Wettability Increase in Plasma-Treated Agricultural Seeds and Its Relation to Germination Improvement
Abstract
:1. Introduction
2. Inclusion Criteria
3. Plasma Treatment of Agricultural Seeds
4. Wettability
5. Water Contact Angle
6. Germination Measurements
7. Correlations
7.1. Mechanisms of Germination Percentage (GP) Improvement through Wettability Increase
7.2. Final GP Increase
7.3. Germination Acceleration
7.4. Hydrophobic Recovery
7.5. Difference between Seed Species
7.6. Difference within the Same Seed Species
7.6.1. Wheat
7.6.2. Beans
7.6.3. Sunflower
7.6.4. Rapeseed
7.6.5. Leucaena
7.6.6. Rice
7.7. Tuning Plasma Parameters
7.8. Seed Resistance to Drought Stress
8. Conclusions and Scientific Challenges
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Randeniya, L.K.; de Groot, G.J.J.B. Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: A review. Plasma Process. Polym. 2015, 12, 608–623. [Google Scholar] [CrossRef]
- Attri, P.; Ishikawa, K.; Okumura, T.; Koga, K.; Shiratani, M. Plasma agriculture from laboratory to farm: A review. Processes 2020, 8, 1002. [Google Scholar] [CrossRef]
- Starič, P.; Vogel-Mikuš, K.; Mozetič, M.; Junkar, I. Effects of nonthermal plasma on morphology, genetics and physiology of seeds: A review. Plants 2020, 9, 1736. [Google Scholar] [CrossRef] [PubMed]
- Srisonphan, S. Tuning surface wettability through hot carrier initiated impact ionization in cold plasma. ACS Appl. Mater. Interfaces 2018, 10, 11297–11304. [Google Scholar] [CrossRef]
- Hoppanová, L.; Medvecká, V.; Dyblíková, J.; Hudecova, D.; Kaliňáková, B.; Kryštofová, S.; Zahoranová, A. Low-temperature plasma applications in chemical fungicide treatment reduction. Acta Chim. Slovaca 2020, 13, 26–33. [Google Scholar] [CrossRef]
- Guimarães, I.P.; Alves-Junior, C.; Torres, S.B.; Vitoriano, J.O.; Dantas, N.B.L.; Diógenes, F.E.P. Double barrier dielectric plasma treatment of leucaena seeds to improve wettability and overcome dormancy. Seed Sci. Technol. 2015, 43, 526–530. [Google Scholar] [CrossRef]
- Nantapan, J.; Sarapirom, S.; Janpong, K. The effects of atmospheric plasma jet treatment to the germination and enhancement growth of sunflower seeds. J. Phys. Conf. Ser. 2019, 1380, 012131. [Google Scholar] [CrossRef] [Green Version]
- Velichko, I.; Gordeev, I.; Shelemin, A.; Nikitin, D.; Brinar, J.; Pleskunov, P.; Choukourov, A.; Pazderů, K.; Pulkrábek, J. Plasma jet and dielectric barrier discharge treatment of wheat seeds. Plasma Chem. Plasma Process. 2019, 39, 913–928. [Google Scholar] [CrossRef]
- Xiong, Q.; Lu, X.; Ostrikov, K.; Xiong, Z.; Xian, Y.; Zhou, F.; Zou, C.; Hu, J.; Gong, W.; Jiang, Z. Length control of He atmospheric plasma jet plumes: Effects of discharge parameters and ambient air. Phys. Plasmas 2009, 16, 043505. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Jiang, J.; Li, J.; Shen, M.; He, X.; Shao, H.; Dong, Y. Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci. Rep. 2014, 4, 5859. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, J.G.; Shen, M.C.; Zhang, C.L.; Dong, Y.H. Cold plasma treatment enhances oilseed rape seed germination under drought stress. Sci. Rep. 2015, 5, 13033. [Google Scholar] [CrossRef]
- Li, L.; Li, J.; Shen, M.; Hou, J.; Shao, H.; Dong, Y.; Jiang, J. Improving seed germination and peanut yields by cold plasma treatment. Plasma Sci. Technol. 2016, 18, 1027–1033. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, J.; Shao, H.; Dong, Y. Effects of low-vacuum helium cold plasma treatment on seed germination, plant growth and yield of oilseed rape. Plasma Sci. Technol. 2018, 20, 095502. [Google Scholar] [CrossRef] [Green Version]
- Sadhu, S.; Thirumdas, R.; Deshmukh, R.R.; Annapure, U.S. Influence of cold plasma on the enzymatic activity in germinating mung beans (Vigna radiate). LWT 2017, 78, 97–104. [Google Scholar] [CrossRef]
- Hosseini, S.I.; Mohsenimehr, S.; Hadian, J.; Ghorbanpour, M.; Shokri, B. Physico-chemical induced modification of seed germination and early development in artichoke (Cynara scolymus L.) using low energy plasma technology. Phys. Plasmas 2018, 25, 013525. [Google Scholar] [CrossRef]
- Bormashenko, E.; Grynyov, R.; Bormashenko, Y.; Drori, E. Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci. Rep. 2012, 2, 741. [Google Scholar] [CrossRef]
- Bormashenko, E.; Shapira, Y.; Grynyov, R.; Whyman, G.; Bormashenko, Y.; Drori, E. Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris). J. Exp. Bot. 2015, 66, 4013–4021. [Google Scholar] [CrossRef] [Green Version]
- Lonlua, R.; Sarapirom, S. The effect of low-pressure plasma treatment on sunflower seed germination and sprouts growth rate. J. Phys. Conf. Ser. 2019, 1380, 012157. [Google Scholar] [CrossRef]
- Shashikanthalu, S.P.; Ramireddy, L.; Radhakrishnan, M. Stimulation of the germination and seedling growth of Cuminum cyminum L. seeds by cold plasma. J. Appl. Res. Med. Aromat Plants 2020, 18, 100259. [Google Scholar] [CrossRef]
- Nishime, T.M.C.; Wannicke, N.; Horn, S.; Weltmann, K.D.; Brust, H. A coaxial dielectric barrier discharge reactor for treatment of winter wheat seeds. Appl. Sci. 2020, 10, 7133. [Google Scholar] [CrossRef]
- Srisonphan, S.; Ruangwong, K.; Thammaniphit, C. Localized electric field enhanced streamer cold plasma interaction on biological curved surfaces and its shadow effect. Plasma Chem. Plasma Process. 2020, 40, 1253–1265. [Google Scholar] [CrossRef]
- Stolárik, T.; Henselová, M.; Martinka, M.; Novák, O.; Zahoranová, A.; Černák, M. Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chem. Plasma Process. 2015, 35, 659–676. [Google Scholar] [CrossRef]
- Singh, R.; Prasad, P.; Mohan, R.; Verma, M.K.; Kumar, B. Radiofrequency cold plasma treatment enhances seed germination and seedling growth in variety cim-saumya of sweet basil (Ocimum basilicum L.). J. Appl. Res. Med. Aromat Plants 2019, 12, 78–81. [Google Scholar] [CrossRef]
- Măgureanu, M.; Sîrbu, R.; Dobrin, D.; Gîdea, M. Stimulation of the germination and early growth of tomato seeds by non-thermal plasma. Plasma Chem. Plasma Process. 2018, 38, 989–1001. [Google Scholar] [CrossRef]
- Zhang, B.; Li, R.H.; Yan, J.C. Study on activation and improvement of crop seeds by the application of plasma treating seeds equipment. Arch. Biochem. Biophys. 2018, 655, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Shiratani, M.; Sarinont, T.; Amano, T.; Hayashi, N.; Koga, K. Plant growth response to atmospheric air plasma treatments of seeds of 5 plant species. MRS Adv. 2016, 1, 1265–1269. [Google Scholar] [CrossRef]
- Henselová, M.; Slováková, L.; Martinka, M.; Zahoranová, A. Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia 2012, 67, 490–497. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Plant Physiology and Development, 6th ed.; Oxford University Press: New York, NY, USA, 2014. [Google Scholar]
- De Giorgi, J.; Piskurewicz, U.; Loubery, S.; Utz-Pugin, A.; Bailly, C.; Mène-Saffrané, L.; Lopez-Molina, L. An endosperm-associated cuticle is required for arabidopsis seed viability, dormancy and early control of germination. PLoS Genet. 2015, 11, e1005708. [Google Scholar] [CrossRef] [Green Version]
- Riederer, M.; Müller, C. Biology of the Plant Cuticle; Blackwell Publishing Ltd.: Oxford, UK, 2006; Volume 23. [Google Scholar]
- Mohamed-Yasseen, Y.; Barringer, S.A.; Splittstoesser, W.E.; Costanza, S. The role of seed coats in seed viability. Bot. Rev. 1994, 60, 426–439. [Google Scholar] [CrossRef]
- Shapira, Y.; Multanen, V.; Whyman, G.; Bormashenko, Y.; Chaniel, G.; Barkay, Z.; Bormashenko, E. Plasma treatment switches the regime of wetting and floating of pepper seeds. Colloids Surf. B Biointerfaces 2017, 157, 417–423. [Google Scholar] [CrossRef]
- Fridman, A. Plasma Chemistry; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar]
- Molina, R.; López-Santos, C.; Gómez-Ramírez, A.; Vilchez, A.; Espinós, J.P.; González-Elipe, A.R. Influence of irrigation conditions in the germination of plasma treated nasturtium seeds. Sci. Rep. 2018, 8, 16442. [Google Scholar] [CrossRef] [Green Version]
- Zahoranová, A.; Hoppanová, L.; Šimončicová, J.; Tučeková, Z.; Medvecká, V.; Hudecová, D.; Kaliňáková, B.; Kováčik, D.; Černák, M. Effect of cold atmospheric pressure plasma on maize seeds: Enhancement of seedlings growth and Surface microorganisms inactivation. Plasma Chem. Plasma Process. 2018, 38, 969–988. [Google Scholar] [CrossRef]
- Alves-Junior, C.; da Silva, D.L.S.; Vitoriano, J.O.; Barbalho, A.; de Sousa, R.C. The water path in plasma-treated leucaena seeds. Seed Sci. Res. 2020, 30, 13–20. [Google Scholar] [CrossRef]
- Molina, R.; Lalueza, A.; López-Santos, C.; Ghobeira, R.; Cools, P.; Morent, R.; de Geyter, N.; González-Elipe, A.R. Physicochemical Surface analysis and germination at different irrigation conditions of DBD plasma-treated wheat seeds. Plasma Process. Polym. 2020, 18, e2000086. [Google Scholar] [CrossRef]
- Šerý, M.; Zahoranová, A.; Kerdík, A.; Šerá, B. Seed germination of black pine (Pinus nigra Arnold) after diffuse coplanar Surface barrier discharge plasma treatment. IEEE Trans. Plasma Sci. 2020, 48, 939–945. [Google Scholar] [CrossRef]
- Volin, J.C.; Denes, F.S.; Young, R.A.; Park, S.M.T. Modification of seed germination performance through cold plasma chemistry technology. Crop Sci. 2000, 40, 1706–1718. [Google Scholar] [CrossRef]
- Phan, L.; Yoon, S.; Moon, M.-W. Plasma-based nanostructuring of polymers: A review. Polymers 2017, 9, 417. [Google Scholar] [CrossRef]
- Ji, S.H.; Kim, T.; Panngom, K.; Hong, Y.J.; Pengkit, A.; Park, D.H.; Kang, M.H.; Lee, S.H.; Im, J.S.; Kim, J.S.; et al. Assessment of the effects of nitrogen plasma and plasma-generated nitric oxide on early development of Coriandum sativum. Plasma Process. Polym. 2015, 12, 1164–1173. [Google Scholar] [CrossRef]
- Ji, S.H.; Choi, K.H.; Pengkit, A.; Im, J.S.; Kim, J.S.; Kim, Y.H.; Park, Y.; Hong, E.J.; Jung, S.K.; Choi, E.H.; et al. Effects of high voltage nanosecond pulsed plasma and micro DBD plasma on seed germination, growth development and physiological activities in spinach. Arch. Biochem. Biophys. 2016, 605, 117–128. [Google Scholar] [CrossRef]
- Meng, Y.; Qu, G.; Wang, T.; Sun, Q.; Liang, D.; Hu, S. Enhancement of germination and seedling growth of wheat seed using dielectric barrier discharge plasma with various gas sources. Plasma Chem. Plasma Process. 2017, 37, 1105–1119. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhou, R.W.; Groot, G.; Bazaka, K.; Murphy, A.B.; Ostrikov, K.K. Spectral characteristics of cotton seeds treated by a dielectric barrier discharge plasma. Sci. Rep. 2017, 7, 5601. [Google Scholar] [CrossRef] [Green Version]
- Dhayal, M.; Lee, S.-Y.; Park, S.-U. Using low-pressure plasma for Carthamus tinctorium L. seed Surface modification. Vacuum 2006, 80, 499–506. [Google Scholar] [CrossRef]
- Grzegorzewski, F.; Rohn, S.; Kroh, L.W.; Geyer, M.; Schlüter, O. Surface morphology and chemical composition of lamb’s lettuce (Valerianella locusta) after exposure to a low-pressure oxygen plasma. Food Chem. 2010, 122, 1145–1152. [Google Scholar] [CrossRef]
- Baldanov, B.B.; Ranzhurov, T.V.; Sordonova, M.N.; Budazhapov, L.V. Changes in the properties and Surface structure of grain seeds under the influence of a glow discharge at atmospheric pressure. Plasma Phys. Rep. 2020, 46, 110–114. [Google Scholar] [CrossRef]
- Los, A.; Ziuzina, D.; Boehm, D.; Cullen, P.J.; Bourke, P. Investigation of mechanisms involved in germination enhancement of wheat (Triticum aestivum) by cold plasma: Effects on seed Surface chemistry and characteristics. Plasma Process. Polym. 2019, 16, e1800148. [Google Scholar] [CrossRef]
- Erbil, H.Y. Surface Chemistry of Solid and Liquid Interfaces; Wiley-Blackwell: Oxford, UK, 2006. [Google Scholar]
- Bhushan, B.; Nosonovsky, M. The rose petal effect and the modes of superhydrophobicity. Philos. Trans. A Math. Phys. Eng. Sci. 2010, 368, 4713–4728. [Google Scholar] [CrossRef] [PubMed]
- Dobrin, D.; Magureanu, M.; Mandache, N.B.; Ionita, M.-D. The effect of non-thermal plasma treatment on wheat germination and early growth. Innov. Food Sci. Emerg. Technol. 2015, 29, 255–260. [Google Scholar] [CrossRef]
- da Silva, A.R.M.; Farias, M.L.; da Silva, D.L.S.; Vitoriano, J.O.; de Sousa, R.C.; Alves-Junior, C. Using atmospheric plasma to increase wettability, imbibition and germination of physically dormant seeds of Mimosa caesalpiniafolia. Colloids Surf. B Biointerfaces 2017, 157, 280–285. [Google Scholar] [CrossRef]
- Recek, N.; Holc, M.; Vesel, A.; Zaplotnik, R.; Gselman, P.; Mozetič, M.; Primc, G. Germination of Phaseolus vulgaris L. seeds after a short treatment with a powerful RF plasma. Int. J. Mol. Sci. 2021, 22, 6672. [Google Scholar] [CrossRef]
- Dubinov, A.E.; Kozhayeva, J.P.; Zuimatch, E.A. Changing germination rate of brown mustard seeds after treatment with plasmas of nanosecond electric discharges. IEEE Trans. Plasma Sci. 2017, 45, 294–300. [Google Scholar] [CrossRef]
- Mozetič, M. Plasma-stimulated super-hydrophilic Surface finish of polymers. Polymers 2020, 12, 2498. [Google Scholar] [CrossRef]
- Primc, G. Recent advances in Surface activation of polytetrafluoroethylene (PTFE) by gaseous plasma treatments. Polymers 2020, 12, 2295. [Google Scholar] [CrossRef]
- Khamsen, N.; Onwimol, D.; Teerakawanich, N.; Dechanupaprittha, S.; Kanokbannakorn, W.; Hongesombut, K.; Srisonphan, S. Rice (Oryza sativa L.) seed sterilization and germination enhancement via atmospheric hybrid nonthermal discharge plasma. ACS Appl. Mater. Interfaces 2016, 8, 19268–19275. [Google Scholar] [CrossRef] [PubMed]
- International Rules for Seed Testing 2021. Available online: www.seedtest.org/en/international-rules-for-seed-testing-_content---1--1083.html (accessed on 6 January 2021).
- Jiang, J.; He, X.; Li, L.; Li, J.; Shao, H.; Xu, Q.; Ye, R.; Dong, Y. Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci. Technol. 2014, 16, 54–58. [Google Scholar] [CrossRef] [Green Version]
- Ranal, M.A.; Santana, D.G.d. How and why to measure the germination process? Braz. J. Bot. 2006, 29, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hanson, J. Procedures for Handling Seeds in Genebanks; International Board for Plant Genetic Resources: Rome, Italy, 1985; Volume 1. [Google Scholar]
- Pawłat, J.; Starek, A.; Sujak, A.; Terebun, P.; Kwiatkowski, M.; Budzen, M.; Andrejko, D. Effects of atmospheric pressure plasma jet operating with DBD on Lavatera thuringiaca L. seeds’ germination. PLoS ONE 2018, 13, e0194349. [Google Scholar] [CrossRef] [Green Version]
- Graeber, K.; Nakabayashi, K.; Miatton, E.; Leubner-Metzger, G.; Soppe, W.J.J. Molecular mechanisms of seed dormancy. Plant Cell Environ. 2012, 35, 1769–1786. [Google Scholar] [CrossRef]
- Šerá, B.; Šerý, M.; Štrañák, V.; Špatenka, P.; Tichý, M. Does cold plasma affect breaking dormancy and seed germination? A study on seeds of lamb’s quarters (Chenopodium album Agg.). Plasma Sci. Technol. 2009, 11, 750–754. [Google Scholar] [CrossRef]
- Lo Porto, C.; Sergio, L.; Boari, F.; Logrieco, A.F.; Cantore, V. Cold plasma pretreatment improves the germination of wild asparagus (Asparagus acutifolius L.) seeds. Sci. Hortic. 2019, 256. [Google Scholar] [CrossRef]
- Hara, Y. Calculation of population parameters using richards function and application of indices of growth and seed vigor to rice plants. Plant Prod. Sci. 1999, 2, 129–135. [Google Scholar] [CrossRef]
- Štěpánová, V.; Slavíček, P.; Kelar, J.; Prášil, J.; Smékal, M.; Stupavská, M.; Jurmanová, J.; Černák, M. Atmospheric pressure plasma treatment of agricultural seeds of cucumber (Cucumis sativus L.) and pepper (Capsicum annuum L.) with effect on reduction of diseases and germination improvement. Plasma Process. Polym. 2018, 15, 1700076. [Google Scholar] [CrossRef]
- Šourková, H.; Primc, G.; Špatenka, P. Surface functionalization of polyethylene granules by treatment with low-pressure air plasma. Materials 2018, 11, 885. [Google Scholar] [CrossRef] [Green Version]
- Judee, F.; Dufour, T. Seed-packed dielectric barrier device for plasma agriculture: Understanding its electrical properties through an equivalent electrical model. J. Appl. Phys. 2020, 128, 044901. [Google Scholar] [CrossRef]
- Mozetič, M. Controlled oxidation of organic compounds in oxygen plasma. Vacuum 2003, 71, 237–240. [Google Scholar] [CrossRef]
- Yawirach, S.; Sarapirom, S.; Janpong, K. The effects of dielectric barrier discharge atmospheric air plasma treatment to germination and enhancement growth of sunflower seeds. J. Phys. Conf. Ser. 2019, 1380, 012148. [Google Scholar] [CrossRef]
- Vesel, A.; Mozetič, M. New developments in Surface functionalization of polymers using controlled plasma treatments. J. Phys. D Appl. Phys. 2017, 50, 293001. [Google Scholar] [CrossRef]
- Ji, S.H.; Ki, S.H.; Kang, M.H.; Choi, J.S.; Park, Y.; Oh, J.; Kim, S.B.; Yoo, S.J.; Choi, E.H.; Park, G. Characterization of physical and biochemical changes in plasma treated spinach seed during germination. J. Phys. D Appl. Phys. 2018, 51, 145205. [Google Scholar] [CrossRef]
- Šerá, B.; Gajdová, I.; Černák, M.; Gavril, B.; Hnatiuc, E.; Kováčik, D.; Kříha, V.; Slama, J.; Šerý, M.; Špatenka, P. How Various Plasma Sources May Affect Seed Germination and Growth. In Proceedings of the 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Brasov, Romania, 24–26 May 2012; Clotea, L.R., Gerigan, C., Cernat, M., Eds.; IEEE: Brasov, Romania, 2012; pp. 1365–1370. [Google Scholar]
- Holc, M.; Junkar, I.; Mozetič, M. Plasma Agriculture: Oxygen Plasma Effects on Garlic; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2020. [Google Scholar]
- Vesel, A.; Zaplotnik, R.; Primc, G.; Mozetič, M. Evolution of the Surface wettability of PET polymer upon treatment with an atmospheric-pressure plasma jet. Polymers 2020, 12, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.S.; Kim, S.B.; Ryu, S.; Oh, J.; Kim, D.S. Emerging plasma technology that alleviates crop stress during the early growth stages of plants: A review. Front. Plant Sci. 2020, 11, 988. [Google Scholar] [CrossRef]
Author | Year | Plasma | Gas | p [Pa] | t Range [s] | t [s] | Power Density [W cm−3] | Seeds | Initial WCA [°] | Best WCA [°] | WCA Diff. | WCA Diff. [%] | Init. GP [%] | Best GP [%] | GP Diff. [%] | Germ. Speed | WU |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alves-Junior | 2020 | DBD | air | atm | 180, 540, 900 | 900 | n/a | Leucaena | 95 | 40 | 55 | 58 | 4 | 7 | 3 | n/a | ↑ |
Baldanov | 2020 | glow | Ar | atm | 30 | 30 | n/a | Wheat | 107 | 57 | 50 | 47 | n/a | n/a | visual ↑ | n/a | n/a |
Bormashenko | 2012 | RF IC | air | 0.067 | 15–120 | 15 | 0.4444 | Beans | 98 | 53 | 45 | 46 | 62 | 72 | 10 | ↑ | ↑ |
Bormashenko | 2012 | RF IC | air | 0.067 | 15–120 | 15 | 0.4444 | Lentils | 127 | 20 | 107 | 84 | 47 | 83 | 36 | ↑ | ↑ |
Bormashenko | 2012 | RF IC | air | 0.067 | 15–120 | 15 | 0.4444 | Wheat | 115 | 0 | 115 | 100 | 48 | 71 | 23 | ↑ | ↑ |
Bormashenko | 2015 | RF IC | air | 0.067 | 120 | 120 | 0.0238 | Beans | 109 | 40 | 69 | 63 | 93 | 93 | 0 | ↑ | ↑ |
da Silva | 2017 | DBD | air | atm | 180, 540, 900 | 540 | n/a | Mimosa caesalpiniafolia | 98 | 47 | 51 | 52 | 6 | 46 | 40 | unch. | ↑ |
Dobrin | 2015 | sDBD | air | atm | 300, 900, 1800 | 900 | n/a | Wheat | 92 | 53 | 39 | 42 | 95 | 98 | 3 | n/a | ↑ |
Dubinov | 2017 | plasma + UV pulse | air | atm | 900 | 900 | n/a | Brown mustard | 106 | 106 | 0 | 0 | 86 | 91 | 5 | ↑ | n/a |
Guimarães | 2015 | DBD jet | He | atm | 60 | 60 | n/a | Leucaena | 95 | 60 | 35 | 37 | 30 | 50 | 20 | n/a | n/a |
Hoppanova | 2020 | DCSBD | air | atm | 10, 15 | 15 | 70 | Barley, with fungi | 95 | 62 | 33 | 35 | 100 | 100 | 0 | n/a | n/a |
Hoppanova | 2020 | DCSBD | air | atm | 10, 15 | 15 | 70 | Wheat, with fungi | 106 | 57 | 50 | 47 | 100 | 100 | 0 | n/a | n/a |
Hosseini | 2018 | RF CC | N2 | 1.8 | 180, 600, 900 | 180 | n/a | Artichoke | 112 | 45 | 67 | 60 | 68 | 86 | 18 | n/a | ↑ |
Ji | 2018 | high V ns pulsed | air | atm | ns pulses | ns pulses | n/a | Spinach | 100 | 65 | 35 | 35 | 59 | 75 | 16 | n/a | unch. |
Khamsen | 2016 | MC/DBD | Ar/air | atm | 60 | 60 | n/a | Rice | 100 | 75 | 25 | 25 | 90 | 98 | 8 | n/a | ↑ |
Li | 2014 | RF CC | He | 150 | 15 | 15 | 0.0185 | Soybean | 76 | 56 | 20 | 26 | 82 | 90 | 8 | ↑ | ↑ |
Li | 2015 | RF CC | He | 150 | 15 | 15 | 0.0231 | Rapeseed, Zhongshuang 11 | n/a | n/a | n/a | 17 | 98 | 99 | 1 | ↑ | n/a |
Li | 2015 | RF CC | He | 150 | 15 | 15 | 0.0231 | Rapeseed, Zhongshuang 7 | n/a | n/a | n/a | 30 | 93 | 100 | 7 | ↑ | n/a |
Li | 2016 | RF CC | He | 150 | 15 | 15 | 0.0278 | Peanut | 100 | n/a | n/a | 53 | 63 | 76 | 13 | ↑ | n/a |
Li | 2018 | RF CC | He | 150 | 15 | 15 | 0.0231 | Rapeseed, Zhongshuang 9 | n/a | n/a | n/a | 33 | 80 | 87 | 7 | ↑ | ↑ |
Author | Year | Plasma | Gas | p [Pa] | t Range [s] | t [s] | Power Density [W cm−3] | Seeds | Initial WCA [°] | Best WCA [°] | WCA Diff. | WCA Diff. [%] | Init. GP [%] | Best GP [%] | GP Diff. [%] | Germ. Speed | WU |
Lonlua | 2019 | RF IC | Ar | 1.65 | 120 | 120 | n/a | Sunflower, peeled | 43 | 0 | 43 | 100 | 88 | 100 | 12 | n/a | unch. |
Lonlua | 2019 | RF IC | Ar | 1.65 | 120 | 120 | n/a | Sunflower, unpeeled | 108 | 18 | 90 | 83 | 88 | 92 | 4 | n/a | unch. |
Los | 2019 | DBD | air | atm | 30, 60, 180 | 30 | n/a | Wheat | 106 | 87 | 19 | 18 | 64 | 72 | 8 | ↑ | ↑ |
Molina | 2018 | DBD | He/air | atm | 10, 30, 120, 300 | 10 | 1.5727 | Nasturtium | n/a | n/a | n/a | visual ↓ | 45 | 67 | 22 | n/a | ↑ |
Molina | 2020 | DBD | He/air | atm | 10, 30, 60, 120, 300, 900 | 60 | 1.5727 | Wheat | 115 | 55 | 60 | 52 | 97 | 99 | 2 | ↑ | ↑ |
Nantapan | 2019 | DC jet | Ar | atm | 15 | 15 | n/a | Sunflower | 111 | 27 | 84 | 75 | 80 | 100 | 20 | n/a | unch. |
Nishime | 2020 | DBD | Ar/air, He/air | atm | 60, 120, 180, 300, 450, 600, 1200, 1800 | 180 | 0.0739 | Wheat, winter | 110 | 38 | 72 | 65 | 95 | 98 | 3 | ↑ | n/a |
Pérez Pizá | 2018 | DBD | O2/air, N2/air | atm | 60, 120, 180 | 120 | 0.7519 | Soybean, with fungi | n/a | n/a | n/a | visual ↓ | 67 | 78 | 11 | n/a | unch. |
Recek | 2021 | RF IC | O2 | 5, 15, 20 | 0.5, 3, 10 | 3 | 0.4053 | Beans | 85 | 1 | 84 | 99 | 65 | 80 | 15 | n/a | ↑ |
Sadhu | 2017 | RF CC | air | 20 | 600, 900, 1200 | 900 | 0.0047 | Mung bean | 100 | 75 | 25 | 25 | 87 | 100 | 13 | ↑ | ↑ |
Shashikanthalu | 2020 | DBD | air | 6666–9999 | 120, 180, 240 | 180 | 0.0028 | Cumin | 138 | 34 | 104 | 75 | 42 | 74 | 32 | n/a | ↑ |
Srisonphan | 2018 | MC/DBD | Ar/air | atm | 30 | 30 | 1 | Rice | 100 | 0 | 100 | 100 | 90 | 90 | 0 | ↑ | ↑ |
Srisonphan | 2020 | MC/DBD | Ar/air | atm | 15, 30, 45, 60, 180, 300 | 60 | 4 | Cabbage | 118 | 55 | 63 | 53 | 91 | 91 | 0 | n/a | ↑ |
Srisonphan | 2020 | MC/DBD | Ar/air | atm | 15, 30, 45, 60, 180, 300 | 60 | 4 | Rice | 112 | 0 | 112 | 100 | 90 | 98 | 8 | n/a | ↑ |
Šerý | 2020 | DCSBD | air | atm | 1, 3, 5, 10, 30, 60 | 5 | n/a | Black pine | 116 | 30 | 86 | 74 | 82 | 86 | 4 | ↑ | n/a |
Thammaniphit | 2020 | MC/DBD | Ar/air | atm | 60 | 60 | n/a | Cauliflower, with fungi | n/a | n/a | n/a | visual ↓ | 65 | 68 | 3 | n/a | n/a |
Velichko | 2019 | RF jet | Ar | atm | 15, 30, 45, 60, 180, 300 | 15 | n/a | Wheat | 113 | 101 | 12 | 11 | 98 | 98 | 0 | ↑ | ↑ |
Velichko | 2019 | DBD | air | atm | 2, 4, 6, 8, 10 | 10 | n/a | Wheat | 113 | n/a | n/a | visual ↓ | 96 | 96 | 0 | ↑ | ↑ |
Yawirach | 2019 | DBD | air | atm | 30, 60, 90, 120 | 60 | n/a | Sunflower | 102 | 71 | 31 | 30 | 92 | 100 | 8 | n/a | ↑ |
Zahoranová | 2018 | DCSBD | air | atm | 15, 30, 60, 120, 180, 240, 300 | 60 | 80 | Maize | 108 | 40 | 68 | 63 | 98 | 100 | 2 | n/a | ↑ |
Author | Year | Seeds | Init. GP [%] | Final GP [%] | GP Imp. [%] |
---|---|---|---|---|---|
Khamsen | 2016 | Rice | 90 | 98 | 8 |
Li | 2014 | Soybean | 82 | 90 | 8 |
Srisonphan | 2020 | Rice | 90 | 98 | 8 |
Yawirach | 2019 | Sunflower | 92 | 100 | 8 |
Los | 2019 | Wheat | 64 | 72 | 8 |
Li | 2018 | Rapeseed | 80 | 87 | 7 |
Li | 2015 | Rapeseed | 93 | 100 | 7 |
Dubinov | 2017 | Brown mustard | 86 | 91 | 5 |
Lonlua | 2019 | Sunflower | 88 | 92 | 4 |
Šerý | 2020 | Black pine | 82 | 86 | 4 |
Alves-Junior | 2020 | Leucaena | 4 | 7 | 3 |
Dobrin | 2015 | Wheat | 95 | 98 | 3 |
Nishime | 2020 | Wheat | 95 | 98 | 3 |
Thammaniphit | 2020 | Cauliflower | 65 | 68 | 3 |
Molina | 2020 | Wheat | 97 | 99 | 2 |
Zahoranová | 2018 | Maize | 98 | 100 | 2 |
Li | 2015 | Rapeseed | 98 | 99 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holc, M.; Mozetič, M.; Recek, N.; Primc, G.; Vesel, A.; Zaplotnik, R.; Gselman, P. Wettability Increase in Plasma-Treated Agricultural Seeds and Its Relation to Germination Improvement. Agronomy 2021, 11, 1467. https://doi.org/10.3390/agronomy11081467
Holc M, Mozetič M, Recek N, Primc G, Vesel A, Zaplotnik R, Gselman P. Wettability Increase in Plasma-Treated Agricultural Seeds and Its Relation to Germination Improvement. Agronomy. 2021; 11(8):1467. https://doi.org/10.3390/agronomy11081467
Chicago/Turabian StyleHolc, Matej, Miran Mozetič, Nina Recek, Gregor Primc, Alenka Vesel, Rok Zaplotnik, and Peter Gselman. 2021. "Wettability Increase in Plasma-Treated Agricultural Seeds and Its Relation to Germination Improvement" Agronomy 11, no. 8: 1467. https://doi.org/10.3390/agronomy11081467
APA StyleHolc, M., Mozetič, M., Recek, N., Primc, G., Vesel, A., Zaplotnik, R., & Gselman, P. (2021). Wettability Increase in Plasma-Treated Agricultural Seeds and Its Relation to Germination Improvement. Agronomy, 11(8), 1467. https://doi.org/10.3390/agronomy11081467