Efficiency of Basil Essential Oil Antimicrobial Agents under Different Shading Treatments and Harvest Times
Abstract
:1. Introduction
2. Material and Methods
2.1. Method of Plant Production
2.2. Hydrodestillation of BEOs
2.3. Antimicrobial Activity
2.4. Statistical Data Analysis
3. Results and Discussion
3.1. Growing Conditions
3.2. Antimicrobial Activity
3.3. Relationship between Antimicrobial Activity and BEO Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ilić, A.S.; Antić, M.P.; Jelačić, S.C.; Šolević-Knudsen, T.M. Chemical composition of the essential oils of three Ocimum basilicum L. cultivars from Serbia. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 347–351. [Google Scholar] [CrossRef] [Green Version]
- Shiwakoti, S.; Saleh, O.; Poudyal, S.; Barka, A.; Qian, Y.; Zheljazkov, V.D. Yield, composition and antioxidant capacity of the essential oil of sweet basil and holy basil as influenced by distillation method. Chem. Biodivers. 2017, 14, e1600417. [Google Scholar] [CrossRef]
- Suppakul, P.; Miltz, J.; Sonneveld, K.; Bigger, S.W. Antimicrobial properties of basil and its possible application in food packaging. J. Agric. Food Chem. 2003, 51, 3197–3207. [Google Scholar] [CrossRef] [PubMed]
- Padalia, R.C.; Verma, R.S.; Chauhan, A.; Chanotiya, C.S. Changes in aroma profiles of 11 Indian Ocimum taxa during plant ontogeny. Acta Physiol. Plant. 2013, 35, 2567–2587. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Chemical components and pharmacological benefits of basil (Ocimum basilicum): A review. Int. J. Food Prop. 2020, 23, 1961–1970. [Google Scholar] [CrossRef]
- Joshi, R.K. Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India. Anc. Sci. Life 2014, 33, 151–156. [Google Scholar] [CrossRef]
- Gaio, I.; Saggiorato, A.G.; Treichel, H.; Cichoski, A.J.; Astolfi, V.; Cardoso, R.I.; Toniazzo, G.; Valduga, E.; Paroul, N.; Cansian, R.L. Antibacterial activity of basil essential oil (Ocimum basilicum L.) in Italian-type sausage. J. Verbrauch. Lebensm. 2015, 10, 323–329. [Google Scholar] [CrossRef]
- Stanojević, L.P.; Marjanović-Balaban, Z.R.; Kalaba, V.D.; Stanojević, J.S.; Cvetković, D.J.; Cakić, M.D. Chemical composition, antioxidant and antimicrobial activity of basil (Ocimum basilicum L.) essential oil. J. Essent. Oil Bear. Plants 2017, 20, 1557–1569. [Google Scholar] [CrossRef]
- Beatović, D.; Krstić-Milošević, D.; Trifunović, S.; Šiljegović, J.; Glamočlija, J.; Ristić, M.; Jelačić, S. Chemical composition, antioxidant and antimicrobial activities of the essential oils of twelve Ocimum basilicum L. cultivars grown in Serbia. Rec. Nat. Prod. 2015, 9, 62–75. [Google Scholar]
- Falowo, A.B.; Mukumbo, F.E.; Idamokoro, E.M.; Afolayan, A.J.; Muchenje, V. Phytochemical constituents and antioxidant activity of sweet basil (Ocimum basilicum L.) essential oil on ground beef from Boran and Nguni cattle. Int. J. Food Sci. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chowdharya, K.; Kumarb, A.; Sharmaa, S.; Pathaka, R.; Jangir, M. Ocimum sp.: Source of biorational pesticides. Ind. Crop. Prod. 2017, 12, 686–701. [Google Scholar] [CrossRef]
- Danura, K.; Municka, A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 2003, 10, 813–829. [Google Scholar]
- Pavela, R.; Benelli, G. Essential oils as eco friendly biopesticides? Challenges and constraints. Trend Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, G.M.; Annies, V.; De Oliveira, C.F.; Lara, R.A.; Gabriel, M.M.; Betim, F.C.M.; Nadal, J.M.; Farago, P.V.; Dias, J.F.G.; Miguel, O.G.; et al. Evaluation of larvicidal activity and ecotoxicity of linalool, methyl cinnamate and methyl cinnamate/linalool in combination against Aedes aegypti. Ecotoxicol. Environ. Saf. 2017, 139, 238–244. [Google Scholar] [CrossRef]
- Akbari, G.A.; Soltani, E.; Binesh, S.; Amini, F. Cold tolerance, productivity and phytochemical diversity in sweet basil (Ocimum basilicum L.) accessions. Ind. Crop. Prod. 2018, 124, 677–684. [Google Scholar] [CrossRef]
- Flanigan, P.M.; Niemeyer, E.D. Effect of cultivar on phenolic levels, anthocyanin composition, and antioxidant properties in purple basil (Ocimum basilicum L.). Food Chem. 2014, 164, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Nurzyńska-Wierdak, R.; Bogucka-Kocka, A.; Kowalski, R.; Borowski, B. Changes in the chemical composition of the essential oil of sweet basil (Ocimum basilicum L.) depending on the plant growth stage. Chemija 2012, 23, 216–222. [Google Scholar]
- Milenković, L.; Stanojević, J.; Cvetković, D.; Stanojević, L.; Lalević, D.; Šunić, L.; Fallik, E.; Ilić, S.Z. New technology in basil production with high essential oil yield and quality. Ind. Crop. Prod. 2019, 140, 111718. [Google Scholar] [CrossRef]
- Chua, L.Y.W.; Chong, C.H.; Chua, L.; Figiel, A. Influence of drying methods on the antibacterial, antioxidant and essential oil volatile composition of herbs: A Review. Food Bioprocess Technol. 2019, 12, 450–476. [Google Scholar] [CrossRef]
- Stagnari, F.; Di Mattia, C.; Galienia, A.; Santarellia, V.; D’Egidioa, S.; Pagnania, G.; Pisante, M. Light quantity and quality supplies sharply affect growth, morphological, physiological and quality traits of basil. Ind. Crop. Prod. 2018, 122, 277–289. [Google Scholar] [CrossRef]
- Hosseini, A.; Mehrjerdi, M.Z.; Aliniaeifard, S. Alteration of bioactive compounds in two varieties of basil (Ocimum basilicum) grown under different light spectra. J. Essent. Oil Bear. Plants 2018, 21, 913–923. [Google Scholar] [CrossRef]
- Avetisyan, A.; Markosian, A.; Petrosyan, M.; Sahakyan, N.; Babayan, A.; Aloyan, S.; Trchounian, A. Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. BMC Complement. Altern. Med. 2017, 17, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozłowska, M.; Laudy, A.E.; Przybył, J.; Ziarno, M.; Majewska, E. Chemical composition and antibacterial activity of some medicinal plants from Lamiaceae family. Acta Pol. Pharm. 2015, 72, 757–767. [Google Scholar]
- Milenković, L.; Ilić, S.Z.; Šunić, L.; Mastilović, J.; Kevrešan, Ž.; Cvetković, D.; Stanojević, L.; Danilović, B.; Stanojević, J. Antimicrobial potential of essential oils from Lamiaceae medicinal plants of Serbia. 2021; in press. [Google Scholar]
- Voicu, D.M.F.; Neagu, S.; Ruginescu, R.; Enache, M. The antimicrobial and biotechnological potential of Ocimum basilicum L. correlated with developmental stage and cultivar type. Oltenia J. Stud. Nat. Sci. Craiova 2020, 36, 195–202. [Google Scholar]
- El-kady, A.M.; Ahmad, A.A.; Hassan, T.M.; El-Deek, H.E.M.; Fouad, S.S.; Al-Thaqfan, S.S. Eugenol, a potential schistosomicidal agent with anti-inflammatory and antifibrotic effects against Schistosoma mansoni, induced liver pathology. Infect. Drug Resist. 2019, 12, 709–719. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, H.; Raimondi, M.; Svetaz, L.; Liberto, M.D.; Rodriguez, M.V.; Espinoza, L.; Madrid, A.; Zacchino, S. Antifungal activity of eugenol analogues. influence of different substituents and studies on mechanism of action. Molecules 2012, 17, 1002–1024. [Google Scholar] [CrossRef] [Green Version]
- Semeniuc, C.A.; Pop, C.R.; Rotar, A.M. Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria. J. Food Drug Anal. 2017, 25, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Soković, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; van Griensven, L.J.L.D. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef] [Green Version]
- Stanojević, J.S.; Stanojević, L.P.; Cvetković, D.J.; Danilović, B.R. Chemical composition, antioxidant and antimicrobial activityof the turmeric essential oil (Curcuma longa L.). Adv. Technol. 2015, 4, 19–25. [Google Scholar] [CrossRef]
- Andrews, J.M. BSAC standardized disc susceptibility testing method. J. Antimicrob. Chemother. 2005, 56, 60–76. [Google Scholar] [CrossRef] [Green Version]
- El Abed, N.; Kaabi, B.; Smaali, M.I.; Chabbouh, M.; Habibi, K.; Mejri, M.; Mazouki, M.N.; Ahmed, S.B.H. Chemical compositionand atibacterial activities of Thymus capitata essential oil with its preservativeeffects against Listeria monocytogenesis inoculated in minced beef meat. Evid. Based Complementary Altern. Med. 2014, 152487. [Google Scholar] [CrossRef] [Green Version]
- Viuda-Martos, M.; Mohamadyb, M.A.; Fernández-Lópeza, J.; Abd El-Razik, K.A.; Omer, E.A.; Pérez-Alvarez, J.A.; Sendra, E. In vitroantioxidant and antibacterial activities of essentials oils obtained from Egyptian aromatic plants. Food Control 2011, 22, 1715–1722. [Google Scholar] [CrossRef]
- Tewari, A.; Abdullah, S. Bacillus cereus food poisoning: International and Indian perspective. J. Food Sci. Technol. 2015, 52, 2500–2511. [Google Scholar] [CrossRef] [Green Version]
- Haque, M.; Sartelli, M.; McKimm, J.; Abu Bakar, M. Health care-associated infections—An overview. Infect. Drug Resist. 2018, 11, 2321–2333. [Google Scholar] [CrossRef] [Green Version]
- Nobile, C.J.; Johnson, A.D. Candida albicans biofilms and human disease. Ann. Rev. Microbiol. 2015, 69, 71–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bengoechea, J.A.; Sa Pessoa, J. Klebsiella pneumoniae infection biology: Living to counteract host defenses. FEMS Microbiol. Rev. 2019, 43, 123–144. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Ma, Z.; Zhang, J.; Yang, L. Antifungal compounds against Candida infections from Traditional Chinese Medicine. BioMed Res. Int. 2017, 2017, 4614183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzariol, A.; Bazaj, A.; Cornaglia, G. Multi-drug-resistant Gram-negative bacteria causing urinary tract infections: A review. J. Chemother. 2017, 29, 2–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.; Prakash, A. Isolation of Escherichia coli, Staphylococcus aureus and Listeria monocytogenes from milk products sold under market conditions at Agra region. Acta Agric. Slov. 2008, 92, 83–88. [Google Scholar]
- Chan, Y.C.; Wiedmann, M. Physiology and genetics of Listeria monocytogenes survival and growth at cold temperatures. Crit. Rev. Food Sci. Nutr. 2009, 49, 237–253. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils-Present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knobloch, K.; Pauli, A.; Iberl, B.; Weigand, H.; Weis, N. Antibacterial and antifungal properties of essential oil components. J. Essent. Oil Res. 1989, 1, 118–119. [Google Scholar] [CrossRef]
- Pelczar, M.J.; Chan, E.C.S.; Krieg, N.R. Control of microorganism: Chemical agents. In Microbiology: Concepts and Applications; McGraw Hill: New York, NY, USA, 1993; pp. 221–241. [Google Scholar]
- Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.M.; Izadi, M.; Abdollahi, M.; Ajami, M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 2017, 43, 668–689. [Google Scholar] [CrossRef] [PubMed]
- Somsap, J.; Kanjanapongkul, K.; Chancharoonpong, C.; Supapvanich, S.; Tepsorn, R. Antimicrobial activity of edible electrospun chitosan/cellulose acetate/gelatin hybrid nanofiber mats incorporating eugenol. Curr. Appl. Sci. Technol. 2019, 19, 235–247. [Google Scholar]
- Srivastava, H.C.; Shukla, P.; Tripathi, S.; Shanker, B. Antioxidant and antimicrobial activities of sweet basil oils. Int. J. Pharm. Sci. Res. 2014, 5, 279–285. [Google Scholar]
- Tatsadjieu, N.L.; Dingamo, J.P.M.; Ngassoum, M.B.; Etoa, F.X.; Mbofung, C.M.F. Investigations on the essential oil of Lippiarugosa from Cameroon for its potential use as antifungal agent against Aspergillus flavus Link ex. Fries. Food Control 2009, 20, 161–166. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils-a review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Nguefack, J.; Tamgue, O.; Lekagne Dongmo, J.B.; Dakole, C.D.; Leth, V.; Vismer, H.F.; Zollo, A.; Nkengfack, A.E. Synergistic action between fractions of essential oils from Cymbopogon citratus, Ocimum gratissimum and Thymus vulgaris against Penicillium expansum. Food Control 2012, 23, 377–383. [Google Scholar] [CrossRef]
Month | Number of Summer Days (over 25°C in June; over 30 °C for July and August) | Average Temperature Difference from Multiannual Average (°C) | Sum of Insolation Difference from Multiannual Average (h) |
---|---|---|---|
June | 27 | 0.8 | −51.4 |
July | 10 | −0.2 | −72.5 |
August | 28 | 2.0 | −1.9 |
Time (h) | PAR a | Temperature | Relative Humidity | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Non-Shaded μmol m−2 s−¹ | Reduction, % | Non-Shaded °C | Reduction, % | Non-Shaded % | Reduction, % | |||||||
Pearl | Red | Blue | Pearl | Red Net | Blue | Pearl | Red | Blue | ||||
6:00 | 182.5 | 31.2 | 39.2 | 46.8 | 16.7 | 0.0 | 0.6 | 1.8 | 74.7 | −4.1 | −5.1 | −5.6 |
9:00 | 1325.6 | 46.0 | 48.0 | 54.0 | 24.7 | −0.4 | 0.0 | −1.9 | 71.8 | 0.0 | 0.2 | −0.5 |
12:00 | 2242.2 | 48.1 | 50.6 | 56.8 | 31.4 | −2.2 | −3.1 | −1.9 | 47.3 | −2.1 | −2.9 | −3.3 |
15:00 | 1684.0 | 51.9 | 51.3 | 59.8 | 31.5 | −3.4 | −1.2 | −0.3 | 48.2 | −1.2 | −1.8 | −2.6 |
18:00 | 672.0 | 53.9 | 58.7 | 67.0 | 28.3 | −1.0 | −0.3 | 0.0 | 50.4 | −0.2 | −0.2 | 0.4 |
Microorganism | Inhibition Zone (mm) Essential Oil Antibiotics | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
ColoredNets | Control Unshade | A | B | C | N | P | ||||
Pearl | Red | Blue | ||||||||
Gram-positive bacteria | Bacillus cereus | 24.8 ± 1.33 | 21.8 ± 1.17 | 26.5 ± 3.21 | 29.7 ± 1.37 | n.t. | n.t. | n.t. | n.t. | 13.0 |
Bacillus subtilis | 26.5 ± 7.18 | 27.2 ± 1.60 | 18.3 ± 0.58 | 29.3 ± 0.52 | n.t. | n.t. | 48.0 | n.t. | n.t. | |
Listeria monocitogenes | 24.2 ± 1.47 | 20.2 ± 3.19 | 25.7 ± 1.53 | 14.3 ± 0.52 | n.t. | n.t. | 34.0 | n.t. | n.t. | |
Staphylococcus aureus | 26.0 ± 1.10 | 26.8 ± 2.99 | 38.7 ± 1.15 | 14.3 ± 0.52 | 36.7 | 42.1 | 26.0 | n.t. | 32.3 | |
Gram-negative bacteria | Proteus vulgaris | 23.3 ± 2.34 | 24.2 ± 2.14 | 28.0 ± 3.79 | 23.3 ± 0.52 | 13.2 | 22.9 | n.t. | n.t. | n.t. |
Klebsiella pneumoniae | 34.3 ± 3.44 | 34.0 ± 5.22 | 25.3 ± 1.15 | 21.3 ± 0.52 | n.t. | n.t. | 13.0 | n.t. | 11.7 | |
Escherichia coli | 18.7 ± 1.21 | 26.5 ± 3.56 | 28.3 ± 1.51 | 18.3 ± 0.52 | n.i. | 15.0 | 26.0 | n.t. | n.t. | |
Pseudomonas aeruginosa | 18.8 ± 0.98 | 16.5 ± 1.38 | 18.2 ± 1.60 | 17.7 ± 1.86 | n.t. | n.t. | n.t. | n.t. | 15.7 | |
Fungus | Candida albicans | 32.2 ± 5.53 | 29.5 ± 2.07 | 33.7 ± 0.58 | 31.7 ± 1.37 | n.t. | n.t. | n.t. | 17.0 | n.t. |
Inhibition Zone (mm) | |||||
---|---|---|---|---|---|
Harvest | Shade Nets | E. coli | P. vulgaris | B. cereus | P. aeruginosa |
Pearl | 18.3 ab | 23.3 bc | 29.7 d | 17.7 ab | |
First | Red | 19.7 b | 21.3 a | 24.0 bc | 18.3 ab |
Non-shaded | 29.7 e | 26.0 d | 22.7 ab | 15.7 a | |
Pearl | 18.3 ab | 23.3 bc | 29.7 d | 17.7 ab | |
Second | Red | 17.7 a | 25.3 d | 25.7 c | 19.3 b |
Non-shaded | 23.3 c | 22.3 ab | 21.0 a | 17.3 ab | |
Significance of influence (p) | |||||
Harvest | 0.000291 | 0.000189 | 0.006826 | 0.041890 | |
Net | 0.000000 | 0.000000 | 0.000000 | 0.059618 | |
Harvest X Net | 0.000002 | 0.000000 | 0.000244 | 0.524663 |
Inhibition Zone (mm) | ||||||
---|---|---|---|---|---|---|
Harvest | Shade nets | S. aureus | L. monocitogenes | B. subtilis | K. pneumoniae | C. albicans |
Pearl | 26.3 b | 25.0 d | 20.0 a | 32.0 b | 27.3 a | |
First | Red | 24.3 b | 17.3 b | 27.7 bc | 38.7 c | 29.7 ab |
Non-shaded | 14.3 a | 14.3 a | 29.3 c | 21.3 a | 31.7 b | |
Pearl | 25.7 b | 23.3 cd | 33.0 d | 36.7 c | 37.0 c | |
Second | Red | 29.3 c | 23.0 c | 26.7 b | 29.7 b | 29.3 ab |
Non-shaded | 14.3 a | 14.3 a | 29.3 c | 21.3 a | 31.7 b | |
Significance of influence (p) | ||||||
Harvest | 0.014985 | 0.011067 | 0.000011 | 0.071116 | 0.004606 | |
Net | 0.000000 | 0.000000 | 0.003391 | 0.000000 | 0.070349 | |
Harvest XNet | 0.001229 | 0.000053 | 0.000000 | 0.000033 | 0.000875 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilić, Z.S.; Milenković, L.; Šunić, L.; Tmušić, N.; Mastilović, J.; Kevrešan, Ž.; Stanojević, L.; Danilović, B.; Stanojević, J. Efficiency of Basil Essential Oil Antimicrobial Agents under Different Shading Treatments and Harvest Times. Agronomy 2021, 11, 1574. https://doi.org/10.3390/agronomy11081574
Ilić ZS, Milenković L, Šunić L, Tmušić N, Mastilović J, Kevrešan Ž, Stanojević L, Danilović B, Stanojević J. Efficiency of Basil Essential Oil Antimicrobial Agents under Different Shading Treatments and Harvest Times. Agronomy. 2021; 11(8):1574. https://doi.org/10.3390/agronomy11081574
Chicago/Turabian StyleIlić, Zoran S., Lidija Milenković, Ljubomir Šunić, Nadica Tmušić, Jasna Mastilović, Žarko Kevrešan, Ljiljana Stanojević, Bojana Danilović, and Jelena Stanojević. 2021. "Efficiency of Basil Essential Oil Antimicrobial Agents under Different Shading Treatments and Harvest Times" Agronomy 11, no. 8: 1574. https://doi.org/10.3390/agronomy11081574
APA StyleIlić, Z. S., Milenković, L., Šunić, L., Tmušić, N., Mastilović, J., Kevrešan, Ž., Stanojević, L., Danilović, B., & Stanojević, J. (2021). Efficiency of Basil Essential Oil Antimicrobial Agents under Different Shading Treatments and Harvest Times. Agronomy, 11(8), 1574. https://doi.org/10.3390/agronomy11081574