Soil Microbial Activity and Biomass in Semiarid Agroforestry Systems Integrating Forage Cactus and Tree Legumes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Sampling Strategy
2.2. Soil Analyses
2.3. Statistical Analysis
3. Results
3.1. Soil δ13C and δ15N
3.2. Total Organic Carbon (TOC) and Total Nitrogen (TN)
3.3. Microbiological Characteristics
4. Discussion
4.1. Soil δ13C and δ15N
4.2. Total Organic Carbon (TOC) and Total Nitrogen (TN)
4.3. Microbiological Characteristics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Goveia, J.S.S.; Oliveira, V.S.; Santos, G.R.A.; Melo, K.A.; Oliveira, A.G.; Melo, M.V.A. Partial replacement of corn by forage cactus in the diets of lactating goats. Semin. Ciênc. Agrár. 2016, 37, 969–976. [Google Scholar] [CrossRef] [Green Version]
- Sarto, M.V.; Borges, W.L.; Sarto, J.R.; Pires, C.A.; Rice, C.W.; Rosolem, C.A. Soil microbial community and activity in a tropical integrated crop-livestock system. Appl. Soil Ecol. 2020, 145, 103350. [Google Scholar] [CrossRef]
- Schumacher, M.V.; Szymczak, D.A.; Trüby, P.; Londero, E.K.; Marafiga, J. Litter and nutrient input in seasonal forest in the central region of Rio Grande do Sul state. Ciênc. Florest. 2018, 28, 532–541. [Google Scholar] [CrossRef] [Green Version]
- Souza, M.S.; Jardim, A.M.R.F.; Araújo Júnior, G.N.; Silva, J.R.I.; Leite, M.L.M.V.; Teixeira, V.I.; Silva, T.G.F. Nutrient cycling in tropical pasture ecosystems. Publ. Med. Vet. Zootec. 2018, 12, 172. [Google Scholar] [CrossRef] [Green Version]
- Muir, J.; Dubeux Júnior, J.C.B. Arboreal Legumes for Multiple Uses. Legume Perspect. 2019. [Google Scholar]
- Herrera, A.M.; de Mello, A.C.L.; Apolinário, V.X.O.; Dubeux Júnior, J.C.B.; Cunha, M.V.; dos Santos, M.V.F. Potential of Gliricidia sepium (jacq.) Kunth ex Walp. and Mimosa caesalpiniifolia Benth. in silvopastoral systems intercropped with signalgrass [Urochloa decumbens (Stapf) RD Webster]. Agrofor. Syst. 2021, 1–12. [Google Scholar] [CrossRef]
- Lira Junior, M.A.; Fracetto, F.J.C.; Ferreira, J.S.; Silva, M.B.; Fracetto, G.G.M. Legume silvopastoral systems enhance soil organic matter quality in a subhumid tropical environment. Soil Sci. Soc. Am. J. 2020, 84, 1209–1218. [Google Scholar] [CrossRef]
- Couto, W.H.; Anjos, L.H.C.D.; Pereira, M.G.; Guareschi, R.F.; Assunção, S.A.; Wadt, P.G.S. Carbon, nitrogen, and natural abundance of δ13C and δ15N of soils under agroforestry systems. Floresta E Ambiente 2017, 24. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Bhardwaj, D.R.; Pala, N.A.; Kaushal, R.; Rajput, B.S. Soil microbial characteristics in sub-tropical agro-ecosystems of North Western Himalaya. Curr. Sci. 2018, 115. [Google Scholar] [CrossRef]
- Wardle, D.A. A comparative assessment or factors which influence microbial biomass carbon and nitrogen levels in soil. Biol. Rev. Camb. Philos. Soc. 1992, 67, 321–358. [Google Scholar] [CrossRef]
- Cruz, A.B.; Pablo, T.L.; González, F.L.; Zornoza, R.; Gallegos, V.M.; Ponce, M.M.; Sánchez, L.R. Cultivation of Opuntia ficus-indica under different soil management practices: A possible sustainable agricultural system to promote soil carbon sequestration and increase soil microbial biomass and activity. Land Degrad. Dev. 2018, 29, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Bååth, E. Temperature sensitivity of soil microbial activity modeled by the square root equation as a unifying model to differentiate between direct temperature effects and microbial community adaptation. Glob. Chang. Biol. 2018, 24, 2850–2861. [Google Scholar] [CrossRef] [PubMed]
- Cardinael, R.; Chevallier, T.; Cambou, A.; Beral, C.; Barthès, B.G.; Dupraz, C.; Chenu, C. Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France. Agric. Ecosyst. Environ. 2017, 236, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Onyekwelu, J.C.; Mosandl, R.; Stimm, B. Effect of land-use systems and seasonal variation on microbial biomass and population in tropical rainforest soils. Niger. J. For. 2011, 40, 60–68. [Google Scholar]
- Ding, G.C.; Piceno, Y.M.; Heuer, H.; Weinert, N.; Dohrmann, A.B.; Carrillo, A.; Smalla, K. Changes of soil bacterial diversity as a consequence of agricultural land use in a semiarid ecosystem. PLOS ONE 2013, 8, e59497. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization (FAO). World Reference Base for Soil Resources: International soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Report No 106. 2014, p. 203. Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 15 June 2021).
- Almeida, B.G.; Donagemma, G.K.; Ruiz, H.A.; Braida, J.A.; Viana, J.H.M.; Reichert, J.M.M.; Passos, R.R. Standardization of methods for granulometric analyses in Brazil. Embrapa Solos Comun. Técnico 2012, 66, 11. [Google Scholar]
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)—Centro Nacional de Pesquisas de Solos. Manual of Methods of Soil Analyses, 2nd ed.; Embrapa Solos: Rio de Janeiro, Brazil, 2011; 230p. [Google Scholar]
- Miranda, K.R.D.; Dubeux Júnior, J.C.B.; Mello, A.C.L.; Silva, M.C.; Santos, M.V.F.; Santos, D.C. Forage production and mineral composition of cactus intercropped with legumes and fertilized with different sources of manure. Ciênc. Rural 2019, 49, e20180324. [Google Scholar] [CrossRef]
- Mendonça, E.S.; Matos, E.S. Soil Organic Matter: Methods of Analyses; UFV: Viçosa, Brazil, 2005; 107p. [Google Scholar]
- Islam, K.R.; Weil, R.R. Microwave irradiation of soil for measurement of microbial biomass carbon. Biol. Fertil. Soils 1998, 27, 408–416. [Google Scholar] [CrossRef]
- Anderson, T.H.; Domsch, K.H. The metabolic quotient for CO2 (qCO2) as a specific activiy parameter to assess the effect of environmental condition, such as pH on the microbial biomass of forest soils. Soil Biol. Biochem. 1993, 23, 393–395. [Google Scholar] [CrossRef]
- Moscatelli, M.C.; Lagomarsino, A.; Marinari, S.; Angelis, P.; Grego, S. Soil microbial indices as bioindicators of environmental changes in a poplar plantation. Ecol. Indic. 2005, 5, 171–179. [Google Scholar] [CrossRef]
- Martinelli, L.A.; Almeida, S.; Brown, I.F.; Moreira, M.Z.; Victória, R.L.; Sternberg, L.S.L.; Thomas, W.W. Stable carbon isotope ratio of tree leaves, boles and fine litter in a tropical forest in Rondonia, Brazil. Oecologia 1998, 114, 170–179. [Google Scholar] [CrossRef]
- Crayn, D.M.; Winter, K.; Smith, J.A.C. Multiple origins of crassulacean acid metabolism and the epiphytic habit in the Neotropical family Bromeliaceae. Proc. Natl. Acad. Sci. USA 2004, 101, 3703–3708. [Google Scholar] [CrossRef] [Green Version]
- González, F.L.; Ponce, M.H.F.; Cruz, A.B.; Pablo, T.L.; Juárez, H.C.; Sánchez, L.M.R. Cactus crop as an option to reduce soil C–CO2 emissions in soils with declining fertility. Agron. Sustain. Dev. 2018, 38, 8. [Google Scholar] [CrossRef] [Green Version]
- Craine, J.M.; Brookshire, E.N.J.; Cramer, M.D.; Hasselquist, N.J.; Koba, K.; Marin-Spiotta, E.; Wang, L. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 2015, 396, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Högberg, P. 15N natural abundance in soil-plant systems. New Phytol. 1997, 137, 179–203. [Google Scholar] [CrossRef] [PubMed]
- Iwata, B.F.; Leite, L.F.; Araújo, A.S.; Nunes, L.A.; Gehring, C.; Campos, L.P. Agroforestry systems and its effects on chemical attributes of an Ultisol in the ‘Cerrado’ of Piaui state, Brazil. Rev. Bras. Eng. Agríc. Ambient. 2012, 16, 730–738. [Google Scholar] [CrossRef]
- Lira Junior, M.A.; Fracetto, F.J.C.; Ferreira, J.S.; Silva, M.B.; Fracetto, G.G.M. Legume-based silvopastoral systems drive C and N soil stocks in a subhumid tropical environment. Catena 2020, 189, 104508. [Google Scholar] [CrossRef]
- Alonso, J.M.; Leles, P.S.S.; Ferreira, L.N.; Oliveira, N.S.A. Litter input after establishment in areas of forestry reclamation, at different planting spacing. Ciênc. Florest. 2015, 25, 1–11. [Google Scholar] [CrossRef]
- Apolinário, V.X.; Dubeux Jr, J.C.; Lira, M.A.; Ferreira, R.L.; Mello, A.C.; Santos, M.V.; Muir, J.P. Tree legumes provide marketable wood and add nitrogen in warm-climate silvopasture systems. Agron. J. 2015, 107, 1915–1921. [Google Scholar] [CrossRef]
- Barros, F.M.R.; Fracetto, G.G.M.; Fracetto, F.J.C.; Mendes Júnior, J.P.; Araújo, V.L.V.P.; Lira Junior, M.A. Silvopastoral systems drive the nitrogen-cycling bacterial community in soil. Ciênc. Agrotecnol. 2018, 42, 281–290. [Google Scholar] [CrossRef]
- Snyman, H.A. A greenhouse study on root dynamics of cactus pears, Opuntia ficus-indica and O. robusta. J. Arid Environ. 2006, 65, 529–542. [Google Scholar] [CrossRef]
- Brandani, C.B.; Santos, D.G. Soil C transformations. In Microbiologia do Solo, 2nd ed.; Andreote, F.D., Cardoso, E.J.B.N., Eds.; ESALQ: Piracicaba, Brazil, 2016; p. 221. [Google Scholar]
- Lisboa, C.C.; Lima, F.R.; Reis, R.H.C.L.; Silva, C.A.; Marques, J.J. Nitrogen mineralization rate of organic residues. Cult. Agron. Rev. Ciênc. Agron. 2018, 27, 341–355. [Google Scholar] [CrossRef]
- Arf, O.; Meirelles, F.C.; Portugal, J.R.; Buzetti, S.; Sá, M.E. Benefits of intercropping maize with grass and legumes and its effects on productivity in a no-till system. Rev. Bras. Milho Sorgo 2018, 17, 431–444. [Google Scholar] [CrossRef]
- Araujo, J.K.S.; Ribeiro, M.R.; Corrêa, M.M.; Galindo, I.C.L.; Souza Júnior, V.S. Humic Haplustox under different land uses in a high altitude environment in the Agreste region of Pernambuco, Brazil. Rev. Bras. Ciênc. Solo 2014, 38, 1337–1349. [Google Scholar] [CrossRef] [Green Version]
- Souza, E.D.; Costa, S.E.V.G.A.; Anghinoni, I.; Lima, C.V.S.; Carvalho, P.C.F.; Martins, A.P. Soil microbial biomass in a no-tillage integrated crop-livestock system under different grazing intensities. Rev. Bras. Ciênc. Solo 2010, 34, 79–88. [Google Scholar] [CrossRef]
- Horwath, W.R. The role of the soil microbial biomass in cycling nutrients. Microbial Biomass: A Paradigm Shift in Terrestrial Biogeochemistry. World Sci. 2017, 41–66. [Google Scholar] [CrossRef]
- Yadav, R.S.; Yadav, B.L.; Chhipa, B.R.; Dhyani, S.K.; Ram, M. Soil biological properties under different tree based traditional agroforestry systems in a semi-arid region of Rajasthan, India. Agrofor. Syst. 2011, 81, 195–202. [Google Scholar] [CrossRef]
- Bolat, İ.; Ömer, K.; Tunay, M. Effects of Seasonal Changes on Microbial Biomass and Respiration of Forest Floor and Topsoil under Bornmullerian Fir Stand. Eurasian J. For. Sci. 2015, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Pinzari, F.; Trinchera, A.; Benedetti, A.; Sequi, P. Use of biochemical indices in the Mediterranean environment: Comparison among soils under different forest vegetation. J. Microbiol. Methods 1999, 36, 21–28. [Google Scholar] [CrossRef]
- Melloni, R.; Belleze, G.; Pinto, A.M.S.; Dias, L.B.D.P.; Silve, E.M.; Melloni, E.G.P.; Alcântara, E.N.D. Methods of weed control and their impacts on microbial quality of soil under coffee. Rev. Bras. Ciênc. Solo 2013, 37, 66–75. [Google Scholar] [CrossRef]
- Aguiar, M.I.; Fialho, J.S.; Campanha, M.M.; Oliveira, T.S. Floristic and vegetation structure in Caatinga areas under different management systems. Pesqui. Florest. Bras. 2019, 39, 1–11. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Ladd, J.N. Microbial biomass in soil: Measurement and turnover. In Soil Biochemistry, 5th ed.; Paul, E.A., Ladd, J.M., Eds.; Marcel Decker: New York, NY, USA, 1981; pp. 415–471. [Google Scholar]
- Guimarães, N.F.; Gallo, A.S.; Fontanetti, A.; Meneghin, S.P.; Souza, M.; Morinigo, K.P.; Silva, R.F. Biomass and soil microbial activity in different systems of coffee cultivation. Rev. Ciênc. Agrár. 2017, 40, 34–44. [Google Scholar] [CrossRef]
Soil Depth | Management | Distance | Sand | Silt | Clay | Textural Class | pH | P | Ca | Mg | Na | K | Al | H | NT | TOC | SOM |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(m) | (m) | (g·kg−1) 1 | (H2O) 2 | (cmolc/dm3) 2 | (g·kg−1) | ||||||||||||
0–0.10 | C + L | 0 | 730 | 170 | 100 | Sandy | 5.1 | 35 | 2.1 | 0.9 | 0.1 | 0.5 | 0.2 | 4.3 | 0.8 | 9.2 | 15.9 |
4.5 | 730 | 150 | 120 | 5.1 | 79 | 2.4 | 0.9 | 0.1 | 0.3 | 0.2 | 5.1 | 0.9 | 10.4 | 17.9 | |||
C + G | 0 | 760 | 140 | 100 | 5.0 | 31 | 2.0 | 0.9 | 0.1 | 0.3 | 0.2 | 4.5 | 0.9 | 9.7 | 16.7 | ||
4.5 | 730 | 170 | 100 | 5.3 | 66 | 2.8 | 0.9 | 0.1 | 0.3 | 0.1 | 4.2 | 1.0 | 11.8 | 20.3 | |||
C | 780 | 100 | 120 | 5.0 | 105 | 2.5 | 0.7 | 0.7 | 0.3 | 0.2 | 1.4 | 1.0 | 10.4 | 17.9 | |||
10–0.20 | C + L | 0 | 730 | 150 | 120 | 5.2 | 34 | 2.4 | 0.9 | 0.1 | 0.4 | 0.2 | 2.8 | 1.6 | 9.8 | 16.9 | |
4.5 | 760 | 120 | 120 | 4.9 | 60 | 2.0 | 1.0 | 0.1 | 0.2 | 0.3 | 3.5 | 1.6 | 11.0 | 19.0 | |||
C + G | 0 | 780 | 120 | 100 | 4.8 | 32 | 1.6 | 0.9 | 0.1 | 0.3 | 0.3 | 3.3 | 1.4 | 8.8 | 15.2 | ||
4.5 | 730 | 150 | 120 | 5.1 | 57 | 2.2 | 0.9 | 0.1 | 0.2 | 0.2 | 3.1 | 1.8 | 8.3 | 14.3 | |||
C | 740 | 140 | 120 | 5.1 | 80 | 3.1 | 0.8 | 0.8 | 0.2 | 0.2 | 1.2 | 1.6 | 7.2 | 12.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camelo, D.; Dubeux, J.C.B., Jr.; dos Santos, M.V.F.; Lira, M.A., Jr.; Fracetto, G.G.M.; Fracetto, F.J.C.; da Cunha, M.V.; de Freitas, E.V. Soil Microbial Activity and Biomass in Semiarid Agroforestry Systems Integrating Forage Cactus and Tree Legumes. Agronomy 2021, 11, 1558. https://doi.org/10.3390/agronomy11081558
Camelo D, Dubeux JCB Jr., dos Santos MVF, Lira MA Jr., Fracetto GGM, Fracetto FJC, da Cunha MV, de Freitas EV. Soil Microbial Activity and Biomass in Semiarid Agroforestry Systems Integrating Forage Cactus and Tree Legumes. Agronomy. 2021; 11(8):1558. https://doi.org/10.3390/agronomy11081558
Chicago/Turabian StyleCamelo, Dayanne, José Carlos Batista Dubeux, Jr., Mércia Virginia Ferreira dos Santos, Mario Andrade Lira, Jr., Giselle Gomes Monteiro Fracetto, Felipe José Cury Fracetto, Márcio Vieira da Cunha, and Erinaldo Viana de Freitas. 2021. "Soil Microbial Activity and Biomass in Semiarid Agroforestry Systems Integrating Forage Cactus and Tree Legumes" Agronomy 11, no. 8: 1558. https://doi.org/10.3390/agronomy11081558
APA StyleCamelo, D., Dubeux, J. C. B., Jr., dos Santos, M. V. F., Lira, M. A., Jr., Fracetto, G. G. M., Fracetto, F. J. C., da Cunha, M. V., & de Freitas, E. V. (2021). Soil Microbial Activity and Biomass in Semiarid Agroforestry Systems Integrating Forage Cactus and Tree Legumes. Agronomy, 11(8), 1558. https://doi.org/10.3390/agronomy11081558