Association between Soil Acidity and Bacterial Wilt Occurrence in Potato Production in Ethiopia
Abstract
:1. Introduction
- To determine the extent to which soil acidification is a problem in major potato growing districts in Ethiopia.
- To assess the extent of bacterial wilt incidence in potato fields and its relationship with soil acidity.
- To examine the effect of different levels of lime application on soil acidity and the incidence of bacterial wilt.
- To detect and characterise Ralstonia solanacearum strains in potato fields.
2. Materials and Methods
2.1. Soil Sampling and Bacterial Wilt Incidence Survey in Potato Fields
2.2. Field Experiments
2.2.1. Site Description and Experimental Design
2.2.2. Inoculation
2.3. Detection and Characterisation of Ralstonia solanacearum
2.3.1. Potato Tuber Sampling
2.3.2. Isolation of Ralstonia solanacearum Strains and DNA Extraction
2.3.3. Detection and Identification of Ralstonia solanacearum
2.3.4. Phylotype Identification
2.4. Data Analysis
3. Results
3.1. Soil Acidity Status in Potato Fields
3.2. Correlation between Soil Acidity and Bacterial Wilt Incidence
3.3. Effect of Lime on Soil pH Value
3.4. Effect of Lime on Bacterial Wilt Incidence
3.5. Phylotype Identification of Ralstonia solanacearum Isolates
4. Discussion
4.1. Extent of Soil Acidity in Major Potato Growing Areas
4.2. Association between Soil Acidity and Bacterial Wilt Incidence
4.3. Liming Reduces Bacterial Wilt Incidence
4.4. Detection and Characterisation of Ralstonia solanacearum Strains
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CSA. Agricultural Sample Survey Report on Area, Production and Farm Management Practice of Belg Season Crops Private Peasant Holdings; Statistical Bulletin: Addis Ababa, Ethiopia, 2016; Volume 1. [Google Scholar]
- CIP. 12th Six-Month Program Report; Better Potato for Better Life Project; CIP: Addis Ababa, Ethiopia, 2016. [Google Scholar]
- Gorfu, D.; Woldegiorgis, G.; Kassa, B. Bacterial Wilt: An Emerging Threat to Ethiopian Potato Industry. Seed potato tuber production and dissemination: Experiences, challenges and prospects. In Proceedings of the National Workshop on Seed Potato Tuber Production and Dissemination, Bahir Dar, Ethiopia, 12–14 March 2012. [Google Scholar]
- Bekele, B.; Abate, E.; Asefa, A.; Dickinson, M. Incidence of potato viruses and bacterial wilt disease in the west Amhara sub-region of Ethiopia. J. Plant Pathol. 2011, 93, 149–157. [Google Scholar]
- Lemessa, F.; Zeller, W. Isolation and characterisation of Ralstonia solanacearum strains from Solanaceae crops in Ethiopia. J. Basic Microbiol. 2007, 47, 40–49. [Google Scholar] [CrossRef]
- Abdurahman, A.; Griffin, D.; Elphinstone, J.; Struik, P.C.; Schulz, S.; Schulte-Geldermann, E.; Sharma, K. Molecular characterization of Ralstonia solanacearum strains from Ethiopia and tracing potential source of bacterial wilt disease outbreak in seed potatoes. Plant Pathol. 2017, 66, 826–834. [Google Scholar] [CrossRef] [Green Version]
- Kassa, B. Potato Bacterial Wilt Management in the Central Highlands of Ethiopia. Eth. J. Agric. Sci. 2016, 26, 83–97. [Google Scholar]
- Damtew, E.; Tafesse, S.; Lie, R.; Van Mierlo, B.; Lemaga, B.; Sharma, K.; Struik, P.C.; Leeuwis, C. Diagnosis of management of bacterial wilt and late blight in potato in Ethiopia: A systems thinking perspective. NJAS-Wagen. J. Life Sci. 2018, 86, 12–24. [Google Scholar] [CrossRef]
- Tafesse, S.; Damtew, E.; Van Mierlo, B.; Lie, R.; Lemaga, B.; Sharma, K.; Leeuwis, C.; Struik, P.C. Farmers’ knowledge and practices of potato disease management in Ethiopia. NJAS-Wagen. J. Life Sci. 2018, 86, 25–38. [Google Scholar] [CrossRef]
- Tafesse, S.; Lie, R.; van Mierlo, B.; Struik, P.C.; Lemaga, B.; Leeuwis, C. Analysis of a monitoring system for bacterial wilt management by seed potato cooperatives in Ethiopia: Challenges and Future Directions. Sustainability 2020, 12, 3580. [Google Scholar] [CrossRef]
- Schulz, S.; Woldegiorgis, G.; Hailemariam, G.; Aliyi, A.; Haar, J. Sustainable Seed Potato Production in Ethiopia: From Farm-Saved to Quality Declared Seed. Seed potato tuber production and dissemination: Experiences, challenges and prospects. In Proceedings of the National Workshop on Seed Potato Tuber Production and Dissemination, Bahir Dar, Ethiopia, 12–14 March 2012. [Google Scholar]
- Agegnehu, G.; Amede, T. Integrated soil fertility and plant nutrient management in tropical agro-ecosystems: A review. Pedosphere 2017, 27, 662–680. [Google Scholar] [CrossRef]
- ATA. Soil Fertility Mapping and Fertilizer Blending; Agricultural Transformation Agency (ATA): Addis Ababa, Ethiopia, 2014. [Google Scholar]
- Abebe, M. Nature and Management of Acid Soils in Ethiopia; Haramaya University: Dire Dawa, Ethiopia, 2007. [Google Scholar]
- Abate, E.; Hussein, S.; Laing, M.; Mengistu, F. Soil acidity under multiple land-uses: Assessment of perceived causes and indicators, and nutrient dynamics in small-holders’ mixed-farming system of northwest Ethiopia. Acta Agric. Scand. Sect. B Soil Plant Sci. 2017, 67, 134–147. [Google Scholar] [CrossRef]
- Elias, E. Characteristics of Nitisol profiles as affected by land use type and slope class in some Ethiopian highlands. Environ. Syst. Res. 2017, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Barak, P.; Jobe, B.O.; Krueger, A.R.; Peterson, L.A.; Laird, D.A. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin. Plant Soil 1997, 197, 61–69. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warner, J.; Yirga, C.; Gameda, S.; Rashid, S.; Alemu, D. Soil Acidity Problems in Ethiopia: Magnitude, Current Awareness and Practices, and Policy Actions. In Proceedings of the Research for Ethiopia’s Agricultural Policy Presented for EIAR 50th Anniversary, Addis Ababa, Ethiopia, 1 July 2016. [Google Scholar]
- Kebede, F.; Yamoah, C. Soil fertility status and numass fertilizer recommendation of typic hapluusterts in the northern highlands of Ethiopia. World Appl. Sci. J. 2009, 6, 1473–1480. [Google Scholar]
- Agegnehu, G.; Yirga, C.; Erkossa, T. Soil Acidity Management; Ethiopian Institute of Agricultural Research (EIAR): Addis Ababa, Ethiopia, 2019. [Google Scholar]
- Weil, R.; Brady, N. The Nature and Properties of Soils (Global Edition); Pearson: London, UK, 2016. [Google Scholar]
- Garbeva, P.V.; Van Veen, J.A.; Van Elsas, J.D. Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 2004, 42, 243–270. [Google Scholar] [CrossRef] [PubMed]
- Rousk, J.; Brookes, P.C.; Bååth, E. The microbial PLFA composition as affected by pH in an arable soil. Soil Biol. Biochem. 2010, 42, 516–520. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, C.; Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 2020, 11, 1–10. [Google Scholar]
- Bååth, E.; Arnebrant, K. Growth rate and response of bacterial communities to pH in limed and ash treated forest soils. Soil Biol. Biochem. 1994, 26, 995–1001. [Google Scholar] [CrossRef]
- Hartman, W.H.; Richardson, C.J.; Vilgalys, R.; Bruland, G.L. Environmental and anthropogenic controls over bacterial communities in wetland soils. Proc. Natl. Acad. Sci. USA 2008, 105, 17842–17847. [Google Scholar] [CrossRef] [Green Version]
- Bai, B.; Yang, X.; Zhao, Q.; Liu, R.; Ren, J. Inoculations with Pseudomonas fluorescens and Bacillus cereus affect the soil enzyme activity, growth and rhizosphere microbial diversity of Taxus chinensis var. mairei. Plant Soil 2020, 455, 41–52. [Google Scholar] [CrossRef]
- Lodewyckx, C.; Vangronsveld, J.; Porteous, F.; Moore, E.R.; Taghavi, S.; Mezgeay, M.; Daniel, V.D.L. Endophytic bacteria and their potential applications. Crit. Rev. Plant Sci. 2002, 21, 583–606. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, H.; Sun, L.; Qi, G.; Chen, S.; Zhao, X. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strobel, G.; Daisy, B. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 2003, 67, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Elphinstone, J. The current bacterial wilt situation: A global overview. In Bacterial Wilt: The Disease and the Ralstonia solanacearum Species Complex; Allen, C., Prior, P., Hayward, A.C., Eds.; American Phytopathological Society: Saint Paul, MN, USA, 2005; pp. 9–28. [Google Scholar]
- Hayward, A. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 1991, 29, 65–87. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, Y.; Wang, J.; Yang, L.; Zhang, S.; Xu, C.; Ding, W. Soil acidification aggravates the occurrence of bacterial wilt in South China. Front. Microbiol. 2017, 8, 703. [Google Scholar] [CrossRef] [Green Version]
- Shen, G.; Zhang, S.; Liu, X.; Jiang, Q.; Ding, W. Soil acidification amendments change the rhizosphere bacterial community of tobacco in a bacterial wilt affected field. Appl. Microbiol. Biotechnol. 2018, 102, 9781–9791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elphinstone, J.; Stanford, H.; Stead, D. Detection of Ralstonia Solanacearum in Potato Tubers, Solanum Dulcamara and Associated Irrigation Water. In Bacterial Wilt Disease; Springer: Berlin/Heidelberg, Germany, 1998; pp. 133–139. [Google Scholar]
- Elphinstone, J.; Hennessy, J.; Wilson, J.; Stead, D. Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts. EPPO Bull. 1996, 26, 663–678. [Google Scholar] [CrossRef]
- Kelman, A. The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance in a tetrazolium medium. Phytopathology 1953, 44, 693–695. [Google Scholar]
- Opina, N.; Tavner, F.; Hollway, G.; Wang, J.; Li, T.; Maghirang, R.; Fegan, M.; Hayward, A.; Krishnapillai, V.; Hong, W.; et al. A novel method for development of species and strain-specific DNA proves and PCR primers for identifying Burkholderia Solanacearum (formerly Pseudomonas Solanacearum). Asia. Pac. J. Mol. Biol. Biotechnol. 1997, 5, 19–30. [Google Scholar]
- Fegan, M.; Prior, P. How complex is the Ralstonia solanacearum species complex? In Bacterial Wilt Disease and the Ralstonia Solanacearum Species Complex; Allen, C., Prior, P., Hayward, A.C., Eds.; APS Press: Saint Paul, MN, USA, 2005; Volume 1, pp. 449–461. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org (accessed on 20 April 2020).
- Gurmessa, B. Soil acidity challenges and the significance of liming and organic amendments in tropical agricultural lands with reference to Ethiopia. Environ. Dev. Sustain. 2020, 23, 77–99. [Google Scholar] [CrossRef]
- Fageria, N.K.; Nascente, A.S. Management of soil acidity of South American soils for sustainable crop production. Adv. Agron. 2014, 128, 221–275. [Google Scholar]
- Minda, T.T.; van der Molen, M.K.; Struik, P.C.; Combe, M.; Jiménez, P.A.; Khan, M.S.; Jordi, V.D.A. The combined effect of elevation and meteorology on potato crop dynamics: A 10-year study in the Gamo Highlands, Ethiopia. Agric. For. Meteorol. 2018, 262, 166–177. [Google Scholar] [CrossRef]
- Opala, P.A.; Odendo, M.; Muyekho, F.N. Effects of lime and fertilizer on soil properties and maize yields in acid soils of Western Kenya. Afr. J. Agric. Res. 2018, 13, 657–663. [Google Scholar]
- Rengel, Z. Soil pH, soil health and climate change. In Soil Health and Climate Change; Springer: Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2011; pp. 69–85. [Google Scholar]
- da Costa, C.H.M.; Crusciol, C.A.C. Long-term effects of lime and phosphogypsum application on tropical no-till soybean–oat–sorghum rotation and soil chemical properties. Eur. J. Agron. 2016, 74, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Kisinyo, P.; Othieno, C.; Gudu, S.; Okalebo, J.; Opala, P.; Ng’Etich, W.K.; Nyambati, R.O.; Ouma, E.O.; Agalo, J.J.; Kebeney, S.J.; et al. Immediate and residual effects of lime and phosphorus fertilizer on soil acidity and maize production in western Kenya. Exp. Agric. 2014, 50, 128–143. [Google Scholar] [CrossRef]
- Lukin, V.V.; Epplin, F.M. Optimal frequency and quantity of agricultural lime applications. Agric. Syst. 2003, 76, 949–967. [Google Scholar] [CrossRef]
- Wu, K.; Yuan, S.; Wang, L.; Shi, J.; Zhao, J.; Shen, B.; Shen, Q. Effects of bio-organic fertilizer plus soil amendment on the control of tobacco bacterial wilt and composition of soil bacterial communities. Biol. Fertil. Soils 2014, 50, 961–971. [Google Scholar] [CrossRef]
- Högberg, M.N.; Högberg, P.; Myrold, D.D. Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 2007, 150, 590–601. [Google Scholar] [CrossRef] [PubMed]
- Abdurahman, A.; Parker, M.L.; Kreuze, J.; Elphinstone, J.G.; Struik, P.C.; Kigundu, A.; Arengo, E.; Sharma, K. Molecular epidemiology of Ralstonia solanacearum species complex strains causing bacterial wilt of potato in Uganda. Phytopathology 2019, 109, 1922–1931. [Google Scholar] [CrossRef] [Green Version]
- Fouché-Weich, J.; Poussier, S.; Trigalet-Demery, D.; Berger, D.; Coutinho, T. Molecular identification of some African strains of Ralstonia solanacearum from eucalypt and potato. J. Gen. Plant Pathol. 2006, 72, 369–373. [Google Scholar] [CrossRef]
- Safni, I.; Cleenwerck, I.; De Vos, P.; Fegan, M.; Sly, L.; Kappler, U. Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: Proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. Int. J. Syst. Evol. Microbiol. 2014, 64, 3087–3103. [Google Scholar]
- Cellier, G.; Prior, P. Deciphering phenotypic diversity of Ralstonia solanacearum strains pathogenic to potato. Phytopathology 2010, 100, 1250–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milling, A.; Meng, F.; Denny, T.P.; Allen, C. Interactions with hosts at cool temperatures, not cold tolerance, explain the unique epidemiology of Ralstonia solanacearum race 3 biovar 2. Phytopathology 2009, 99, 1127–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tafesse, S.; Van Mierlo, B.; Leeuwis, C.; Lie, R.; Lemaga, B.; Struik, P.C. Combining experiential and social learning approaches for crop disease management in a smallholder context: A complex socio-ecological problem. Socio Ecolog. Pract. Res. 2020, 2, 265–282. [Google Scholar] [CrossRef]
- EPPO. PM 7/21 (2) Ralstonia solanacearum, R. pseudosolanacearum and R. syzygii (Ralstonia solanacearum species complex). EPPO Bull. 2018, 48, 32–63. [Google Scholar]
Experimental Site | Location | Altitude(m) | Soil pH | Soil Texture (%) | |||
---|---|---|---|---|---|---|---|
Latitude | Longitude | Sand | Silt | Clay | |||
Bakaka | 09°06′28.8′’ N | 038°28′3.1′’ E | 2521 | 5.22 | 50 | 30 | 20 |
Gaba Robi | 09°07′33.8′’ N | 038°26′39.3′’ E | 2592 | 4.81 | 47.5 | 30 | 22.5 |
Wolmera Choke | 09°06′13.2′’ N | 038°31′55.5′’ E | 2459 | 4.58 | 57.5 | 30 | 12.5 |
Primer | Primer Sequence (5′ to 3′) | Specificity | Amplicon Size (bp) | Reference |
---|---|---|---|---|
759F | GTCGCCGTCAACTCACTTTCC | Universal R.-solanacearum-specific primer | 280 | [39] |
760R | GTCGCCGTCAGCAATGCGGAATCG | Reverse | ||
Nmult21:1F | CGTTGATGAGGCGCGCAATTT | Phylotype I | 144 | [40] |
Nmult21:2F | AAGTTATGGACGGTGGAAGTC | Phylotype II | 372 | |
Nmult23:AF | ATTACSAGAGCAATCGAAAGATT | Phylotype III | 91 | |
Nmult22:InF | ATTGCCAAGACGAGAGAAGTA | Phylotype IV | 213 | |
Nmult22:RR | TCGCTTGACCCTATAACGAGTA | All phylotypes | Reverse |
Lime Treatments | Bacterial Wilt Incidence after 90 Days |
---|---|
Control | 39.4 ± 8.46 a |
3 t/ha | 31.4 ± 6.26 b |
6 t/ha | 23.6 ± 7.24 c |
9 t/ha | 12.5 ± 3.95 d |
12 t/ha | 10.8 ± 4.33 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tafesse, S.; Braam, C.; van Mierlo, B.; Lemaga, B.; Struik, P.C. Association between Soil Acidity and Bacterial Wilt Occurrence in Potato Production in Ethiopia. Agronomy 2021, 11, 1541. https://doi.org/10.3390/agronomy11081541
Tafesse S, Braam C, van Mierlo B, Lemaga B, Struik PC. Association between Soil Acidity and Bacterial Wilt Occurrence in Potato Production in Ethiopia. Agronomy. 2021; 11(8):1541. https://doi.org/10.3390/agronomy11081541
Chicago/Turabian StyleTafesse, Shiferaw, Ciska Braam, Barbara van Mierlo, Berga Lemaga, and Paul C. Struik. 2021. "Association between Soil Acidity and Bacterial Wilt Occurrence in Potato Production in Ethiopia" Agronomy 11, no. 8: 1541. https://doi.org/10.3390/agronomy11081541
APA StyleTafesse, S., Braam, C., van Mierlo, B., Lemaga, B., & Struik, P. C. (2021). Association between Soil Acidity and Bacterial Wilt Occurrence in Potato Production in Ethiopia. Agronomy, 11(8), 1541. https://doi.org/10.3390/agronomy11081541