Biostimulant Effects of Cerium on Seed Germination and Initial Growth of Tomato Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Conditions
2.2. Seed Manipulation and Treatment Application
2.3. Variables Recorded
2.4. Statistical Analysis
3. Results
3.1. Percentage Increase in Tomato Seed Weight after 12 h Imbibition
3.2. Coefficient of Velocity of Germination (CVG), Relative Seed Germination (RSG), and Germination Index (GI)
3.3. Seedling Growth and Biomass Parameters
3.4. Shoot to Radicle Ratio
3.5. Relative Growth of Shoots and Radicles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ascenzi, P.; Bettinelli, M.; Boffi, A.; Botta, M.; De Simone, G.; Luchinat, C.; Marengo, E.; Mei, H.; Aime, S. Rare earth elements (REE) in biology and medicine. Rend. Lincei Sci. Fis. Nat. 2020, 31, 821–833. [Google Scholar] [CrossRef]
- Tommasi, F.; Thomas, P.J.; Pagano, G.; Perono, G.A.; Oral, R.; Lyons, D.M.; Toscanesi, M.; Trifuoggi, M. Review of rare earth elements as fertilizers and feed additives: A knowledge gap analysis. Arch. Environ. Contam. Toxicol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kovaříková, M.; Tomášková, I.; Soudek, P. Rare earth elements in plants. Biol. Plant. 2019, 63, 20–32. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, K.; Wang, F.; Zhao, X.; Bai, R.; Liu, B. Effects of rare earth elements on growth and determination of secondary metabolites under in vitro conditions Salvia miltiorrhiza. HortScience 2020, 55, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Pourkhorsandi, H.; Debaille, V.; de Jong, J.; Armytage, R.M.G. Cerium stable isotope analysis of synthetic and terrestrial rock reference materials by MC-ICPMS. Talanta 2021, 224, 121877. [Google Scholar] [CrossRef]
- Adisa, I.O.; Reddy Pullagurala, V.L.; Rawat, S.; Hernandez-Viezcas, J.A.; Dimkpa, C.O.; Elmer, W.H.; White, J.C.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Role of cerium compounds in Fusarium wilt suppression and growth enhancement in tomato (Solanum lycopersicum). J. Agric. Food Chem. 2018, 66, 5959–5970. [Google Scholar] [CrossRef] [PubMed]
- Adisa, I.O.; Rawat, S.; Pullagurala, V.L.R.; Dimkpa, C.O.; Elmer, W.H.; White, J.C.; Hernandez-Viezcas, J.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Nutritional status of tomato (Solanum lycopersicum) fruit grown in Fusarium-infested soil: Impact of cerium oxide nanoparticles. J. Agric. Food Chem. 2020, 68, 1986–1997. [Google Scholar] [CrossRef]
- Statista. Agriculture. Farming. Global Production of Vegetables in 2019, by Type (in Million Metric Tons). Available online: https://www.statista.com/statistics/264065/global-production-of-vegetables-by-type/ (accessed on 15 March 2021).
- Gupta, M.K.; Chandra, P.; Samuel, D.V.K.; Singh, B.; Singh, A.; Garg, M.K. Modeling of tomato seedling growth in greenhouse. Agric. Res. 2012, 1, 362–369. [Google Scholar] [CrossRef]
- Talská, R.; Machalová, J.; Smýkal, P.; Hron, K.A. Comparison of seed germination coefficients using functional regression. Appl. Plant Sci. 2020, 8, e11366. [Google Scholar] [CrossRef]
- Gresta, F.; Cristaudo, A.; Onofri, A.; Restuccia, A.; Avola, G. Germination response of four pasture species to temperature, light, and post-harvest period. Plant Biosyst. 2010, 144, 849–856. [Google Scholar] [CrossRef]
- Seo, M.; Nambara, E.; Choi, G.; Yamaguchi, S. Interaction of light and hormone signals in germinating seeds. Plant Mol. Biol. 2009, 69, 463–472. [Google Scholar] [CrossRef]
- Miransari, M.; Smith, D.L. Plant hormones and seed germination. Environ. Exp. Bot. 2014, 99, 110–121. [Google Scholar] [CrossRef]
- Cristaudo, A.; Gresta, F.; Restuccia, A.; Catara, S.; Onofri, A. Germinative response of redroot pigweed (Amaranthus retroflexus L.) to environmental conditions: Is there a seasonal pattern? Plant Biosyst. 2016, 150, 583–591. [Google Scholar] [CrossRef]
- Kader, M.A. A comparison of seed germination calculation formulae and the associated interpretation of resulting data. J. Proc. R. Soc. New South Wales 2005, 138, 65–75. [Google Scholar]
- Ceretta, M.B.; Durruty, I.; Orozco, A.M.F.; González, J.F.; Wolski, E.A. Biodegradation of textile wastewater: Enhancement of biodegradability via the addition of co-substrates followed by phytotoxicity analysis of the effluent. Water Sci. Technol. 2018, 2017, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Liang, J.; Zeng, G.; Chen, M.; Mo, D.; Li, G.; Zhang, D. Seed germination test for toxicity evaluation of compost: Its roles, problems and prospects. Waste Manag. 2018, 71, 109–114. [Google Scholar] [CrossRef]
- Jagadabhi, P.S.; Wani, S.P.; Kaushal, M.; Patil, M.; Vemula, A.K.; Rathore, A. Physico-chemical, microbial and phytotoxicity evaluation of composts from sorghum, finger millet and soybean straws. Int. J. Recycl. Org. Waste Agric. 2019, 8, 279–293. [Google Scholar] [CrossRef] [Green Version]
- Noni-Morales, D.; Barros, D.; Castro, S.A.; Ortiz, C. Germination and seedling growth of the Chilean native grass Polypogon australis in soil polluted with diesel oil. Int. J. Phytorem. 2019, 21, 14–18. [Google Scholar] [CrossRef]
- Emino, E.R.; Warman, P.R. Biological assay for compost quality. Compost Sci. Util. 2004, 12, 342–348. [Google Scholar] [CrossRef]
- Riikonen, J.; Luoranen, J. Seedling production and the field performance of seedlings. Forests 2018, 9, 740. [Google Scholar] [CrossRef] [Green Version]
- Fashui, H. Study on the mechanism of cerium nitrate effects on germination of aged rice seed. Biol. Trace Elem. Res. 2002, 87, 191–200. [Google Scholar] [CrossRef]
- Ramírez-Olvera, S.M.; Trejo-Téllez, L.I.; García-Morales, S.; Pérez-Sato, J.A.; Gómez-Merino, F.C. Cerium enhances germination and shoot growth, and alters mineral nutrient concentration in rice. PLoS ONE 2018, 13, e0194691. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Kuang, L.; He, X.; Bai, W.; Ding, Y.; Zhang, Z.; Zhao, Y.; Chai, Z. Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 2010, 78, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ma, X.; Zhang, W.; Pei, H.; Chen, Y. The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 2012, 4, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.J.; Carpenter, D.; Boutin, C.; Allison, J.E. Rare earth elements (REEs): Effects on germination and growth of selected crop and native plant species. Chemosphere 2014, 96, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Appenroth, K.J.; Lenk, G.; Goldau, L.; Sharma, R. Tomato seed germination: Regulation of different response modes by phytochrome B2 and phytochrome A. Plant Cell Environ. 2006, 29, 701–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, M.; Perez, J.; Miles, A. Teaching Organic Farming and Gardening; University of California at Santa Cruz, The Center for Agroecology and Sustainable Food Systems: Santa Cruz, CA, USA, 2015; p. 704. [Google Scholar]
- Washa, B.W. Potential of the dark as a factor affecting seed germination. Int. J. Sci. Technol. 2015, 5, 28–36. [Google Scholar]
- Tam, N.F.Y.; Tiquia, S.M. Assessing toxicity of spent pig litter using a seed germination technique. Resour. Conserv. Recycl. 1994, 11, 261–274. [Google Scholar] [CrossRef]
- Moghadam, P.A.; Alaei, Y. Evaluation of important germination traits of soybean genotypes through factor analysis in osmotic drought stress conditions. Bull. Env. Pharmacol. Life Sci. 2014, 3, 5–8. [Google Scholar]
- Mašková, T.; Herben, T. Root:shoot ratio in developing seedlings: How seedlings change their allocation in response to seed mass and ambient nutrient supply. Ecol. Evol. 2018, 8, 7143–7150. [Google Scholar] [CrossRef] [Green Version]
- Seethalakshmi, S.; Umarani, R. Biochemical changes during imbibition stages of seed priming in tomato. Int. J. Chem. Stud. 2018, 6, 454–456. [Google Scholar]
- Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Panichev, A.M. Rare Earth Elements: Review of medical and biological properties and their abundance in the rock materials and mineralized spring waters in the context of animal and human geophagia reasons evaluation. Achiev. Life Sci. 2015, 9, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Van Gosen, B.S.; Verplanck, P.L.; Seal, R.R., II; Long, K.R.; Gambogi, J. Rare-earth elements. In Critical Mineral Resources of the United States. Economic and Environmental Geology and Prospects for Future Supply; Shulz, K.J., De Young, J.H., Seal, R.R., II, Bradley, D.C., Eds.; 1802; U.S. Geological Survey Professional Paper: Reston, VA, USA, 2017; pp. 01–031. [Google Scholar] [CrossRef]
- Sun, L.J.; Wu, S.Y.; Zhang, Y.L.; Liu, C.Y.; Chen, K.S. Effect of rare earth Nd, burdock oligosaccharide and NaCl on seed germination of Radix astragali. China Seed Ind. 2008, 1, 41–42. [Google Scholar]
- Chen, S.A.; Wang, X.D.; Zhao, B.; Wang, Y.C. Regulating the cell growth and shoot induction of Crocus sativus embryogenic callus by rare earth elements. Chin. Bull. Bot. 2010, 45, 609–614. [Google Scholar] [CrossRef]
- Qiu, L.; Zhou, Q. Review on the effects of rare earth elements on seed germination. Chin. J. Eco Agric. 2008, 16, 529–533. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Q.; Zhang, M.; Zhang, N.; Li, M. Effects of rare earth elements on growth and metabolism of medicinal plants. Acta Pharm. Sin. B 2013, 3, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Mancinelli, A.L.; Yaniv, Z.; Smith, P. Phytochrome and seed germination. I. Temperature dependence and relative P(FR) levels in the germination of dark-germinating tomato seeds. Plant Physiol. 1967, 42, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Shichijo, C.; Katada, K.; Tanaka, O.; Hashimoto, T. Phytochrome A-mediated inhibition of seed germination in tomato. Planta 2001, 213, 764–769. [Google Scholar] [CrossRef]
- Carlson, K.D.; Bhogale, S.; Anderson, D.; Tomanek, L.; Madlung, A. Phytochrome A regulates carbon flux in dark grown tomato seedlings. Front. Plant Sci. 2019, 10, 152. [Google Scholar] [CrossRef]
- Gilbert, S.F. Developmental Biology. Germination. Available online: https://www.ncbi.nlm.nih.gov/books/NBK9979/ (accessed on 3 July 2021).
- Potuschak, T.; Bachmair, A. Seedling germination: Seedlings follow sunshine and fresh air. Curr. Biol. 2015, 25, R565–R566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.; Liu, C.Y.; Qin, G.Z.; Chen, K.S. The effect of Nd3+ and burdock oligosaccharide on the germination of Cassia obtusifolia seeds. Chin. Agric. Sci. Bull. 2008, 24, 69–72. [Google Scholar]
- Sánchez, J.A.; Montejo, L.; Gamboa, A.; Albert, P.D.; Hernández, F. Germination and dormancy of shrubs and climbing plants of the evergreen forest of Sierra del Rosario, Cuba. Pastos y Forrajes 2015, 38, 11–28. [Google Scholar]
- Andersen, C.P.; King, G.; Plocher, M.; Storm, M.; Pokhrel, L.R.; Johnson, M.G.; Rygiewicz, P.T. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environ. Toxicol. Chem. 2016, 35, 2223–2229. [Google Scholar] [CrossRef] [PubMed]
- Fashui, H.; Ling, W.; Xiangxuan, M.; Zheng, W.; Guiwen, Z. The effect of cerium (III) on the chlorophyll formation in spinach. Biol. Trace Elem. Res. 2002, 89, 263–276. [Google Scholar] [CrossRef]
- Libralato, G.; Costa-Devoti, A.; Zanella, M.; Sabboni, E.; Mičetić, I.; Manodori, L.; Pigozzo, A.; Manenti, S.; Groppi, F.; Ghirardini, A.V. Phytotoxicity of ionic, micro- and nano-sized iron in three plant species. Ecotoxicol. Environ. Saf. 2016, 123, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Buendía-Valverde, M.L.; Trejo-Téllez, L.I.; Corona-Torres, T.; Aguilar-Rincón, V.H. Cadmio, talio y vanado afectan diferencialmente la germinación y el crecimiento inicial de tres variedades de chile. Rev. Int. Contam. Ambient. 2018, 34, 737–749. [Google Scholar] [CrossRef]
- Shyam, R.; Aery, N.C. Effect of cerium on growth, dry matter production, biochemical constituents and enzymatic activities of cowpea plants [Vigna unguiculata (L.) Walp.]. J. Soil Sci. Plant Nutr. 2012, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- He, Y.W.; Loh, C.S. Cerium and lanthanum promote floral initiation and reproductive growth of Arabidopsis thaliana. Plant Sci. 2000, 159, 117–124. [Google Scholar] [CrossRef]
- D’Aquino, L.; de Pinto, M.C.; Nardi, L.; Morgana, M.; Tommasi, F. Effect of some light rare earth elements on seed germination, seedling growth and antioxidant metabolism in Triticum durum. Chemosphere 2009, 75, 900–905. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.I.; Rico, C.M.; Hernandez-Viezcas, J.A.; Nunez, J.E.; Barrios, A.C.; Tafoya, A.; Flores-Marges, J.P.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J. Agric. Food Chem. 2013, 61, 6224–6230. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, A.P.P.; Espíndola, M.C.G.; de Menezes, N.L.; Henrique, D.F.S. Tratamento de sementes de alface com soluções aquosas de cério e lantânio. Pesqui. Agropecuária Trop. 2013, 43, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Wang, P.Y.; Sun, L.G.; Zhang, J.J.; Yu, J.; Wang, Y.W. Alleviation of cadmium toxicity by cerium in rice seedlings is related to improved photosynthesis, elevated antioxidant enzymes and decreased oxidative stress. Plant Growth Regul. 2014, 74, 251–260. [Google Scholar] [CrossRef]
- Agathokleous, E.; Kitao, M.; Calabrese, E.J. The rare earth element (REE) lanthanum (La) induces hormesis in plants. Environ. Pollut. 2018, 238, 1044–1047. [Google Scholar] [CrossRef] [PubMed]
- Agathokleous, E.; Kitao, M.; Calabrese, E.J. Hormetic dose responses induced by lanthanum in plants. Environ. Pollut. 2019, 244, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Merino, F.C.; Castillo-González, A.M.; Ramírez-Martínez, M.; Trejo-Téllez, L.I. Lanthanum delays senescence and improves postharvest quality in cut tulip (Tulipa gesneriana L.) flowers. Sci. Rep. 2020, 10, 19437. [Google Scholar] [CrossRef]
- Gómez-Merino, F.C.; Ramírez-Martínez, M.; Castillo-González, A.M.; Trejo-Téllez, L.I. Lanthanum prolongs vase life of cut tulip flowers by increasing water consumption and concentrations of sugars, proteins and chlorophylls. Sci. Rep. 2020, 10, 4209. [Google Scholar] [CrossRef]
- Calabrese, E.J. The maturing of hormesis as a credible dose-response model. Nonlinearity Biol. Toxicol. Med. 2003, 1, 319–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lushchak, V.I. Dissection of the hormetic curve: Analysis of components and mechanisms. Dose Response 2014, 12, 466–479. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Mattson, M.P. How does hormesis impact biology, toxicology, and medicine? NPJ Aging Mech. Dis. 2017, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Agathokleous, E.; Kitao, M.; Calabrese, E.J. Human and veterinary antibiotics induce hormesis in plants: Scientific and regulatory issues and an environmental perspective. Environ. Int. 2018, 120, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Scavo, A.; Pandino, G.; Restuccia, A.; Lombardo, S.; Pesce, G.R.; Mauromicale, G. Allelopathic potential of leaf aqueous extracts from Cynara cardunculus L. on the seedling growth of two cosmopolitan weed species. Ital. J. Agron. 2019, 14, 1373. [Google Scholar] [CrossRef] [Green Version]
Parameter | Formula | Description | Reference |
---|---|---|---|
Germination index (GI) | RSG = relative seed germinaton RGR = relative growth of radicle | Jagadabhi et al. [18] | |
Relative seed germination (RSG) | NSGCe = germinated seeds in the Ce treatment; NSGControl = germinated seeds in the control. | Tam and Tiquia [30] | |
Coefficient of velocity of germination (CVG) | N1 = seeds germinated on day 1, N2 = seeds germinated on day 2, N7 = seeds germinated on day 7. | Moghadam and Alaei [31] | |
Relative growth of shoots and radicles (RGS or RGR) | MLEOCe = mean length of the evaluated organ in a given Ce treatment, MLEOControl = mean length of the evaluated organ in the control. | Tam and Tiquia [30] |
Ce, µM | Coefficient of Velocity of Germination | Relative Seed Germination (%) | Germination Index |
---|---|---|---|
0 | 48.33 ± 0.68 a | 100.00 ± 1.75 a | 100.00 ± 6.55 a |
5 | 50.79 ± 3.76 a | 103.51 ± 5.99 a | 101.94 ± 3.60 a |
10 | 44.31 ± 2.82 a | 94.74 ± 3.50 a | 82.56 ± 4.59 b |
15 | 47.55 ± 1.52 a | 100.00 ± 3.36 a | 92.02 ± 3.41 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobarzo-Bernal, O.; Gómez-Merino, F.C.; Alcántar-González, G.; Saucedo-Veloz, C.; Trejo-Téllez, L.I. Biostimulant Effects of Cerium on Seed Germination and Initial Growth of Tomato Seedlings. Agronomy 2021, 11, 1525. https://doi.org/10.3390/agronomy11081525
Sobarzo-Bernal O, Gómez-Merino FC, Alcántar-González G, Saucedo-Veloz C, Trejo-Téllez LI. Biostimulant Effects of Cerium on Seed Germination and Initial Growth of Tomato Seedlings. Agronomy. 2021; 11(8):1525. https://doi.org/10.3390/agronomy11081525
Chicago/Turabian StyleSobarzo-Bernal, Orlando, Fernando Carlos Gómez-Merino, Gabriel Alcántar-González, Crescenciano Saucedo-Veloz, and Libia I. Trejo-Téllez. 2021. "Biostimulant Effects of Cerium on Seed Germination and Initial Growth of Tomato Seedlings" Agronomy 11, no. 8: 1525. https://doi.org/10.3390/agronomy11081525
APA StyleSobarzo-Bernal, O., Gómez-Merino, F. C., Alcántar-González, G., Saucedo-Veloz, C., & Trejo-Téllez, L. I. (2021). Biostimulant Effects of Cerium on Seed Germination and Initial Growth of Tomato Seedlings. Agronomy, 11(8), 1525. https://doi.org/10.3390/agronomy11081525