NMR Fingerprint Comparison of Cultivated Sideritis spp. from Cyprus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Preparation of the Infusions and NMR Spectroscopic Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Hubert, J.; Nuzillard, J.-M.; Renault, J.-H. Dereplication strategies in natural product research: How many tools and methodologies behind the same concept? Phytochem. Rev. 2017, 16, 55–95. [Google Scholar] [CrossRef]
- Karousou, R.; Deirmentzoglou, S. The herbal market of Cyprus: Traditional links and cultural exchanges. J. Ethnopharmacol. 2011, 133, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Charami, M.-T.; Lazari, D.; Karioti, A.; Skaltsa, H.; Hadjipavlou-Litina, D.; Souleles, C. Antioxidant and antiinflammatory activities of Sideritis perfoliata subsp. perfoliata (Lamiaceae). Phytother. Res. 2008, 22, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Chrysargyris, A.; Kloukina, C.; Vassiliou, R.; Tomou, E.-M.; Skaltsa, H.; Tzortzakis, N. Cultivation strategy to improve chemical profile and anti-oxidant activity of Sideritis perfoliata L. subsp. perfoliata. Ind. Crop Prod. 2019, 140, 111694. [Google Scholar] [CrossRef]
- Lall, N.; Chrysargyris, A.; Lambrechts, I.; Fibrich, B.; van Staden, A.B.; Twilley, D.; De Canha, M.N.; Oosthuizen, C.B.; Bodiba, D.; Tzortzakis, N. Sideritis perfoliata (subsp. perfoliata) nutritive value and its potential medicinal properties. Antioxidants 2019, 8, 521. [Google Scholar] [CrossRef] [Green Version]
- Hanoğlu, D.Y.; Hanoğlu, A.; Yusufoğlu, H.; Demirci, B.; Başer, K.H.C.; Çalış, İ.; Yavuz, D.Ö. Phytochemical Investigation of Endemic Sideritis cypria Post. Rec. Nat. Prod. 2020, 14, 105–115. [Google Scholar] [CrossRef]
- Lytra, K.; Tomou, E.-M.; Chrysargyris, A.; Drouza, C.; Skaltsa, H.; Tzortzakis, N. Traditionally Used Sideritis cypria Post: Phytochemistry, Nutritional Content, Bioactive Compounds of Cultivated Populations. Front. Pharmacol. 2020, 11, 650. [Google Scholar] [CrossRef] [PubMed]
- Lytra, K.; Tomou, E.-M.; Chrysargyris, A.; Christofi, M.-D.; Miltiadous, P.; Tzortzakis, N.; Skaltsa, H. Bio-guided investigation of Sideritis cypria Post. methanol extract driven by in vitro antioxidant and cytotoxic assays. Chem. Biodivers. 2021, 18, e2000966. [Google Scholar] [CrossRef] [PubMed]
- Hand, R.; Hadjikyriakou, G.N.; Christodoulou, C.S. Flora of Cyprus—A Dynamic Checklist (Continuously Updated). 2011. Available online: http://www.flora-of-cyprus.eu (accessed on 27 April 2021).
- European Medicines Agency (EMA); Committee on Herbal Medicinal Products (HMPC). Assessment Report on Sideritis scardica Griseb.; Sideritis clandestina (Bory & Chaub.) Hayek; Sideritis raeseri Boiss. & Heldr.; Sideritis syriaca L., Herba; EMA/HMPC/39455/2015; European Medicines Agency: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Tomou, E.; Chatzopoulou, P.; Skaltsa, H. NMR analysis of cultivated Sideritis euboea Heldr. Phytochem. Anal. 2019, 31, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Tomou, E.-M.; Papaemmanouil, C.D.; Diamantis, D.A.; Kostagianni, A.D.; Chatzopoulou, P.; Mavromoustakos, T.; Tzakos, A.G.; Skaltsa, H. Anti-Ageing Potential of S. euboea Heldr. Phenolics. Molecules 2021, 26, 3151. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, H.; Sasaki, H.; Morota, T.; Chen, M.; Mitsuhashi, H. Six iridoids glycosides from Rehmannia glutinosa. Phytochemistry 1989, 25, 2705–2709. [Google Scholar] [CrossRef]
- Śawia̧tek, L.; Lehmann, D.; Chaudhuri, R.K.; Sticher, O. Occurrence of melittoside in the seeds of Plantago media. Phytochemistry 1981, 20, 2023–2024. [Google Scholar] [CrossRef]
- Muñoz, O.; Peña, R.C.; Montenegro, G. Iridoids from Stachys grandidentata (Labiatae). Z. Naturforsch. C J. Biosci. 2001, 56, 902–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Sideritis spp.: Uses, chemical composition and pharmacological activities—A review. J. Ethnopharmacol. 2011, 135, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Żyżelewicz, D.; Kulbat-Warycha, K.; Oracz, J.; Żyżelewicz, K. Polyphenols and Other Bioactive Compounds of Sideritis Plants and Their Potential Biological Activity. Molecules 2020, 25, 3763. [Google Scholar] [CrossRef] [PubMed]
- Venditti, A.; Bianco, A.; Nicoletti, M.; Quassinti, L.; Bramucci, M.; Lupidi, G.; Vitali, L.A.; Papa, F.; Vittori, S.; Petrelli, D.; et al. Characterization of secondary metabolites, biological activity and glandular trichomes of Stachys tymphaea Hausskn. from the Monti Sibillini National Park (Central Apennines, Italy). Chem. Biodiver. 2014, 11, 245–261. [Google Scholar] [CrossRef] [PubMed]
- Aneva, I.; Zhelev, P.; Kozuharova, E.; Danova, K.; Nabavi, S.F.; Behzad, S. Genus Sideritis, section Empedoclia in southeastern Europe and Turkey–Studies in ethnopharmacology and recent progress of biological activities. DARU J. Pharm. Sci. 2019, 27, 407–421. [Google Scholar] [CrossRef] [PubMed]
Chemical Compound | δH1 (ppm) | δH2 (ppm) |
---|---|---|
Ajugol | Aglycon: 6.16 (dd, H-3), 5.46 (d, H-1), 4.87 (*, H-4), 3.93 (m, H-6), 2.73 (dd, H-5), 2.54 (dd, H-9), 2.04 (dd, H-7a), 1.79 (dd, H-7b), 1.31 (s, CH3-10) Glucose: 4.64 (d, H-1′), 3.20–3.90 (H-2′ to H-6′) | Aglycon: 6.16 (dd, H-3), 5.46 (d, H-1), *(H-4), *(H-6), 2.73 (*, H-5), 2.55 (dd, H-9), 2.05 (dd, H-7a), 1.79 (dd, H-7b), 1.32 (s, CH3-10) Glucose: 4.64 (d, H-1′), *(H-2′ to H-6′) |
Melittoside derivatives Monomelittoside R=OH Melittoside R=O-Glc | Monomelittoside Aglycon: 6.35 (dd, H-3), 5.79 (s, H-7), 5.64 (d, H-1), 5.10 (d, H-4), 4.34 (brs, H-6), 4.22 (d, H2-10), 3.35 (*, H-9) Glucose: 4.60 (d, H-1′), 3.28–3.88 (H-2′ to H-6′) Melittoside Aglycon: 6.37 (dd, H-3), 5.80 (s, H-7), 5.60 (d, H-1), 5.12 (d, H-4), 4.38 (brs, H-6), 4.20 (d, H2-10), 3.31 (*, H-9) Glucose: 4.61 (d, H-1′), 3.26–3.90 (H-2′ to H-6′) Glucose: 4.67 (d, H-1″), 3.25–3.90 (H-2″ to H-6″) | Monomelittoside Aglycon: 6.35 (dd, H-3), 5.80 (s, H-7), 5.63 (d, H-1), 5.10 (d, H-4), 4.33 (brs, H-6), 4.19 (d, H2-10), * (H-9) Glucose: 4.61 (d, H-1′), * (H-2′ to H-6′) Melittoside Aglycon: 6.35 (dd, H-3), 5.80 (s, H-7), 5.63 (d, H-1), 5.10 (d, H-4), 4.37 (brs, H-6), 4.19 (d, H2-10), *(H-9) Glucose: 4.61 (d, H-1′), * (H-2′ to H-6′) Glucose: 4.67 (d, H-1″), * (H-2″ to H-6″) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomou, E.-M.; Lytra, K.; Chrysargyris, A.; Tzortzakis, N.; Skaltsa, H. NMR Fingerprint Comparison of Cultivated Sideritis spp. from Cyprus. Agronomy 2021, 11, 1503. https://doi.org/10.3390/agronomy11081503
Tomou E-M, Lytra K, Chrysargyris A, Tzortzakis N, Skaltsa H. NMR Fingerprint Comparison of Cultivated Sideritis spp. from Cyprus. Agronomy. 2021; 11(8):1503. https://doi.org/10.3390/agronomy11081503
Chicago/Turabian StyleTomou, Ekaterina-Michaela, Krystalia Lytra, Antonios Chrysargyris, Nikolaos Tzortzakis, and Helen Skaltsa. 2021. "NMR Fingerprint Comparison of Cultivated Sideritis spp. from Cyprus" Agronomy 11, no. 8: 1503. https://doi.org/10.3390/agronomy11081503
APA StyleTomou, E. -M., Lytra, K., Chrysargyris, A., Tzortzakis, N., & Skaltsa, H. (2021). NMR Fingerprint Comparison of Cultivated Sideritis spp. from Cyprus. Agronomy, 11(8), 1503. https://doi.org/10.3390/agronomy11081503