ma, J.; Liu, Y. Estimating soil nitrogen balance at regional scale in China’s croplands from 1984 to 2014. Agric. Syst. 2018, 167, 125–135. [Google Scholar] [CrossRef]
- Gubler, A.; Wächter, D.; Schwab, P.; Müller, M.; Keller, A. Twenty-five years of observations of soil organic carbon in Swiss croplands showing stability overall but with some divergent trends. Environ. Monit. Assess. 2019, 191, 277. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.A.; Zhou, L.M. Soil organic carbon sequestration and fertility response to newly-built terraces with organic manure and mineral fertilizer in a semi-arid environment. Soil Tillage Res. 2017, 172, 39–47. [Google Scholar] [CrossRef]
- Barreto, M.S.C.; Ramlogan, M.; Oliveir, D.M.S.; Verburg, E.E.J.; Elzinga, E.J.; Rouff, A.A.; Jemo, M.; Alleoni, L.R.F. Thermal stability of soil organic carbon after long-term manure application across land uses and tillage systems in an oxisol. CATENA 2021, 200, 105164. [Google Scholar] [CrossRef]
- Yin, X.; Huang, M.; Zou, Y. Changes in rice yield stability in southern China from 1949 to 2015. Agric. Environ. Lett. 2018, 3, 170038. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, S.; Yu, Q.; Zhang, Y.; Wang, R.; Li, J.; Wang, X. No tillage increases soil organic carbon storage and decreases carbon dioxide emission in the crop residue returned farming system. J. Environ. Manag. 2020, 261, 110261. [Google Scholar] [CrossRef]
- Oladele, S.O.; Adetunji, A.T. Agro-residue biochar and N fertilizer addition mitigates CO2-C emission and stabilized soil organic carbon pools in a rain-fed agricultural cropland. Int. Soil Water Conserv. Res. 2021, 9, 76–86. [Google Scholar] [CrossRef]
- Liu, B.; Wang, X.; Ma, L.; Chadwick, D.; Chen, X. Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: A meta-analysis. Environ. Pollut. 2021, 269, 116143. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, S.; Zhang, G.; Pu, X.; Wang, J.; Zhang, W. Carbon cycle in response to residue management and fertilizer application in a cotton field in arid Northwest China. J. Integr. Agric. 2019, 18, 1103–1119. [Google Scholar] [CrossRef]
- Tao, F.; Palosuo, T.; Valkama, E.; Mäkipää, R. Cropland soils in China have a large potential for carbon sequestration based on literature survey. Soil Tillage Res. 2019, 186, 70–78. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, Y.; Zhang, W. Modeling soil organic carbon in croplands of China, 1980-2009. Glob. Planet. Chang. 2012, 82–83, 115–128. [Google Scholar] [CrossRef]
- Liao, Q.; Zhang, X.H.; Li, Z.P.; Pan, G.; Smith, P.; Jin, Y.; Wu, X. Increase in soil organic carbon stock over the last two decades in China’s Jiangsu Province. Glob. Chang. Biol. 2009, 15, 861–875. [Google Scholar] [CrossRef]
- Lal, R. Offsetting China’s CO2 emissions by soil carbon sequestration. Clim. Chang. 2004, 65, 263–275. [Google Scholar] [CrossRef]
- Li, C.S.; Zhuang, Y.H.; Frolking, S.; Galloway, J.; Harriss, R.; Moore, I.I.I.B.; Schimel, D.; Wang, X. Modeling soil organic carbon change in croplands of China. Ecol. Appl. 2003, 13, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.J.; Qiu, J.H.; Ranst, E.V. Estimations of soil organic carbon storage in cropland of China based on DNDC model. Geoderma 2006, 134, 200–206. [Google Scholar] [CrossRef]
- Qin, Z.; Huang, Y. Quantification of soil organic carbon sequestration potential in cropland: A model approach. Sci. China Life Sci. 2010, 53, 868–884. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, Y.; Liu, B.; Zheng, Q.; Yin, J. Characteristics and factors controlling the development of ephemeral gullies in cultivated catchments of black soil region, Northeast China. Soil Tillage Res. 2007, 96, 28–41. [Google Scholar] [CrossRef]
- Ou, Y.; Rousseau, A.N.; Wang, L.; Yan, B. Spatio-temporal patterns of soil organic carbon and pH in relation to environmental factors–A case study of the black soil region of Northeastern China. Agric. Ecosyst. Environ. 2017, 245, 22–31. [Google Scholar] [CrossRef]
- Chaplot, V.; Bouahom, B.; Valentin, C. Soil organic carbon stocks in Laos: Spatial variations and controlling factors. Glob. Chang. Biol. 2010, 16, 1380–1393. [Google Scholar] [CrossRef]
- Yan, X.Y.; Cai, Z.C.; Wang, S.W.; Smith, P. Direct measurement of soil organic carbon content change in the croplands of China. Glob. Chang. Biol. 2011, 17, 1487–1496. [Google Scholar] [CrossRef]
- Zhou, Y.; Hartemink, A.E.; Zhou, S.; Liang, Z.; Lu, Y. Land use and climate change effects on soil organic carbon in North and Northeast China. Sci. Total Environ. 2019, 647, 1230–1238. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, X.; Tian, D. Farmland degradation caused by radial diffusion of CO2 leakage from carbon capture and storage. J. Clean. Prod. 2020, 255, 20059. [Google Scholar] [CrossRef]
- Wang, X.; Yu, D.; Wang, C.; Pan, Y.; Pan, J.; Shi, X. Variations in cropland soil organic carbon fractions in the black soil region of China. Soil Tillage Res. 2018, 184, 93–99. [Google Scholar] [CrossRef]
- Zhao, P.; Li, S.; Wang, E.; Chen, X.; Deng, J.; Zhao, Y. Tillage erosion and its effect on spatial variations of soil organic carbon in the black soil region of China. Soil Tillage Res. 2018, 178, 72–81. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Z.; Zhang, B.; Song, K.; Li, X.; Li, J.; Li, F.; Duan, H. Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China. Agric. Ecosyt. Environ. 2006, 113, 73–81. [Google Scholar] [CrossRef]
- Yan, X.; Zhou, H.; Zhu, Q.H.; Wang, X.F.; Zhang, Y.Z.; Yu, X.C.; Peng, X. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China. Soil Tillage Res. 2013, 130, 42–51. [Google Scholar] [CrossRef]
- Yang, C.; Yang, L.; Ouyang, Z. Organic carbon and its fractions in paddy soil as affected by different nutrient and water regimes. Geoderma 2005, 124, 133–142. [Google Scholar] [CrossRef]
- Liu, X.; Li, S. Temporal and spatial distribution characteristics of crop straw nutrient resources and returning to farmland in China. TCSAE 2017, 33, 1–19. [Google Scholar]
- Jiang, G.; Xu, M.; He, X.; Zhang, W.; Huang, M.; Yang, X.; Liu, H.; Peng, C.; Shirato, Y.; Lizumi, T.; et al. Soil organic carbon sequestration in upland soils of northern China under variable fertilizer management and climate change scenarios. Glob. Biogeochem. Cycles 2014, 28, 319–333. [Google Scholar] [CrossRef]
- Xin, X.; Zhang, J.; Zhu, A.; Zhang, C. Effects of long-term (23 years) mineral fertilizer and compost application on physical properties of fluvo-aquic soil in the North China Plain. Soil Tillage Res. 2016, 156, 166–172. [Google Scholar] [CrossRef]
- Li, Z.T.; Li, X.G.; Li, M.; Yang, J.Y.; Turner, N.C.; Wang, X.Y.; Li, F.M. County-Scale changes in soil organic carbon of croplands in southeastern Gansu province of China from the 1980s to the Mid-2000s. Soil Sci. Soc. Am. J. 2013, 77, 2111–2121. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, M.; Duan, Y.; Zhang, L.; Zhang, Y. Distribution of nitrogen in aggregates of black soil and red soil under long-term fertilization. J. Plant. Nutr. Fertil. 2013, 19, 1386–1392. [Google Scholar]
- Zhang, J.; Zhang, L.; Wang, P.; Huang, Q.; Yu, G.; Li, D.; Shen, Q.; Ran, W. The role of non-crystalline Fe in the increase of SOC after long-term organic manure application to the red soil of southern China. Eur J. Soil Sci. 2013, 64, 797–804. [Google Scholar] [CrossRef]
Item | Region 1 | Total Crops | Grain Crops | Cash Crops | |||
---|---|---|---|---|---|---|---|
1991–2001 | 2002–2012 | 1991–2001 | 2002–2012 | 1991–2001 | 2002–2012 | ||
Soil Test | NE (199) 2 | 1826 | 4457 | 1344 | 3620 | 482 | 837 |
NC (352) | 3817 | 7095 | 2751 | 4097 | 1066 | 2998 | |
NW (122) | 1548 | 3344 | 606 | 1201 | 942 | 2143 | |
SE (407) | 4898 | 9785 | 3320 | 6174 | 1578 | 3611 | |
SW (187) | 3437 | 3536 | 1851 | 2026 | 1586 | 1510 | |
China (1227) | 15,526 | 28,217 | 9872 | 17,118 | 5654 | 11,099 |
Region 1 | Province | Main Crop | Main Soil Type (WRB Reference Soil Group) | Sample Number (n) | Soil pH | Precipitation (mm) | Latitude (°N) | Longitude (°E) |
---|---|---|---|---|---|---|---|---|
NE | Jilin, Liaoning, | Maize, rice, soybean, tomato | Phaeozems, Umbrisols, Regosols, | 6283 | 3.7–9.5 | 400–1000 | 37.74–53.53 | 118.86–135.07 |
Heilongjiang | Cabbage, cucumber, flux | Chernozems, Anthrosols | ||||||
NC | Beijing, Tianjin, | Wheat, maize, cotton, peanut | Fluvisols, Regosols, | 10,912 | 3.4–10.0 | 350–900 | 31.41–42.67 | 111.25–122.63 |
Hebei, Henan, | Eggplant, cabbage, cucumber | Luvisols, Solonchaks | ||||||
Shandong, Shanxi | Tomato, cauliflower, pumpkin | |||||||
NW | Shaanxi, Ningxia, | Maize, wheat, potato | Cambisols, Kastanozems, | 4892 | 5.0–9.9 | 100–600 | 27.23–53.35 | 73.45–126.04 |
Gansu, Xinjiang, | Cotton, carrot, cabbage | Fluvisols, Calcisols | ||||||
Inner Mongolia, | Spinach, pepper, cucumber | |||||||
Qinghai, Tibet | Onion, tomato, rapeseed | |||||||
SE | Hubei, Hunan, | Wheat, maize, rice | Cambisols, Fluvisols, | 14,683 | 3.6–8.8 | 700–1600 | 23.58–28.28 | 108.38–122.20 |
Jiangsu, Anhui, | Beans, cotton, sugarcane | Ferralsols, Anthrosols | ||||||
Shanghai, Jiangxi, | Cabbage, citrus, banana | |||||||
Zhejiang, Fujian | Rapeseed, sesame | |||||||
SW | Chongqing, | Maize, wheat, rice, tea | Ferralsols, Humic Acrisols, | 6973 | 3.4–8.5 | 600–2000 | 18.17–34.30 | 97.39–117.06 |
Guizhou, Yunnan, | Tomato, sugarcane, rape | Anthrosols, Cambisols | ||||||
Guangxi, Hainan, | Rapeseed, banana, cassava | |||||||
Guangdong, Sichuan | Pepper, pineapple |
Crop Type | Item | NE 1 | NC | NW | SE | SW | China | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1991–2001 | 2002–2012 | 1991–2001 | 2002–2012 | 1991–2001 | 2002–2012 | 1991–2001 | 2002–2012 | 1991–2001 | 2002–2012 | 1991–2001 | 2002–2012 | ||
Total | Min. 2 | 7.9 | 7.5 | 6.3 | 7.1 | 6.4 | 7.2 | 6.5 | 6.9 | 6.6 | 8.6 | 6.3 | 7.1 |
crops | Median | 39.7 | 39.3 | 10.6 | 11.7 | 11.7 | 12.5 | 15.0 | 15.5 | 21.8 | 23.0 | 14.3 | 15.7 |
Mean | 41.1 | 40.6 | 11.7 | 13.6 | 12.7 | 14.9 | 15.8 | 17.6 | 23.4 | 25.5 | 18.6 | 20.9 | |
Max. | 96.4 | 106.0 | 33.8 | 52.2 | 69.3 | 61.1 | 47.4 | 60.2 | 68.3 | 69.4 | 96.4 | 106.0 | |
SD | 20.9 | 21.1 | 5.2 | 5.1 | 9.4 | 6.9 | 6.8 | 7.5 | 11.5 | 10.9 | 13.6 | 14.8 | |
CV (%) | 51.4 | 51.2 | 42.6 | 38.9 | 63.9 | 47.1 | 40.8 | 43.3 | 48.3 | 43.7 | 73.1 | 70.8 | |
Grain | Min. | 7.9 | 7.5 | 6.3 | 7.1 | 6.4 | 7.2 | 6.5 | 6.9 | 6.6 | 8.6 | 6.3 | 7.1 |
crops | Median | 35.6 | 36.3 | 10.5 | 11.2 | 11.7 | 12.2 | 14.9 | 14.9 | 21.4 | 20.4 | 14.0 | 15.5 |
Mean | 38.9 | 38.5 | 11.9 | 12.6 | 12.4 | 14.6 | 15.0 | 17.2 | 22.8 | 23.5 | 18.1 | 20.7 | |
Max. | 80.1 | 106.0 | 33.8 | 52.2 | 53.2 | 47.1 | 47.4 | 55.1 | 68.3 | 69.4 | 80.1 | 106.0 | |
SD | 19.2 | 20.1 | 5.2 | 4.6 | 9.5 | 6.2 | 7.1 | 6.9 | 10.7 | 10.3 | 12.9 | 14.9 | |
CV (%) | 51.6 | 52.8 | 42.9 | 36.6 | 62.7 | 43.4 | 43.7 | 41.5 | 47.0 | 46.2 | 71.2 | 71.9 | |
Cash | Min. | 10.8 | 7.9 | 6.3 | 7.2 | 6.9 | 7.6 | 6.7 | 8.0 | 7.0 | 9.4 | 6.3 | 7.2 |
crops | Median | 47.9 | 46.6 | 10.7 | 12.6 | 11.7 | 12.9 | 17.7 | 16.3 | 26.1 | 26.2 | 15.4 | 16.3 |
Mean | 49.2 | 48.9 | 11.3 | 15.1 | 13.3 | 15.1 | 17.3 | 18.3 | 25.9 | 26.9 | 19.8 | 21.2 | |
Max. | 96.4 | 104.7 | 31.8 | 48.7 | 69.3 | 61.1 | 42.2 | 60.2 | 61.4 | 65.9 | 96.4 | 104.7 | |
SD | 22.3 | 21.4 | 5.0 | 5.6 | 9.3 | 7.3 | 6.2 | 8.2 | 13.3 | 10.9 | 15.1 | 14.7 | |
CV (%) | 44.1 | 42.9 | 41.5 | 40.2 | 64.7 | 48.5 | 35.3 | 44.2 | 49.0 | 40.5 | 76.1 | 69.3 |
Crop Type | Region 1 | Crop Area 2 | SOCS (Tg C) | Total Changes | Annual Changes | ||
---|---|---|---|---|---|---|---|
(Mha) | 1991–2001 | 2002–2012 | (Tg C) | (%) | (Tg C yr−1) | ||
Total crops | NE | 18.5 | 759 | 749 | −9.8 | −1.3 | −0.9 |
NC | 37.7 | 439 | 513 | 73.9 | 16.8 | 6.7 | |
NW | 19.7 | 250 | 293 | 43.3 | 17.4 | 3.9 | |
SE | 43.8 | 691 | 772 | 81.6 | 11.8 | 7.4 | |
SW | 35.1 | 823 | 894 | 71.3 | 8.7 | 6.5 | |
Grain crops | NE | 16.0 | 622 | 617 | −5.7 | −0.9 | −0.5 |
NC | 27.0 | 320 | 339 | 19.2 | 6.0 | 1.7 | |
NW | 13.9 | 173 | 203 | 29.4 | 17.0 | 2.7 | |
SE | 28.3 | 426 | 488 | 61.7 | 14.5 | 5.6 | |
SW | 23.5 | 535 | 551 | 16.0 | 3.0 | 1.5 | |
Cash crops | NE | 2.5 | 121 | 120 | −0.9 | −0.7 | −0.1 |
NC | 10.7 | 121 | 162 | 40.8 | 33.7 | 3.7 | |
NW | 5.8 | 77 | 87 | 10.4 | 13.6 | 0.9 | |
SE | 15.5 | 268 | 282 | 14.1 | 5.3 | 1.3 | |
SW | 11.6 | 301 | 313 | 12.0 | 4.0 | 1.1 | |
Topsoil | China | 154.7 | 2961 | 3221 | 260 | 8.8 | 23.7 |
Region 1 | Chemical Fertilizer 2 (Tg) | Organic Manure 3 (Tg) | Straw Returned 4 (Tg) | Total Crop Production 5 (Tg) | ||||
---|---|---|---|---|---|---|---|---|
1991–2001 | 2002–2012 | 1991–2001 | 2002–2012 | 1991–2001 | 2002–2012 | 1991–2001 | 2002–2012 | |
NE | 3.2 * | 4.7 | 174.7 | 254.9 | 7.3 | 13.4 | 103.9 | 142.3 |
NC | 10.5 | 14.9 | 549.7 | 672.7 | 63.8 | 102.7 | 274.2 | 441.5 |
NW | 3.2 | 5.7 | 230.2 | 268.6 | 5.7 | 10.5 | 76.4 | 138.7 |
SE | 12.3 | 15.3 | 537.5 | 701.0 | 33.5 | 45.3 | 287.0 | 368.7 |
SW | 7.4 | 10.4 | 598.9 | 747.9 | 25.5 | 34.6 | 248.3 | 353.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; He, P.; Jiang, R.; Yang, J.; Drury, C.F.; Smith, W.N.; Grant, B.B.; Zhou, W. Soil Organic Carbon Changes for Croplands across China from 1991 to 2012. Agronomy 2021, 11, 1433. https://doi.org/10.3390/agronomy11071433
He W, He P, Jiang R, Yang J, Drury CF, Smith WN, Grant BB, Zhou W. Soil Organic Carbon Changes for Croplands across China from 1991 to 2012. Agronomy. 2021; 11(7):1433. https://doi.org/10.3390/agronomy11071433
Chicago/Turabian StyleHe, Wentian, Ping He, Rong Jiang, Jingyi Yang, Craig F. Drury, Ward N. Smith, Brian B. Grant, and Wei Zhou. 2021. "Soil Organic Carbon Changes for Croplands across China from 1991 to 2012" Agronomy 11, no. 7: 1433. https://doi.org/10.3390/agronomy11071433
APA StyleHe, W., He, P., Jiang, R., Yang, J., Drury, C. F., Smith, W. N., Grant, B. B., & Zhou, W. (2021). Soil Organic Carbon Changes for Croplands across China from 1991 to 2012. Agronomy, 11(7), 1433. https://doi.org/10.3390/agronomy11071433