Plant Growth-Promoting Microorganisms in Coffee Production: From Isolation to Field Application
Abstract
:1. Introduction
2. Diversity of PGPR Associated with Coffee Plantations in Different Geographical Areas
3. PGPR Isolation, Multiplication, and Inoculum Formulation
4. Diversity of AMF Associated with Coffee Crops
5. AMF Isolation, Reproduction and Inoculum Formulation
6. PGPR and AMF Use in Coffee Nurseries and Crops
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brady, N.C.; Weil, R.R. The soils around us. In The Nature and Properties of Soils, 14th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2008; pp. 1–31. [Google Scholar]
- Rout, M.E.; Southworth, D. The root microbiome influences scales from molecules to ecosystems: The unseen majority. Am. J. Bot. 2013, 100, 1689–1691. [Google Scholar] [CrossRef] [Green Version]
- Desai, S.; Kumar, G.P.; Amalraj, L.D.; Bagyaraj, D.; Ashwin, R. Exploiting PGPR and AMF biodiversity for plant health management. In Microbial Inoculants in Sustainable Agricultural Productivity; Springer: Berlin/Heidelberg, Germany, 2016; pp. 145–160. [Google Scholar]
- Schüßler, A.; Krüger, C.; Urgiles, N. Phylogenetically diverse AM fungi from Ecuador strongly improve seedling growth of native potential crop trees. Mycorrhiza 2016, 26, 199–207. [Google Scholar] [CrossRef] [PubMed]
- De Beenhouwer, M.; Van Geel, M.; Ceulemans, T.; Muleta, D.; Lievens, B.; Honnay, O. Changing soil characteristics alter the arbuscular mycorrhizal fungi communities of Arabica coffee (Coffea arabica) in Ethiopia across a management intensity gradient. Soil Biol. Biochem. 2015, 91, 133–139. [Google Scholar] [CrossRef]
- Babushkina, E.A.; Belokopytova, L.V.; Grachev, A.M.; Meko, D.M.; Vaganov, E.A. Variation of the hydrological regime of Bele-Shira closed basin in Southern Siberia and its reflection in the radial growth of Larix sibirica. Reg. Environ. Chang. 2017, 17, 1725–1737. [Google Scholar] [CrossRef] [Green Version]
- Bünemann, E.K.; Schwenke, G.; Van Zwieten, L. Impact of agricultural inputs on soil organisms—A review. Aus. J. Soil Res. 2006, 44, 379–406. [Google Scholar] [CrossRef] [Green Version]
- Janušauskaite, D.; Kadžienė, G.; Auškalnienė, O. The effect of tillage system on soil microbiota in relation to soil structure. Pol. J. Environ. Stud. 2013, 22, 1387–1391. [Google Scholar]
- Dias Moreira, S.; Cabral França, A.; Grazziotti, P.H.; Soares Leal, F.D.; de Barros Silva, E. Arbuscular mycorrhizal fungi and phosphorus doses on coffee growth under a non-sterile soil. Rev. Caatinga 2019, 32, 72–80. [Google Scholar] [CrossRef]
- Mishra, J.; Arora, N.K. Bioformulations for plant growth promotion and combating phytopathogens: A sustainable approach. In Bioformulations: For Sustainable Agriculture; Arora, N., Mehnaz, S., Balestrini, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 3–33. [Google Scholar] [CrossRef]
- Puigdefábregas, J.; Mendizabal, T. Perspectives on desertification: Western Mediterranean. J. Arid Environ. 1998, 39, 209–224. [Google Scholar] [CrossRef]
- Avila-Salem, M.E.; Montesdeoca, F.; Orellana, M.; Pacheco, K.; Alvarado, S.; Becerra, N.; Marín, C.; Borie, F.; Aguilera, P.; Cornejo, P. Soil biological properties and arbuscular mycorrhizal fungal communities of representative crops established in the Andean region from Ecuadorian highlands. J. Soil Sci. Plant Nutr. 2020, 20, 2156–2163. [Google Scholar] [CrossRef]
- Figueiredo, M.d.V.B.; Bonifacio, A.; Rodrigues, A.C.; de Araujo, F.F.; Stamford, N.P. Beneficial microorganisms: Current challenge to increase crop performance. In Bioformulations: For Sustainable Agriculture; Arora, N., Mehnaz, S., Balestrini, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 53–70. [Google Scholar] [CrossRef]
- Arif, I.M.; Batool, M.; Schenk, P.M. Plant Microbiome Engineering: Expected Benefits for Improved Crop Growth and Resilience. Trends Biotechnol. 2020, 38, 1385–1396. [Google Scholar] [CrossRef]
- Quiza, L.; St-Arnaud, M.; Yergeau, E. Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front. Plant Sci. 2015, 6. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations; FAO Database: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Velivelli, S.L.; De Vos, P.; Kromann, P.; Declerck, S.; Prestwich, B.D. Biological control agents: From field to market, problems, and challenges. Trends Biotechnol. 2014, 32, 493–496. [Google Scholar] [CrossRef]
- Bhattacharyya, P.N.; Jha, D.K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 2012, 28, 1327–1350. [Google Scholar] [CrossRef]
- Timmusk, S.; Paalme, V.; Pavlicek, T.; Bergquist, J.; Vangala, A.; Danilas, T.; Nevo, E. Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS ONE 2011, 6, e17968. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Salgado, T.; Fuentes-Ramirez, L.E.; Tapia-Hernandez, A.; Mascarua-Esparza, M.A.; Martinez-Romero, E.; Caballero-Mellado, J. Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria. Appl. Environ. Microbiol. 1997, 63, 3676–3683. [Google Scholar] [CrossRef] [Green Version]
- Kejela, T.; Thakkar, V.R.; Thakor, P. Bacillus species (BT42) isolated from Coffea arabica L. rhizosphere antagonizes Colletotrichum gloeosporioides and Fusarium oxysporum and also exhibits multiple plant growth promoting activity. BMC Microbiol. 2016, 16, 277. [Google Scholar] [CrossRef] [Green Version]
- Alcarraz Curi, M.; Heredia Jiménez, V.; Julian Ibarra, J.P. Cepas bacterianas nativas con actividades promotoras del crecimiento vegetal aisladas de la rizósfera de Coffea spp. en Pichanaqui, Perú. Biotecnol. Veg. 2019, 19, 285–295. [Google Scholar]
- Cisneros, C.; Franco, J.M.; Fernandez, M.R.; Fuenmayor, J.C. Influencia de microorganismos en la disponibilidad de fósforo en plántulas de café (Coffea arabica). Biotecnol. Sect. Agropecu. Agroind. 1997, 15, 19–26. [Google Scholar] [CrossRef]
- Srivastava, M.P.; Sharma, S. Potential of PGPR bacteria in plant disease management. Biol. Control. Prev. Food Deterior. 2014, 87–116. [Google Scholar] [CrossRef]
- Castillo, J.M.; Casas, J.; Romero, E. Isolation of an endosulfan-degrading bacterium from a coffee farm soil: Persistence and inhibitory effect on its biological functions. Sci. Total Environ. 2011, 412, 20–27. [Google Scholar] [CrossRef]
- Martinez, S.J.; Bressani, A.P.P.; Dias, D.R.; Simão, J.B.P.; Schwan, R.F. Effect of bacterial and yeast starters on the formation of volatile and organic acid compounds in coffee beans and selection of flavors markers precursors during wet fermentation. Front. Microbiol. 2019, 10, 1287. [Google Scholar] [CrossRef]
- Muleta, D.; Assefa, F.; Börjesson, E.; Granhall, U. Phosphate-solubilising rhizobacteria associated with Coffea arabica L. in natural coffee forests of southwestern Ethiopia. J. Saudi Soc. Agric. Sci. 2013, 12, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Srigandha, D.; Venkatesha, J.; Shetty, G.R.; Biradar, I.; Manjunath, G.; Kulkarni, S. Study of Suitability of Containers and Rooting Media for Growth and Rooting of Coffee Seedlings (Coffea arabica cv. Chandragiri). Int. J. Curr. Microbiol. App. Sci. 2017, 6, 527–530. [Google Scholar] [CrossRef]
- Hoe, P.C.K.; Halimi, M.S.; Khairuddin, A.R.; Che, I.; Megat, W. Effects of gamma-irradiated Acinetobacter calcoaceticus on nitrogen and phosphorus uptake of green mustard (Brassica chinensis). Malays. J. Soil Sci. 2019, 23, 149–165. [Google Scholar]
- Yuliatin, E.; Ardyati, T.; Suharjono, S. Effect of Soil Physicochemical Properties on PGPR Density at A Coffee Plantation in Malang, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 391. [Google Scholar] [CrossRef]
- Hassen, A.I.; Bopape, F.; Sanger, L. Microbial inoculants as agents of growth promotion and abiotic stress tolerance in plants. In Microbial Inoculants in Sustainable Agricultural Productivity; Springer: Berlin/Heidelberg, Germany, 2016; pp. 23–36. [Google Scholar] [CrossRef]
- Bertolini, V.; Montaño, N.M.; Chimal Sánchez, E.; Varela Fregoso, L.; Gómez Ruiz, J.; Martínez Vázquez, J.M. Abundancia y riqueza de hongos micorrizógenos arbusculares en cafetales de Soconusco, Chiapas, México. Rev. Biol. Trop. 2018, 66, 91–105. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, A.C.C.; Silva, L.C.F.S.; da Silva, C.C.d.S.; Ouverney, C.C. Prokaryotic Diversity in the Rhizosphere of Organic, Intensive, and Transitional Coffee Farms in Brazil. PLoS ONE 2015, 10, e0106355. [Google Scholar] [CrossRef]
- Boone, D.R.; Castenholz, R.W. Bergey’s Manual of Systematic Bacteriology. Volume One: The Archaea and the Deeply Branching and Phototrophic Bacteria; Springer: New York, NY, USA, 2011; Volume 2, p. 722. [Google Scholar]
- Barrera, J.; Arango, G. Uso y Manejo de las Micorrizas: Investigación en Cultivos. Available online: https://www.engormix.com/agricultura/articulos/uso-manejo-micorrizas-investigacion-t32322.htm (accessed on 5 January 2021).
- Aguirre-Medina, J.F.; Moroyoqui-Ovilla, D.M.; Mendoza-López, A.; Cadena-Iñiguez, J.; Avendaño-Arrazate, C.H.; Aguirre-Cadena, J.F. Hongo endomicorrízico y bacteria fijadora de nitrógeno inoculadas a Coffea arabica en vivero. Agron. Mesoam. 2011, 22, 71–80. [Google Scholar] [CrossRef]
- Prates Júnior, P.; Moreira, B.C.; da Silva, M.d.C.S.; Veloso, T.G.R.; Stürmer, S.L.; Fernandes, R.B.A.; Mendonça, E.d.S.; Kasuya, M.C.M. Agroecological coffee management increases arbuscular mycorrhizal fungi diversity. PLoS ONE 2019, 14, e0209093. [Google Scholar] [CrossRef] [Green Version]
- Reetha, D.; Kumaresan, G.; John Milton, D. Studies to improve the shelf life of Azospirillum lipoferum immobilized in alginate beads. Int. J. Recent Sci. Res. 2014, 5, 2178–2182. [Google Scholar]
- Sahu, P.K.; Gupta, A.; Singh, M.; Mehrotra, P.; Brahmaprakash, G. Bioformulation and fluid bed drying: A new approach towards an improved biofertilizer formulation. In Eco-Friendly Agro-Biological Techniques for Enhancing Crop Productivity; Springer: Berlin/Heidelberg, Germany, 2018; pp. 47–62. [Google Scholar] [CrossRef]
- Swapna, G.; Divya, M.; Brahmaprakash, G. Survival of microbial consortium in granular formulations, degradation and release of microorganisms in soil. Ann. Plant. Sci. 2016, 5, 1348–1352. [Google Scholar] [CrossRef] [Green Version]
- Zavala, J.; Alcarraz, M.; Julian, J. Evaluación para la producción de Azotobacter sp. promotor de crecimiento para cultivos de Coffea arabica. Cienc. Investig. 2020, 23, 45–50. [Google Scholar] [CrossRef]
- Lee, S.-K.; Lur, H.-S.; Lo, K.-J.; Cheng, K.-C.; Chuang, C.-C.; Tang, S.-J.; Yang, Z.-W.; Liu, C.-T. Evaluation of the effects of different liquid inoculant formulations on the survival and plant-growth-promoting efficiency of Rhodopseudomonas palustris strain PS3. Appl. Microbiol. Biotechnol. 2016, 100, 7977–7987. [Google Scholar] [CrossRef] [PubMed]
- Lobo, C.B.; Tomás, M.S.J.; Viruel, E.; Ferrero, M.A.; Lucca, M.E. Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiol. Res. 2019, 219, 12–25. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Soudzilovskaia, N.A.; van Bodegom, P.M.; Terrer, C.; van’t Zelfde, M.; McCallum, I.; McCormack, M.L.; Fisher, J.B.; Brundrett, M.C.; de Sá, N.C.; Tedersoo, L. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kivlin, S.N.; Hawkes, C.V.; Treseder, K.K. Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 2011, 43, 2294–2303. [Google Scholar] [CrossRef] [Green Version]
- Vallejos-Torres, G.; Arévalo, L.; Iliquin, I.; Solis, R. Respuesta en campo de clones de café a la inoculación con consorcios de hongos micorrízicos arbusculares en la región Amazonas, Perú. Inf. Tecnol. 2019, 30, 73–84. [Google Scholar] [CrossRef]
- Repoma, M.; Elizabeth, V. Biogeografía de Hongos Micorrízicos Arbusculares (HMA) en el Cultivo de Café (Coffea arabica L.) en la Región San Martín; Título de Ingeniero Agrónomo, Universidad Nacional de San Martín: Tarapoto, Perú, 2017. [Google Scholar]
- Mahdi, S.S.; Hassan, G.; Samoon, S.; Rather, H.; Dar, S.A.; Zehra, B. Bio-fertilizers in organic agriculture. J. Phytol. 2010, 2, 42–54. [Google Scholar]
- Gavilanes Velasco, A.S. Evaluación de Complejos Micorrízicos Asociados al Cultivo de Plántulas de Café (Coffea canephora). Bachelor’s Thesis, UTB, Babahoyo, Ecuador, 2019. [Google Scholar]
- Urgiles-Gómez, N.; Guachanamá-Sánchez, J.; Granda-Mora, I.; Robles-Carrión, Á.; Encalada-Cordova, M.; Loján-Armijos, P.; Avila-Salem, M.E.; Hurtado-Trejo, L.; Poma-López, N.; Collahuazo-Reinoso, Y. Caracterización morfológica de hongos micorrízicos arbusculares (HMA) asociados al café en sistemas agroforestales de la provincia de Loja, Ecuador. Bosques Latid. Cero 2020, 10, 137–145. [Google Scholar]
- Fitter, A.; Helgason, T.; Hodge, A. Nutritional exchanges in the arbuscular mycorrhizal symbiosis: Implications for sustainable agriculture. Fungal Biol. Rev. 2011, 25, 68–72. [Google Scholar] [CrossRef]
- Fonseca, A.J.; Freitas, A.F.d.; Carvalho, G.R.; Carneiro, M.A.C.; Vilela, D.J.M.; Fassio, L.d.O. Arbuscular mycorrhizal fungus on the initial growth and nutrition of Coffea arabica L. genotypes. Ciência Agrotecnol. 2019, 43. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, A.J.; Tassone, G.A.T.; Carneiro, M.A.C.; Carvalho, G.R.; Carvalho, C.H.S.; Botelho, C.E. Roles of arbuscular mycorrhizal fungi on acclimatization of clones of Coffea arabica L. produced by somatic embryogenesis. Ciência Agrotecnol. 2020, 44. [Google Scholar] [CrossRef]
- Montesdeoca, F.; Ávila, M.; Quishpe, J.; Borie, F.; Cornejo, P.; Aguilera, P.; Alvarado, S.; Espinosa, J. Early changes in the transition from conventional to no-tillage in a volcanic soil cultivated with beans (Phaseolus vulgaris L.). Chil. J. Agric. Anim. Sci. (Agro-Cienc.) 2020, 36, 181–189. [Google Scholar] [CrossRef]
- Mensah, J.A.; Koch, A.M.; Antunes, P.M.; Kiers, E.T.; Hart, M.; Bücking, H. High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism. Mycorrhiza 2015, 25, 533–546. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, E.; Bedini, S. Enhancing ecosystem services in sustainable agriculture: Biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol. Biochem. 2014, 68, 429–439. [Google Scholar] [CrossRef]
- Trejo-Aguilar, D.; Banuelos, J. Isolation and Culture of Arbuscular Mycorrhizal Fungi From Field Samples. Methods Mol. Biol. 2020, 2146, 1–18. [Google Scholar] [CrossRef]
- Adholeya, A.; Tiwari, P.; Singh, R. Large-scale inoculum production of arbuscular mycorrhizal fungi on root organs and inoculation strategies. In In Vitro Culture of Mycorrhizas; Springer: Berlin/Heidelberg, Germany, 2005; pp. 315–338. [Google Scholar] [CrossRef]
- Da Rosa, S.; McDonald, M.; Veiga, A.; Vilela, F.d.L.; Ferreira, I. Staging coffee seedling growth: A rationale for shortening the coffee seed germination test. Seed Sci. Technol. 2010, 38, 421–431. [Google Scholar] [CrossRef] [Green Version]
- Eira, M.T.; Silva, E.; De Castro, R.D.; Dussert, S.; Walters, C.; Bewley, J.D.; Hilhorst, H.W. Coffee seed physiology. Braz. J. PlantPhysiol. 2006, 18, 149–163. [Google Scholar] [CrossRef] [Green Version]
- Moreira, S.D.; França, A.C.; Rocha, W.W.; Tibães, E.S.; Neiva, E. Inoculation with mycorrhizal fungi on the growth and tolerance to water deficit of coffee plants. Rev. Bras. Eng. Agríc. Ambient. 2018, 22, 747–752. [Google Scholar] [CrossRef]
- Basiru, S.; Mwanza, H.P.; Hijri, M. Analysis of arbuscular mycorrhizal fungal inoculant benchmarks. Microorganisms 2021, 9, 81. [Google Scholar] [CrossRef]
- Zorzetti, J.; Ricietto, A.P.S.; Fazion, F.A.P.; Meneghin, A.M.; Neves, P.M.O.J.; Vilas-Boas, L.A.; Vilas-Bôas, G.T. Isolation, morphological and molecular characterization of Bacillus thuringiensis strains against Hypothenemus hampei Ferrari (Coleoptera: Curculionidae: Scolytinae). Rev. Bras. Entomol. 2018, 62, 198–204. [Google Scholar] [CrossRef]
- Urgiles, N.; Strauß, A.; Loján, P.; Schüßler, A. Cultured arbuscular mycorrhizal fungi and native soil inocula improve seedling development of two pioneer trees in the Andean region. New For. 2014, 45, 859–874. [Google Scholar] [CrossRef]
- Ramírez-Rodríguez, R.F.; Castañeda-Hidalgo, E.; Robles, C.; Santiago-Martínez, G.M.; Pérez-León, M.I.; Lozano-Trejo, S. Efectividad de Biofungicidas para el control de la roya en plántulas de café. Rev. Mex. Cienc. Agrícolas 2020, 11, 1403–1412. [Google Scholar] [CrossRef]
- Cacefo, V.; Araújo, F.F.d.; Pacheco, A.C. Biological control of Hemileia vastatrix Berk. & Broome with Bacillus subtilis Cohn and biochemical changes in the coffee. Coffee Sci. Lavras 2016, 11, 567–574. [Google Scholar]
- Urgiles, N.; Haug, I.; Setaro, S.; Aguirre, N. Introduction to Mycorrhizas in the Tropics with Emphasis on the Montane Forest in Southern Ecuador; Universidad Nacional de Loja: Loja, Ecuador, 2016; 117p. [Google Scholar]
PGPR | Role and Mode of Action in Soil, Plant/Seed Quality | Country | Reference |
---|---|---|---|
Acetobacter diazotrophicus | Biofertilization mainly through N2 fixation | Mexico | [20] |
Bacillus amyloquefaciens BT42 | Biocontrol, biostimulation and biofertilization through antagonism to Colletotrichum gloeosporioides and F. oxysporum, IAA production, P solubilization, production of siderophores and ACC deaminase | Ethiopia | [21] |
Azospirillum amazonense 1I Azospirillum sp. 1A | Biostimulation and biofertilization through N2 fixation, P solubilization and IAA production | Peru | [22] |
Pseudomonas putida 2G | Biostimulation, biofertilization through N2 fixation, P solubilization and IAA production | Peru | [22] |
Burkholderia gladioli 2C | Biostimulation and biofertilization through N2 fixation, P solubilization and IAA production | Peru | [22] |
Kocuria sp. | Biofertilization through P solubilization and improvement of the development of coffee seedlings | Colombia | [23] |
Bacillus subtilis | Biofertilization thorugh P solubilization and improvement of the development of coffee seedlings | Colombia | [23] |
Bacillus subtilis AP-3 and AP-150 | Biocontrol by preventing the germination of urediniospores from various breeds of Hemileia vastatrix | Brasil | [24] |
Azotobacter sp. | Biofertilization and biorremediation through N2 fixation and endosulfan degradation | Colombia | [25] |
Bacillus subtilis | Seed quality precursor. Guaiac/Guaicol/Flavor enhancer in coffee beans | Brasil | [26] |
Arthrobacter koreensis | Seed quality precursor. Malic, lactic and acetic acid production/flavor marker precursor in coffee beans | Brasil | [26] |
Erwinia sp. | Biofertilization through P solubilization in acidic soils | Ethiopia | [27] |
Azospirillum sp. | Biofertilization through N2 fixation and proliferation of lateral roots | India | [28] |
Acinetobacter calcoaceticus | Biofertilization through P solubilization and IAA production in vitro | Malasia | [29] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urgiles-Gómez, N.; Avila-Salem, M.E.; Loján, P.; Encalada, M.; Hurtado, L.; Araujo, S.; Collahuazo, Y.; Guachanamá, J.; Poma, N.; Granda, K.; et al. Plant Growth-Promoting Microorganisms in Coffee Production: From Isolation to Field Application. Agronomy 2021, 11, 1531. https://doi.org/10.3390/agronomy11081531
Urgiles-Gómez N, Avila-Salem ME, Loján P, Encalada M, Hurtado L, Araujo S, Collahuazo Y, Guachanamá J, Poma N, Granda K, et al. Plant Growth-Promoting Microorganisms in Coffee Production: From Isolation to Field Application. Agronomy. 2021; 11(8):1531. https://doi.org/10.3390/agronomy11081531
Chicago/Turabian StyleUrgiles-Gómez, Narcisa, María Eugenia Avila-Salem, Paúl Loján, Max Encalada, Leslye Hurtado, Salomé Araujo, Yadira Collahuazo, José Guachanamá, Nohemy Poma, Klever Granda, and et al. 2021. "Plant Growth-Promoting Microorganisms in Coffee Production: From Isolation to Field Application" Agronomy 11, no. 8: 1531. https://doi.org/10.3390/agronomy11081531
APA StyleUrgiles-Gómez, N., Avila-Salem, M. E., Loján, P., Encalada, M., Hurtado, L., Araujo, S., Collahuazo, Y., Guachanamá, J., Poma, N., Granda, K., Robles, A., Senés, C., & Cornejo, P. (2021). Plant Growth-Promoting Microorganisms in Coffee Production: From Isolation to Field Application. Agronomy, 11(8), 1531. https://doi.org/10.3390/agronomy11081531