Effect of Paclobutrazol on the Physiology and Biochemistry of Ophiopogon japonicus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Field Trial Plot Selection and Field Application Method
2.3. The Final Residue of Paclobutrazol in O. japonicus
2.4. Effect of Paclobutrazol on the Appearance and Yield of O. japonicus
2.5. Method of Transmission Electron Microscope
2.6. Quantitative Detection of Saponins and Flavonoids in O. japonicus
2.7. Data Processing
3. Results and Discussion
3.1. The Final Residue of Paclobutrazol in O. japonicus
3.2. The Effect of Paclobutrazol on the Appearance and Yield of O. japonicus
3.2.1. Effect of Paclobutrazol on Plant Height of O. japonicus
3.2.2. Effect of Paclobutrazol Treatment on the Diameter and Length of O. japonicus Root
3.2.3. Effect of Paclobutrazol on the Root Weight of O. japonicus
3.3. Effect of Paclobutrazol on the Cell Morphology of O. japonicus
3.4. The Effect of Paclobutrazol on the Flavonoids and Saponins in Ophiopogon japonicus
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, M.-H.; Chen, X.-J.; Wang, M.; Lin, L.-G.; Wang, Y.-T. Ophiopogon japonicus—A phytochemical, ethnomedicinal and pharmacological review. J. Ethnopharmacol. 2016, 181, 193–213. [Google Scholar] [CrossRef] [PubMed]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China (Part One); Chinese Pharmacopoeia Commission: Beijing, China, 2020; Volume 1. [Google Scholar]
- Zhou, Y.F.; Wang, L.L.; Chen, L.C.; Liu, T.B.; Sha, R.Y.; Mao, J.W. Enrichment and separation of steroidal saponins from the fibrous roots of Ophiopogon japonicus using macroporous adsorption resins. RSC Adv. 2019, 9, 6689–6698. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Xu, B.L.; Chen, C.; Jia, H.J.; Wu, J.X.; Wang, X.C.; Sheng, J.L.; Huang, L.; Cheng, J. Methylophiopogonanone A suppresses ischemia/reperfusion-induced myocardial apoptosis in mice via activating PI3K/Akt/eNOS signaling pathway. Acta. Pharmacol. Sin. 2016, 37, 763–771. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, H.; Wang, X.; Konishi, T. Role of component herbs in antioxidant activity of shengmai san—A traditional Chinese medicine formula preventing cerebral oxidative damage in rat. Am. J. Chin. Med. 2003, 31, 509–521. [Google Scholar] [CrossRef]
- Kitahiro, Y.; Koike, A.; Sonoki, A.; Muto, M.; Ozaki, K.; Shibano, M. Anti-inflammatory activities of Ophiopogonis Radix on hydrogen peroxide-induced cellular senescence of normal human dermal fibroblasts. J. Nat. Med. 2018, 72, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wu, Y.Y.; Yu, B.X. Methylophiopogonanone A, an Ophiopogon homoisoflavonoid, alleviates high-fat diet-induced hyperlipidemia: Assessment of its potential mechanism. Braz. J. Med. Biol. Res. 2020, 53, e9201. [Google Scholar] [CrossRef]
- Sun, J.; Wugeti, N.; Mahemuti, A. Reversal effect of Zhigancao decoction on myocardial fibrosis in a rapid pacing-induced atrial fibrillation model in New Zealand rabbits. J. Int. Med. Res. 2019, 47, 884–892. [Google Scholar] [CrossRef] [Green Version]
- Xiong, F.; Jiang, M.; Chen, M.; Wang, X.; Zhang, S.; Zhou, J.; Li, K.; Sheng, Y.; Yin, L.; Tang, Y.; et al. Study on Inhibitory Effect of MaiMenDong Decoction and WeiJing Decoction Combination with Cisplatin on NCI-A549 Xenograft in Nude Mice and Its Mechanism. J. Cancer 2017, 8, 2449–2455. [Google Scholar] [CrossRef]
- Liu, D.; Lin, L.; Lin, Y.; Zhong, Y.; Xie, Z. Zengye decoction induces alterations to metabolically active gut microbiota in aged constipated rats. Biomed. Pharmacother. 2019, 109, 1361–1371. [Google Scholar] [CrossRef]
- Lyu, C.G.; Kang, C.Z.; Kang, L.P.; Yang, J.; Guo, L.P. Structural characterization and discrimination of Ophiopogon japonicas (Liliaceae) from different geographical origins based on metabolite profiling analysis. J. Pharm. Biomed. Anal. 2020, 185, 113212. [Google Scholar] [CrossRef]
- Sun, P.; Tong, J.; Li, X. Evaluation of the Effects of Paclobutrazol and Cultivation Years on Saponins in Ophiopogon japonicus Using UPLC-ELSD. Int. J. Anal. Chem. 2020, 2020, 5974130. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, Z.; Cui, S.; Xie, L.; Yu, J.; Tang, D.; Ma, X.; Mou, Y. Residue of Paclobutrazol and Its Regulatory Effects on the Secondary Metabolites of Ophiopogon japonicas. Molecules 2019, 24, 3504. [Google Scholar] [CrossRef] [PubMed]
- Kamran, M.; Cui, W.; Ahmad, I.; Meng, X.; Zhang, X.; Su, W.; Chen, J.; Ahmad, S.; Fahad, S.; Han, Q.; et al. Effect of paclobutrazol, a potential growth regulator on stalk mechanical strength, lignin accumulation and its relation with lodging resistance of maize. Plant Growth Regul. 2018, 84, 317–332. [Google Scholar] [CrossRef]
- Mehmood, M.Z.; Qadir, G.; Afzal, O.; Din, A.M.U.; Raza, M.A.; Khan, I.; Hassan, M.J.; Awan, S.A.; Ahmad, S.; Ansar, M.; et al. Paclobutrazol Improves Sesame Yield by Increasing Dry Matter Accumulation and Reducing Seed Shattering Under Rainfed Conditions. Int. J. Plant Prod. 2021, 1–13. [Google Scholar] [CrossRef]
- Fan, Z.X.; Li, S.C.; Sun, H.L. Paclobutrazol Modulates Physiological and Hormonal Changes in Amorpha fruticosa under Drought Stress. Russ. J. Plant Physiol. 2020, 67, 122–130. [Google Scholar] [CrossRef]
- China Institute for the Control of Agrochemicals. China Pesticide Information Network. Available online: http://www.chinapesticide.org.cn/ (accessed on 1 January 2021).
- Luo, Z.; Zhang, L.; Mou, Y.; Cui, S.; Gu, Z.; Yu, J.; Ma, X. Multi-residue analysis of plant growth regulators and pesticides in traditional Chinese medicines by high-performance liquid chromatography coupled with tandem mass spectrometry. Anal. Bioanal. Chem. 2019, 411, 2447–2460. [Google Scholar] [CrossRef]
- Desta, B.; Amare, G. Paclobutrazol as a plant growth regulator. Chem. Biol. Technol. Agric. 2021, 8, 1. [Google Scholar] [CrossRef]
- Li, R.X.; Li, M.M.; Wang, T.; Wang, T.L.; Chen, J.Y.; Francis, F.; Fan, B.; Kong, Z.Q.; Dai, X.F. Screening of pesticide residues in Traditional Chinese Medicines using modified QuEChERS sample preparation procedure and LC-MS/MS analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1152, 122224. [Google Scholar] [CrossRef]
- Chen, X.; Liu, S.; Ding, D.; Huang, W.; Yang, M.; Liu, L. A study on the nutrient physiology of Ophiopogon japonicus (Thunb.) Ker-Gawl. China J. Chin. Mater. Med. 1998, 23, 142–145. [Google Scholar]
- Yu, K.; Liu, W.; Zhang, N.; Cheng, X.; Zhou, S.; Zuo, T.; Kang, S.; Wei, F.; Ma, S. A Novel Method to Identify Three Quality Grades of Herbal Medicine Ophiopogonis Radix by Microscopic Quantification. Front. Pharmacol. 2021, 11, 591310. [Google Scholar] [CrossRef]
- Peng, W.; Ma, X.; Wang, J.; Zeng, N.; Dong, T.W.; Li, L.; Li, M. Research progress on chemical constituents and pharmacological effects of Ophiopogon japonicas. Chin. Tradit. Herb. Drugs 2018, 49, 477–488. [Google Scholar]
- Zang, Q.Q.; Zhang, L.; Gao, N.; Huang, C. Ophiopogonin D inhibits cell proliferation, causes cell cycle arrest at G2/M, and induces apoptosis in human breast carcinoma MCF-7 cells. J. Integr. Med. 2016, 14, 51–59. [Google Scholar] [CrossRef]
- Zongliang, L.; He, W.; Mingxing, Z.; Wei, S.; Jiajia, W.; Changpeng, W.; Ya, K.; Jing, G.; Na, L.; Jie, L.; et al. Ophiopogonin D′, a Natural Product From Radix Ophiopogonis, Induces In Vitro and In Vivo RIPK1-Dependent and Caspase-Independent Apoptotic Death in Androgen-Independent Human Prostate Cancer Cells. Front. Pharmacol. 2018, 9, 432. [Google Scholar]
- Tu, D.-Z.; Mao, X.; Zhang, F.; He, R.-J.; Wu, J.-J.; Wu, Y.; Zhao, X.-H.; Zheng, J.; Ge, G.-B. Reversible and Irreversible Inhibition of Cytochrome P450 Enzymes by Methylophiopogonanone A. Drug Metab. Dispos. 2020, 49, 459–469. [Google Scholar] [CrossRef]
- Liling, W.; Yifeng, Z.; Yuchuan, Q.; Yanbin, W.; Bentong, L.; Ru, F.; Minge, B. Methylophiopogonanone B of Radix Ophiopogonis protects cells from H2O2-induced apoptosis through the NADPH oxidase pathway in HUVECs. Mol. Med. Rep. 2019, 20, 3691–3700. [Google Scholar]
- Xie, T.; Liang, Y.; Hao, H.; Jiye, A.; Xie, L.; Gong, P.; Dai, C.; Liu, L.; Kang, A.; Zheng, X.; et al. Rapid identification of ophiopogonins and ophiopogonones in Ophiopogon japonicus extract with a practical technique of mass defect filtering based on high resolution mass spectrometry. J. Chromatogr. A 2012, 1227, 234–244. [Google Scholar] [CrossRef]
- Zhao, X.; Mu, Y.; Yang, M. A simple multi-residue method for determination of plant growth retardants in Ophiopogon japonicus and soil using ultra-performance liquid chromatography–tandem mass spectrometry. Chemosphere 2018, 207, 329–336. [Google Scholar] [CrossRef]
- Xu, M.; Yang, F. Integrated gender-related effects of profenofos and paclobutrazol on neurotransmitters in mouse. Ecotoxicol. Environ. Saf. 2020, 190, 110085. [Google Scholar] [CrossRef]
- Ajmi, A.; Larbi, A.; Morales, M.; Fenollosa, E.; Chaari, A.; Munné-Bosch, S. Foliar Paclobutrazol Application Suppresses Olive Tree Growth While Promoting Fruit Set. J. Plant Growth Regul. 2020, 39, 1638–1646. [Google Scholar] [CrossRef]
- Yeshitela, T.; Robbertse, P.; Stassen, P. Effects of various inductive periods and chemicals on flowering and vegetative growth of ‘Tommy Atkins’ and ‘Keitt’ mango (Mangifera indica) cultivars. N. Z. J. Crop Hortic. Sci. 2004, 32, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, X.; Li, S.; Jiang, Z.; Guo, X. Magnetic solid-phase extraction based on carbon nanosphere@Fe3O4 for enantioselective determination of eight triazole fungicides in water samples. Electrophoresis 2019, 40, 1306–1313. [Google Scholar] [CrossRef]
- Muangkaewngam, A.; Te-Chato, S. Morphological and physiological responses of torch ginger [Etlingera elatior (Jack) R.M. Smith] to paclobutrazol application. Int. J. Agric. Technol. 2018, 14, 559–570. [Google Scholar]
- Gazara, R.K.; de Oliveira, E.A.G.; Rodrigues, B.C.; Nunes da Fonseca, R.; Oliveira, A.E.A.; Venancio, T.M. Transcriptional landscape of soybean (Glycine max) embryonic axes during germination in the presence of paclobutrazol, a gibberellin biosynthesis inhibitor. Sci. Rep. 2019, 9, 9601. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Liu, G.; Liang, M.; Xu, Y. Ophiopogonin D inhibits cell proliferation and induces apoptosis of human laryngocarcinoma through downregulation of cyclin B1 and MMP-9 and upregulation of p38-MAPK signaling. Oncol. Lett. 2018. [Google Scholar] [CrossRef] [Green Version]
- Tong, Y.-N.; Yang, L.-Y.; Yang, Y.; Song, Z.; Peng, L.-S.; Gao, J.-N.; Zeng, H.; Zou, Q.-M.; Sun, H.-W.; Mao, X.-H. An immunopotentiator, ophiopogonin D, encapsulated in a nanoemulsion as a robust adjuvant to improve vaccine efficacy. Acta. Biomater. 2018, 77, 255–267. [Google Scholar] [CrossRef]
- Adinolfi, M.; Parrilli, M.; Zhu, Y. Terpenoid glycosides from Ophiopogon japonicus roots. Phytochemistry 1990, 29, 1696–1699. [Google Scholar] [CrossRef]
- Li, G.; Zhou, Y.; Sze, D.M.-Y.; Liu, C.; Zhang, Q.; Wang, Z.; Yu, H.; Chan, G.; Wu, Z.; Su, S.; et al. Active Ingredients and Action Mechanisms of Yi Guan Jian Decoction in Chronic Hepatitis B Patients with Liver Fibrosis. Evid. Based Complement. Altern. Med. 2019, 2019, 2408126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | RT (min) | Precursor Ion i (m/z) | Product Ion q (m/z) | IM | FV (V) | CE (V) |
---|---|---|---|---|---|---|
Ophiopogonin D | 2.766 | 899.5 | 721.5/575.3 | ESI- | 300 | 33/40 |
Ophiopogonin D’ | 2.759 | 899.5 | 721.5 | ESI- | 320 | 35 |
Ophiopogonin Ra | 2.013 | 753.3 | 607.3/246.8 | ESI- | 320 | 30/30 |
Methylophiopogonanone A | 3.449 | 341 | 205.9/178 | ESI- | 100 | 25/30 |
Methylophiopogonanone B | 3.736 | 327.1 | 206/178 | ESI- | 150 | 25/35 |
Ophiopogonanone C | 4.748 | 355.1 | 193/164 | ESI- | 200 | 33/38 |
Ophiopogonanone E | 2.039 | 359 | 344/329 | ESI- | 100 | 20/25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Li, R.; Chen, D.; Chen, J.; Xiao, O.; Kong, Z.; Dai, X. Effect of Paclobutrazol on the Physiology and Biochemistry of Ophiopogon japonicus. Agronomy 2021, 11, 1533. https://doi.org/10.3390/agronomy11081533
Zhang Z, Li R, Chen D, Chen J, Xiao O, Kong Z, Dai X. Effect of Paclobutrazol on the Physiology and Biochemistry of Ophiopogon japonicus. Agronomy. 2021; 11(8):1533. https://doi.org/10.3390/agronomy11081533
Chicago/Turabian StyleZhang, Zezhou, Ruixing Li, Deyong Chen, Jieyin Chen, Ouli Xiao, Zhiqiang Kong, and Xiaofeng Dai. 2021. "Effect of Paclobutrazol on the Physiology and Biochemistry of Ophiopogon japonicus" Agronomy 11, no. 8: 1533. https://doi.org/10.3390/agronomy11081533
APA StyleZhang, Z., Li, R., Chen, D., Chen, J., Xiao, O., Kong, Z., & Dai, X. (2021). Effect of Paclobutrazol on the Physiology and Biochemistry of Ophiopogon japonicus. Agronomy, 11(8), 1533. https://doi.org/10.3390/agronomy11081533