A Study on Petal Morphological and Physiological Characteristics of Styrax japonicus during the Flowering Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Sample Collection
2.3. Determination Methods
2.4. Data Analysis
3. Results
3.1. Structure Observation of S. japonicus Flowers
3.2. Comparison of Soluble Sugar, Starch, and Soluble Protein at Different Flowering Stages
3.3. Relationship between Mineral Elements and Flowering
3.4. Differences of the Contents of Hormones in S. japonicus Petals
3.5. Changes of Antioxidant Enzymes and MDA in S. japonicus Petals
4. Discussion
4.1. Abundant Nutrients Promoted S. japonicus Flowering
4.2. Mineral Elements Affected S. japonicus Flowering Variously
4.3. Hormones Closely Correlated with S. japonicus Flowering Period
4.4. Antioxidant Enzyme Activity and MDA Content Significantly Impacted S. japonicus Flowering
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, P.P.; Wu, C.B.; Zhou, B.Y. Drought stress induces flowering and enhances carbohydrate accumulation in Averrhoa carambola. Hortic. Plant J. 2017, 3, 60–66. [Google Scholar] [CrossRef]
- Hossain, Z.; Mandal, A.K.A.; Datta, S.K.; Biswas, A.K. Decline in ascorbate peroxidase activity—A prerequisite factor for tepal senescence in gladiolus. J. Plant Physiol. 2006, 163, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Kolář, J.; Seňkova, J. Reduction of mineral nutrient availability accelerates flowering of Arabidopsis thaliana. J. Plant Physiol. 2007, 165, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Li, X.M.; Fan, T.; Zou, P.; Zhang, W.H.; Wu, X.J.; Zhang, Y.X.; Liao, J.P. Can the anatomy of abnormal flowers elucidate relationships of the androecial members in the ginger (Zingiberaceae)? EvoDevo 2020, 11, 12. [Google Scholar] [CrossRef]
- Luo, H.H.; Wang, Q.; Zhang, J.K.; Wang, L.S.; Li, Y.B.; Yang, G.Z. Minimum fertilization at the appearance of the first flower benefits cotton nutrient utilization of nitrogen, phosphorus and potassium. Sci. Rep. 2020, 10, 6815. [Google Scholar] [CrossRef] [Green Version]
- Neuffer, B.; Paetsch, M. Flower morphology and pollen germination in the genus Capsella (Brassicaceae). Flora 2013, 208, 626–640. [Google Scholar] [CrossRef]
- Watson, M.A.; Brochier, J. The role of nutrient levels on flowering in water hyacinth. Aquat. Bot. 1988, 31, 367–372. [Google Scholar] [CrossRef]
- Richards, J. Development potential of axillary buds of water hyacinth, Eichhornia crassipes Solme (Pontederiaceae). Am. J. Bot. 1982, 69, 615–622. [Google Scholar] [CrossRef]
- Chen, C.; Cao, Y.Y.; Wang, X.J.; Wu, Q.K.; Yu, F.Y. Do stored reserves and endogenous hormones in overwintering twigs determine flower bud differentiation of summer blooming plant—Styrax tonkinensis. Int. J. Agric. Biol. 2019, 22, 815–820. [Google Scholar]
- Stutte, G.W.; Martin, G.C. Effect of light intensity and carbohydrate reserves on flowering in olive. J. Am. Soc. Hortic. Sci. 1986, 111, 27–31. [Google Scholar]
- Zhang, H.; Wei, Q.; Zhang, H. Contents of microscopic structure, nucleic acid and soluble protein during flower bud differentiation in Crocus sativus. J. Northeast For. Univ. 2017, 45, 33–36. [Google Scholar]
- Shahri, W.; Tahir, I.; Islam, S.T. Physiological and biochemical changes associated with flower development and senescence in so far unexplored Helleborus orientalis Lam. cv. Olympicus. Physiol. Mol. Biol. Plant 2011, 17, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Mishra, Y. Biochemical changes associated with flowering in Bambusa arundinacea and Bambusa nutans. J. For. Res. 2018, 5, 1315–1320. [Google Scholar] [CrossRef]
- MacMillan, J. Occurrence of gibberellins in vascular plants, fungi, and bacteria. J. Plant. Growth Regul. 2001, 20, 387–442. [Google Scholar] [CrossRef]
- Yamaguchi, S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 2008, 59, 225–251. [Google Scholar] [CrossRef]
- Bernier, G. The control of floral evocation and morphogenesis. Annu. Rev. Plant Biol. 1988, 39, 175–219. [Google Scholar] [CrossRef]
- Hassankhah, A.; Rahemi, M.; Mozafari, M.R.; Vahdati, K. Flower development in walnut: Altering the flowering pattern by gibberellic acid application. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 700–706. [Google Scholar] [CrossRef] [Green Version]
- Kan, X.Q.; Sun, Y.; Su, M.; Zhou, L.L.; Xu, W.F.; Tan, J.Z. Analysis of enzyme activity of protective system in Dahlia pinnata cav petals during senescence. North. Hortic. 2010, 19, 124–127. [Google Scholar]
- Li, W.; Xu, Z.Z.; Zhang, C.P.; Jiang, W.Q.; Wang, K.L. Transcriptomic identification of floral transition and development-associated genes in Styrax japonicus. Forests 2020, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.P.; Huang, Z.Y.; Liang, L.; Meng, Y.N.; Kong, D.Z. The influence of auxin IAA on the flowering regulation of lotus. J. Henan Agric. Sci. 2019, 48, 141–145. [Google Scholar]
- Franklin, K.A. Light and temperature signal crosstalk in plant development. Curr. Opin. Plant Biol. 2009, 12, 63–68. [Google Scholar] [CrossRef]
- Blazquez, M.A.; Green, R.; Nilsson, O.; Sussman, M.R.; Weigel, D. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 1998, 10, 791–800. [Google Scholar] [CrossRef] [Green Version]
- Patil, K.R.; Burondkar, M.M.; Bhave, S.G. Post harvest chemical induction of vegetative growth and its physiological behavior in telation to regulation of flowering in ‘alphonso’ mango (Mangifera indica L.). Acta Hortic. 2013, 992, 193–200. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Ni, M.; Yu, F.Y. Methyl jasmonate application and flowering stage affect scent emission of Styrax japonicus. Flavour Fragr. J. 2021, 36, 497–504. [Google Scholar] [CrossRef]
- Li, W.; Zhang, C.P.; Jiang, X.Q.; Liu, Q.; Wang, K. De novo transcriptomic analysis and development of EST-SSRs for Styrax japonicus. Forests 2018, 9, 748. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Wei, H. Designing microarray and RNA-seq experiments for greater systems biology discovery in modern plant genomics. Mol. Plant 2015, 8, 196–206. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.P.; Yu, F.Y. Corolla structure and fragrance components in Styrax tonkinensis. Trees 2015, 29, 1127–1134. [Google Scholar] [CrossRef]
- Li, H.S. The Principles and Technologies for Plant Physiology and Biochemistry Experiments; High Education Press: Beijing, China, 2006. [Google Scholar]
- Wu, Q.K.; Cao, Y.Y.; Zhao, X.; Zhang, Z.H.; Yu, F.Y.; Guy, R.D. A comparative study of seed reserve accumulation in five Styrax species with potential for biofuel production. Trees 2020, 34, 891–902. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Koshita, Y.T.; Ogata, T.T.; Goto, A. Involvement of endogenous plant hormones (IAA, ABA, GAS) in leaves and flower bud formation of Satsuma mandarin (Citrus unshiu M.). Sci. Hortic. 1999, 79, 185–194. [Google Scholar] [CrossRef]
- Weiler, E.W.; Jourdan, P.S.; Conrad, W. Levels of indole-3-acetic acid in intact and decapitated coleoptiles as determined by a specific and highly sensitive solid-phase enzyme immunoassay. Planta 1981, 153, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Hodges, D.M.; Delong, J.M.; Forney, C.F.; Prange, R.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Ennajeh, M.; Vadel, A.M.; Khemira, H. Osmoregulation and osmoprotection in the leaf cells of two olive cultivars subjected to severe water deficit. Acta Physiol. Plant. 2009, 31, 711–721. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Zhang, Y.L.; Lu, J. Roles of plant soluble sugars and their response to plant cold stress. Afr. J. Biotechnol. 2009, 8, 2004–2010. [Google Scholar]
- Boriboonkaset, T.; Theerawitaya, C.; Yamada, N.; Pichakum, A.; Supaibulwatana, K.; Cha-um, S.; Takabe, T.; Kirdmanee, C. Regulation of some carbohydrate metabolism-related genes, starch and soluble sugar contents, photosynthetic activities and yield attributes of two contrasting rice genotypes subjected to salt stress. Protoplasma 2013, 250, 1157–1167. [Google Scholar] [CrossRef]
- Liu, Y.M.; Pan, S.Y.; Zhou, T.H.; Tian, F.Z. Changes of nutrients and endogenous hormones during flowering of Paeonia. J. Heze Univ. 2020, 42, 95–99. [Google Scholar]
- Xu, L.P.; Liu, J.B.; Yu, F.Y. Physiological and biochemical changes in petals before and after pollination in Styrax tonkinensis. Acta Agric. Univ. Jiangxiensis 2019, 41, 464–475. [Google Scholar]
- Samacha, A.; Smith, H.M. Constraints to obtaining consistent annual yields in perennials. II: Environment and fruit load affect induction of flowering. Plant Sci. 2013, 207, 168–176. [Google Scholar] [CrossRef]
- Sheen, J.; Zhou, L.; Jang, J.C. Sugars as signaling molecules. Curr. Opin. Plant Biol. 1999, 2, 410–418. [Google Scholar] [CrossRef]
- Menzel, C.M.; Rasmussen, T.S.; Simpson, D.R. Carbohydrate reserves in lychee trees (Litchi chinensis Sonn.). J. Hortic. Sci. 1995, 70, 245–255. [Google Scholar] [CrossRef]
- Eshghi, S.; Tafazoli, E.; Dokhani, S.; Rahemi, M.; Emam, Y. Changes in carbohydrate contents in shoot tips, leaves and roots of strawberry (Fragaria × ananassa Duch.) during flower-bud differentiation. Sci. Hortic. 2007, 113, 255–260. [Google Scholar] [CrossRef]
- Wang, C.Y.; Chiou, C.Y.; Wang, H.L.; Krishnamurthy, R.; Venkatagiri, S.; Tan, J.; Yeh, K.W. Carbohydrate mobilization and gene regulatory profile in the pseudobulb of Oncidium orchid during the flowering process. Planta 2008, 227, 1063–1077. [Google Scholar] [CrossRef]
- Corbesier, L.; Lejeune, P.; Bernier, G. The role of carbohydrate in the induction of flowering in Arabidopsis thaliana: Comparison between the wild type and a starchless mutant. Planta 1998, 206, 131–137. [Google Scholar] [CrossRef]
- Yi, B.; Zhou, Y.F.; Gao, M.Y.; Zhang, Z.; Han, Y.; Yang, G.D.; Xu, W.J.; Huang, R.D. Effect of drought stress during flowering stage on starch accumulation and starch synthesis enzymes in sorghum grains. J. Integr. Agric. 2014, 13, 2399–2406. [Google Scholar] [CrossRef]
- Yu, P.T.; Pu, D.H.; Zhou, W.M. Analysis of soluble protein during flowering of Petunia hybrida. J. Plant Physiol. Mol. Biol. 2004, 30, 179–182. [Google Scholar]
- Yang, M.; Cho, E.; Ha, J. Chemical composition of rose petals (Rosa hybrida L.) as a food material. J. Korean Soc. Food Sci. Nutr. 2002, 31, 539–542. [Google Scholar]
- Li, C.Z.; Sun, Y.; Zhao, D.Q.; Tao, J.; Feng, L. Relationship between major mineral nutrient elements contents and flower colors of Herbaceous peony (Paeonia lactiflora). Adv. J. Food Sci. Technol. 2015, 7, 374–382. [Google Scholar] [CrossRef]
- Wang, Y.X.; Wang, H.Y.; Zhou, Q.; Liu, L.L.; Yan, H.; Sun, J.J.; Ni, J.Y. Research of nitrogen nutrient on the preservation of carnation cut flowers. Guangdong Agric. Sci. 2009, 8, 81–84. [Google Scholar]
- Kováčik, J.; Klejdus, B.; Bačkor, M.; Repčák, M. Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes. Plant Sci. 2007, 172, 393–399. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, X.; Zhao, Y.; He, H. Flowering related comparative transcriptomics between Jatropha curcas and Jatropha nigroviensrugosus. Intl. J. Agric. Biol. 2018, 20, 1523–1532. [Google Scholar]
- Campos-Rivero, G.; Osorio-Montalvo, P.; Sánchez-Borges, R.; Us-Camas, R.; Duarte-Aké, F.; De-la-Peňa, C. Plant hormone signaling in flowering: An epigenetic point of view. J. Plant Physiol. 2017, 214, 16–27. [Google Scholar] [CrossRef]
- Halevy, A.H.; Mayak, S. Interrelationship of several phytohormones in the regulation of rose petal senescence. Acta Hortic. 1975, 41, 103–116. [Google Scholar] [CrossRef]
- Muller, R.; Andersen, A.S.; Serek, M. Differences in display life of miniature potted roses. Sci. Hortic. 1999, 76, 59–61. [Google Scholar] [CrossRef]
- Saxena, S.N.; Kaushik, N.; Sharma, R. Effect of abscisic acid and proline on in vitro flowering in Vigna aconitifolia. Biol. Plant 2008, 52, 181–183. [Google Scholar] [CrossRef]
- Teotia, S.; Tang, G. To bloom or not to bloom: Role of microRNAs in plant flowering. Mol. Plant 2015, 8, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Chrispeels, M.J.; Varner, J.E. Inhibition of gibberellic acid induced formation of α-amylase by abscisin II. Nature 1966, 212, 1066–1067. [Google Scholar] [CrossRef]
- Li, G.L.; Pan, H.B.; Du, B.; Liu, B.; Zhou, W.J. Regulating effect of gibberellin on flowering characteristics of Mangifera indica cv. Keitt. Hubei Agric. Sci. 2011, 50, 2893–2896. [Google Scholar]
- Chen, C.; Wang, X.J.; Cao, Y.Y.; Wu, Q.K.; Yu, F.Y. Time course morphological and histological changes in differentiating floral buds of Styrax tonkinensis. Int. J. Agric. Biol. 2019, 22, 1491–1496. [Google Scholar]
- Davies, P.J. Regulatory factors in hormone action: Level, location and signal transduction. In Plant Hormones: Biosynthesis, Signal Transduction, Action; Davies, P.J., Ed.; Springer: Amsterdam, The Netherlands, 2010; pp. 16–35. [Google Scholar]
- Tanaka, H.; Dhonukshe, P.; Brewer, P.B.; Friml, J. Spatiotemporal asymmetric auxin distribution: A means to coordinate plant development. Cell. Mol. Life Sci. 2006, 63, 2738–2754. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhao, Y. A role for auxin in flower development. J. Integr. Plant Biol. 2007, 49, 99–104. [Google Scholar] [CrossRef]
- Zhu, L.R.; Liu, B.L.; Xiao, M.L.; Zhou, Q.H.; Fu, D.H. A study on chemical regulation of flowering in Brassica napus. Acta Agric. Univ. Jiangxiensis 2017, 39, 1057–1066. [Google Scholar]
- Gasper, T.; Penel, C.; Castillo, F.J.; Greppin, H. A two-step control of basic and acidic peroxidases and its significance for growth and development. Physiol. Plant 1985, 64, 418–423. [Google Scholar] [CrossRef]
- Bouazza, A.; Rambour, S.; Gaspar, T.; Legrand, B. Peroxidases during the course of callusing and organ differentiation from root explants of Cichorium intybus. Biol. Plant 1993, 35, 481–489. [Google Scholar] [CrossRef]
- McCord, J.M.; Fridovich, I. Superoxide dismutase: Anenzumic function for erythrocuprein (hemocuprein). Biol. Chem. 1969, 244, 6049–6055. [Google Scholar] [CrossRef]
- Bartoli, C.G.; Simontacchi, M.; Guiamet, J.J.; Montaldi, E.; Puntarulo, S. Antioxidant enzymes and lipid peroxidation during aging of Chrysanthemum morifolium RAM petals. Plant Sci. 1995, 104, 161–168. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Chen, H.; Ni, M.; Yu, F. A Study on Petal Morphological and Physiological Characteristics of Styrax japonicus during the Flowering Period. Agronomy 2021, 11, 1498. https://doi.org/10.3390/agronomy11081498
Chen C, Chen H, Ni M, Yu F. A Study on Petal Morphological and Physiological Characteristics of Styrax japonicus during the Flowering Period. Agronomy. 2021; 11(8):1498. https://doi.org/10.3390/agronomy11081498
Chicago/Turabian StyleChen, Chen, Hong Chen, Ming Ni, and Fangyuan Yu. 2021. "A Study on Petal Morphological and Physiological Characteristics of Styrax japonicus during the Flowering Period" Agronomy 11, no. 8: 1498. https://doi.org/10.3390/agronomy11081498
APA StyleChen, C., Chen, H., Ni, M., & Yu, F. (2021). A Study on Petal Morphological and Physiological Characteristics of Styrax japonicus during the Flowering Period. Agronomy, 11(8), 1498. https://doi.org/10.3390/agronomy11081498