Phenotyping and Validation of Root Morphological Traits in Barley (Hordeum vulgare L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Root Phenotyping Experiment (Exp. 1: Semi-Hydroponic System)
Plant Material and Root Phenotyping System
2.2. Plant Growth Environments and Assessments
- Root mass ratio (root dry mass divided by total dry mass)
- Root-to-shoot mass ratio (root dry matter weight divided by shoot dry matter weight)
- Specific root length (SRL) = root length over root dry matter weight (cm mg−1)
- Root tissue density = root dry matter weight divided by root volume (mg cm−3)
- Root growth rate = length of the longest root divided by growth time (cm d−1)
- Relative Diameter Class Length (rDCL) = DCL divided by total root length.
2.3. Validation Experiment (Exp. 2: Soil Columns)
Selected Barley Genotypes
- #112: large root system (ranked 2nd in root biomass and 9th in root length) with high root density at the 20–40 cm depth.
- #190: large root system (ranked 4th in root biomass and 8th in root length) with high root density at the 20–40 cm depth.
- #108: large root system (ranked 6th in root biomass and 14th in root length).
- #128: average root biomass and root length.
- #21: average root biomass and root length with less roots in top 20 cm section than in the 20–40 cm section.
- #49: small root biomass and short root length.
- #48: small root system (ranked 188th in root biomass and 186th in root length).
- #5: small root system (ranked 189th in root biomass and 187th in root length).
2.4. Statistical Analysis of Root Trait Data
3. Results
3.1. Variation in Root and Shoot Traits (Exp. 1)
3.2. Root Length in Various Diameter Classes (Exp. 1)
3.3. Correlation among Root Traits of Barley (Exp. 1)
3.4. Principal Component and Hierarchical Cluster Analyses of Barley Root Traits (Exp. 1)
3.5. Identification of Phenotypic Diversity (Exp. 1)
3.6. Barley Root and Shoot Trait Consistency in the Two Experiments (Exp. 1 and Exp. 2)
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Bartlett, J.G.; Alves, S.C.; Smedley, M.; Snape, J.W.; Harwood, W.A. High-throughput Agrobacterium-mediated barley transformation. Plant Methods 2008, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Araya, A.; Keesstra, S.D.; Stroosnijder, L. Simulating yield response to water of teff (Eragrostis tef) with Fao’s aquacrop model. Field Crop Res. 2010, 116, 196–204. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Hunt, J.; Angessa, T.T.; Meinke, H.; Li, C.; Tian, X.; Zhou, M. Identifying optimal sowing and flowering periods for barley in Australia: A modelling approach. Agric. For. Meteorol. 2020, 282-283, 107871. [Google Scholar] [CrossRef]
- Schulte, D.; Close, T.J.; Graner, A.; Langridge, P.; Matsumoto, T.; Tuehlbauer, G.; Sato, K.; Schulman, A.H.; Waugh, R.; Wise, R.P.; et al. The international barley sequencing consortium—at the threshold of efficient access to the barley genome. Plant Physiology 2009, 149, 142–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samac, D.A.; Tesfaye, M. Plant improvement for tolerance to aluminum in acid soils—A review. Plant Cell Tissue Organ Cult. 2003, 75, 189–207. [Google Scholar] [CrossRef]
- Mayer, K.F.; Waugh, R.; Brown, J.W.; Schulman, A.; Langridge, P.; Platzer, M.; Fincher, G.B.; Muehlbauer, G.J.; Sato, K.; Close, T.J.; et al. A physical, genetic and functional sequence assembly of the barley genome. Nature 2012, 491, 711–716. [Google Scholar] [PubMed]
- Hayes, P.M.; Castro, A.; Marquez-Cedillo, L.; Corey, A.; Henson, C.; Jones, B.L.; Kling, J.; Mather, D.; Matus, I.; Rossi, C.; et al. Genetic diversity for quantitative inherited agronomic and malting quality traits. In Diversity in Barley; Von-Bothmer, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Lynch, J. Root Architecture and Plant Productivity. Plant Physiol. 1995, 109, 7–13. [Google Scholar] [CrossRef]
- Dunbabin, V.M.; Postma, J.; Schnepf, A.; Pagès, L.; Javaux, M.; Wu, L.; Leitner, D.; Chen, Y.; Rengel, Z.; Diggle, A.J. Model-ling root–soil interactions using three–dimensional models of root growth, architecture and function. Plant Soil 2013, 372, 93–124. [Google Scholar] [CrossRef]
- Chen, Y.L.; Dunbabin, V.M.; Diggle, A.J.; Siddique, K.H.; Rengel, Z. Assessing variability in root traits of wild Lupinus an-gustifolius germplasm: Basis for modelling root system structure. Plant Soil 2012, 354, 141–155. [Google Scholar] [CrossRef]
- Lynch, J.P.; Brown, K.M. New roots for agriculture: Exploiting the root phenome. Philos. Trans. R. Soc. Lond. 2012, 367, 1598–1604. [Google Scholar] [CrossRef]
- Tuberosa, R.; Sanguineti, M.C.; Landi, P.; Giuliani, M.M.; Salvi, S.; Conti, S. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol. Biol. 2002, 48, 697–712. [Google Scholar] [CrossRef] [PubMed]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef] [PubMed]
- De Dorlodot, S.; Forster, B.; Pagès, L.; Price, A.; Tuberosa, R.; Draye, X. Root system architecture: Opportunities and constraints for genetic improvement of crops. Trends Plant Sci. 2007, 12, 474–481. [Google Scholar] [CrossRef]
- Naz, A.A.; Arifuzzaman, M.; Muzammil, S.; Pillen, K.; Léon, J. Wild barley introgression lines revealed novel QTL alleles for root and related shoot traits in the cultivated barley (Hordeum vulgare L.). BMC Genet. 2014, 15, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lynch, J.P. Roots of the Second Green Revolution. Aust. J. Bot. 2007, 55, 493–512. [Google Scholar] [CrossRef]
- Chen, Y.L.; Dunbabin, V.M.; Diggle, A.J.; Siddique, K.; Rengel, Z. Development of a novel semi-hydroponic phenotyping system for studying root architecture. Funct. Plant Biol. 2011, 38, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ghanem, M.E.; Siddique, K.H. Characterising root trait variability in chickpea (Cicer arietinum L.) germplasm. J. Exp. Bot. 2016, 68, 1987–1999. [Google Scholar] [CrossRef] [Green Version]
- Qiao, S.; Fang, Y.; Wu, A.; Xu, B.; Zhang, S.; Deng, X.; Djalovic, I.; Siddique, K.; Chen, Y. Dissecting root trait variability in maize genotypes using the semi-hydroponic phenotyping platform. Plant Soil 2018, 439, 75–90. [Google Scholar] [CrossRef]
- Robinson, H.; Kelly, A.; Fox, G.; Franckowiak, J.; Borrell, A.; Hickey, L. Root architectural traits and yield: Exploring the rela-tionship in barley breeding trials. Euphytica 2018, 214, 1–16. [Google Scholar] [CrossRef]
- Lynch, J.P. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture. New Phytol. 2019, 223, 548–564. [Google Scholar] [CrossRef] [Green Version]
- Mikołajczak, K.; Ogrodowicz, P.; Ćwiek-Kupczyńska, H.; Weigelt-Fischer, K.; Mothukuri, S.R.; Junker, A.; Altmann, T.; Krystkowiak, K.; Adamski, T.; Surma, M.; et al. Image Phenotyping of Spring Barley (Hordeum vulgare L.) RIL Population Under Drought: Selection of Traits and Biological Interpretation. Front. Plant Sci. 2020, 11, 743. [Google Scholar] [CrossRef] [PubMed]
- Mora, F.; Castillo, D.; Lado, B.; Matus, I.; Poland, J.; Belzile, F.; Von Zitzewitz, J.; Del Pozo, A. Genome-wide association mapping of agronomic traits and carbon isotope discrimination in a worldwide germplasm collection of spring wheat using SNP markers. Mol. Breed. 2015, 35, 69. [Google Scholar] [CrossRef]
- Mir, R.R.; Zaman-Allah, M.; Sreenivasulu, N.; Trethowan, R.; Varshney, R.K. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor. Appl. Genet. 2012, 125, 625–645. [Google Scholar] [CrossRef] [Green Version]
- Mansour, E.; Casas, A.M.; Gracia, M.P.; Molina-Cano, J.L.; Moralejo, M.; Cattivelli, L.; Thomas, W.T.B.; Igartua, E. Quantitative trait loci for agronomic traits in an elite barley population for Mediterranean conditions. Mol. Breed. 2013, 33, 249–265. [Google Scholar] [CrossRef] [Green Version]
- Wijesinghe, D.K.; John, E.A.; Beurskens, S.; Hutchings, M.J. Root system size and precision in nutrient foraging: Responses to spatial pattern of nutrient supply in six herbaceous species. J Ecol. 2001, 89, 972–983. [Google Scholar] [CrossRef]
- Svačina, P.; Středa, T.; Chloupek, O. Uncommon selection by root system size increases barley yield. Agron. Sustain. Dev. 2013, 34, 545–551. [Google Scholar] [CrossRef]
- He, Y.B.; Lin, L.R.; Chen, J.Z. Maize root morphology responses to soil penetration resistance related to tillage and drought in a clayey soil. J. Agric. Sci. 2017, 155, 1137–1149. [Google Scholar] [CrossRef]
- Jeong, J.S.; Kim, Y.S.; Redillas, M.C.F.R.; Jang, G.; Jung, H.; Bang, S.W.; Choi, Y.D.; Ha, S.-H.; Reuzeau, C.; Kim, J.-K. OsNAC5overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol. J. 2012, 11, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Lipiec, J.; Horn, R.; Pietrusiewicz, J.; Siczek, A. Effects of soil compaction on root elongation and anatomy of different cereal plant species. Soil Tillage Res. 2012, 121, 74–81. [Google Scholar] [CrossRef]
- Schenk, H.J. Root competition: Beyond resource depletion. J. Ecol. 2006, 94, 725–739. [Google Scholar] [CrossRef]
- Carvalho, P.; Azam-Ali, S.; Foulkes, M.J. Quantifying relationships between rooting traits and water uptake under drought in Mediterranean barley and durum wheat. J. Integr. Plant. Biol. 2013, 56, 455–469. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.H.; Sepaskhah, A.R.; Zarei, M. Specific root length, soil water status, and grain yields of irrigated and rainfed winter barley in the raised bed and flat planting systems. Agric. Water Manag. 2018, 210, 304–315. [Google Scholar] [CrossRef]
- Chenu, K.; Cooper, M.; Hammer, G.; Mathews, K.; Dreccer, M.F.; Chapman, S. Environment characterization as an aid to wheat improvement: Interpreting genotype–environment interactions by modelling water-deficit patterns in North-Eastern Australia. J. Exp. Bot. 2011, 62, 1743–1755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, J.P. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 2013, 112, 347–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rengel, Z. Breeding crops for adaptation to environments with low nutrient availability. In Abiotic stresses: Plant Resistance Through Breeding and Molecular Approaches; Ashraf, M., Harris, P.J.C., Eds.; The Haworth: New York, NY, USA, 2005. [Google Scholar]
- Chen, Y.; Shan, F.; Nelson, M.N.; Siddique, K.; Rengel, Z. Root trait diversity, molecular marker diversity, and trait-marker associations in a core collection of Lupinus angustifolius. J. Exp. Bot. 2016, 67, 3683–3697. [Google Scholar] [CrossRef] [Green Version]
- Kembel, S.W.; De Kroon, H.; Cahill, J.F.; Mommer, L. Improving the scale and precision of hypotheses to explain root foraging ability. Ann Bot. 2008, 101, 1295–1301. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.L.; Dunbabin, V.M.; Postma, J.; Diggle, A.J.; Palta, J.; Lynch, J.P.; Siddique, K.; Rengel, Z. Phenotypic variability and modelling of root structure of wild Lupinus angustifolius genotypes. Plant Soil 2011, 348, 345–364. [Google Scholar] [CrossRef]
- Chen, Y.; Palta, J.; Prasad, P.V.V.; Siddique, K. Phenotypic variability in bread wheat root systems at the early vegetative stage. BMC Plan. Biol. 2020, 20, 1–16. [Google Scholar] [CrossRef]
- Figueroa-Bustos, V.; Palta, J.A.; Chen, Y.; Siddique, K.H.M. Characterization of root and shoot traits in wheat cultivars with putative differences in root system size. Agronomy 2018, 8, 109. [Google Scholar] [CrossRef] [Green Version]
Traits | Code | Unit | Traits | Code | Unit |
---|---|---|---|---|---|
Total root length | TRL | cm | Root diameter below 40 cm section | RD_40 | mm |
Longest root length | LRL | cm | Specific root length (length/dry mass) | SRL | cm mg−1 |
Root length in 0–20 cm (top section) | RL_top | cm | Root length ratio of top 20 cm/lower 20–100 cm | RLR | |
Root length in 20–100 cm (lower section) | RL_lower | cm | Total root dry mass | RB | mg |
Root length in 20–40 cm | RL_20 | cm | Root dry weight in 0–20 cm section | RB_top | mg |
Root length in 40–100 cm (bottom section) | RL_40 | cm | Root dry weight in 20–40 cm section | RB_20 | mg |
Root length in diameter class <0.075 mm | DCL_thin | cm | Root dry weight below 40 cm depth | RB_40 | mg |
Root length in diameter class 0.075–0.15 mm | DCL_med | cm | Lateral root number | LRN | |
Root length in diameter class >0.15 mm | DCL_thick | cm | Shoot dry biomass | SB | mg |
Total root surface area | RA | cm2 | Shoot height | SH | cm |
Total root volume | RV | cm3 | Root-to-shoot dry mass ratio | R/S | |
Average root diameter | RD | mm | Tiller number | Till | |
Root diameter in 0–20 cm section | RD_top | mm | |||
Root diameter in 20–40 cm section | RD_20 | mm |
Trait | Unit | Minimum | Maximum | Mean | Median | Std. Deviation | CV | p |
---|---|---|---|---|---|---|---|---|
TRL | cm | 1339 | 5480 | 2890 | 2870 | 628 | 0.22 | 0.004 |
LRL | cm | 60 | 158 | 112.8 | 113 | 15.0 | 0.13 | 0.001 |
RL_top | cm | 339 | 2841 | 1057 | 1034 | 332 | 0.31 | <0.001 |
RL_lower | cm | 280 | 1756 | 1069 | 1070 | 268 | 0.25 | 0.267 |
RL_20 | cm | 319 | 3158 | 1832 | 1816 | 426 | 0.25 | <0.001 |
RL_40 | cm | 230 | 1476 | 763 | 758 | 229 | 0.30 | <0.001 |
DCL_thin | cm | 489 | 2056 | 1052 | 1077 | 270 | 0.25 | <0.001 |
DCL_med | cm | 385 | 2013 | 1138 | 1168 | 320 | 0.27 | <0.001 |
DCL_thick | cm | 262 | 1270 | 617 | 640 | 144 | 0.22 | 0.013 |
RA | cm2 | 60.2 | 308 | 166 | 156 | 51 | 0.31 | <0.001 |
RV | cm3 | 0.29 | 1.76 | 0.90 | 0.82 | 0.33 | 0.36 | <0.001 |
RD | mm | 0.113 | 0.311 | 0.18 | 0.163 | 0.046 | 0.26 | <0.001 |
RD_top | mm | 0.14 | 0.26 | 0.21 | 0.21 | 0.017 | 0.10 | 0.223 |
RD_20 | mm | 0.12 | 0.25 | 0.19 | 0.19 | 0.019 | 0.10 | 0.234 |
RD_40 | Unit | 0.18 | 0.52 | 0.27 | 0.27 | 0.033 | 0.12 | <0.001 |
SRL | mm | 0.89 | 2.58 | 1.79 | 1.80 | 0.33 | 0.18 | 0.958 |
RLR | cm mg−1 | 0.22 | 1.45 | 0.60 | 0.566 | 0.20 | 0.34 | 0.008 |
RB | 896 | 2657 | 1642 | 1658 | 409 | 0.25 | <0.001 | |
RB_top | mg | 333 | 1360 | 682 | 683 | 178 | 0.26 | <0.001 |
RB_20 | mg | 237 | 858 | 465 | 468 | 110 | 0.23 | <0.001 |
RB_40 | mg | 166 | 1101 | 498 | 471 | 166 | 0.35 | <0.001 |
LRN | mg | 6 | 20 | 10.6 | 11 | 1.72 | 0.16 | 0.266 |
SB | 1420 | 5258 | 2622 | 2545 | 657 | 0.25 | 0.301 | |
SH | mg | 24.4 | 44.5 | 33.1 | 32.4 | 3.75 | 0.25 | <0.001 |
R/S | cm | 0.46 | 0.996 | 0.67 | 0.65 | 0.11 | 0.17 | 0.349 |
Till | 1 | 4 | 2.63 | 2.67 | 0.89 | 0.34 | 0.397 |
RB | RB_Top | RB_40 | SB | SH | RA | RV | RD | RLR | RL_Top | RL_20 | RL_40 | Till | RL_Lower | RL-Thin | RL-Med | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RB | 0.809 | 0.753 | 0.741 | 0.382 | 0.341 | 0.326 | −0.206 | 0.078 | 0.549 | 0.346 | 0.559 | 0.350 | 0.627 | 0.489 | 0.507 | |
RB_top | 0.000 | 0.308 | 0.663 | 0.245 | 0.388 | 0.377 | −0.079 | 0.494 | 0.742 | 0.201 | 0.200 | 0.342 | 0.532 | 0.378 | 0.490 | |
RB_40 | 0.000 | 0.000 | 0.484 | 0.338 | 0.070 | 0.064 | −0.241 | −0.313 | 0.099 | 0.135 | 0.758 | 0.175 | 0.381 | 0.367 | 0.206 | |
SB | 0.000 | 0.000 | 0.000 | 0.541 | 0.461 | 0.451 | −0.084 | −0.005 | 0.485 | 0.432 | 0.497 | 0.547 | 0.616 | 0.400 | 0.531 | |
SH | 0.000 | 0.000 | 0.000 | 0.000 | 0.179 | 0.176 | −0.113 | −0.144 | 0.132 | 0.239 | 0.320 | 0.040 | 0.287 | 0.263 | 0.155 | |
RA | 0.000 | 0.000 | 0.337 | 0.000 | 0.014 | 0.978 | 0.546 | −0.074 | 0.513 | 0.687 | 0.407 | 0.365 | 0.722 | 0.469 | 0.621 | |
RV | 0.000 | 0.000 | 0.379 | 0.000 | 0.015 | 0.000 | 0.610 | −0.070 | 0.446 | 0.607 | 0.362 | 0.364 | 0.640 | 0.338 | 0.578 | |
RD | 0.004 | 0.280 | 0.001 | 0.249 | 0.123 | 0.000 | 0.000 | −0.129 | −0.075 | −0.060 | −0.039 | −0.049 | −0.001 | −0.055 | −0.049 | |
RLR | 0.289 | 0.000 | 0.000 | 0.941 | 0.048 | 0.312 | 0.338 | 0.078 | 0.523 | −0.313 | −0.456 | −0.003 | −0.051 | −0.110 | 0.093 | |
RL_top | 0.000 | 0.000 | 0.176 | 0.000 | 0.071 | 0.000 | 0.000 | 0.303 | 0.000 | 0.432 | 0.175 | 0.239 | 0.754 | 0.542 | 0.721 | |
RL_20 | 0.000 | 0.006 | 0.064 | 0.000 | 0.001 | 0.000 | 0.000 | 0.415 | 0.000 | 0.000 | 0.451 | 0.319 | 0.822 | 0.610 | 0.728 | |
RL_40 | 0.000 | 0.006 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.594 | 0.000 | 0.016 | 0.000 | 0.275 | 0.619 | 0.549 | 0.398 | |
Till | 0.000 | 0.000 | 0.016 | 0.000 | 0.588 | 0.000 | 0.000 | 0.506 | 0.965 | 0.01 | 0.000 | 0.000 | 0.370 | 0.220 | 0.327 | |
RL_lower | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.988 | 0.485 | 0.000 | 0.000 | 0.000 | 0.000 | 0.725 | 0.830 | |
RL-thin | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.450 | 0.132 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.385 | |
RL-med | 0.000 | 0.000 | 0.000 | 0.000 | 0.033 | 0.000 | 0.000 | 0.505 | 0.202 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
PC1 | PC2 | PC3 | PC4 | |
---|---|---|---|---|
RL_lower | 0.935 | 0.080 | −0.024 | −0.284 |
RL_med | 0.794 | 0.164 | 0.157 | −0.295 |
SB | 0.790 | −0.256 | 0.059 | 0.327 |
RB | 0.784 | −0.466 | 0.139 | 0.203 |
RA | 0.765 | 0.584 | −0.121 | 0.118 |
RL_20 | 0.742 | 0.272 | −0.272 | −0.411 |
RL_top | 0.727 | 0.090 | 0.578 | −0.225 |
RV | 0.712 | 0.604 | −0.121 | 0.244 |
RL_thin | 0.696 | −0.086 | −0.121 | −0.351 |
RB_top | 0.688 | −0.180 | 0.575 | 0.257 |
RL_40 | 0.658 | −0.300 | −0.532 | −0.006 |
Till | 0.493 | 0.049 | 0.025 | 0.328 |
SH | 0.402 | −0.337 | −0.179 | 0.216 |
RD | 0.053 | 0.756 | −0.231 | 0.461 |
RB_40 | 0.495 | −0.662 | −0.337 | 0.174 |
RLR | −0.021 | 0.048 | 0.943 | 0.060 |
Eigenvalue | 6.96 | 2.36 | 2.20 | 1.20 |
Variability (%) | 43.5 | 14.8 | 13.8 | 7.49 |
Cumulative variability (%) | 43.5 | 58.3 | 72.1 | 79.5 |
Genotype | Root Dry Mass (mg Plant−1) | Shoot Dry Mass (mg Plant−1) | Ratio of Root-to-Shoot Dry Mass | ||||||
---|---|---|---|---|---|---|---|---|---|
Semi- Hydroponic | Sandy Soil | Sandy Loam | Semi- Hydroponic | Sandy Soil | Sandy Loam | Semi- Hydroponic | Sandy Soil | Sandy Loam | |
#5 | 896 d | 677 bc | 1810 cd | 1634 cd | 938 d | 2340 e | 0.54 b | 0.74 ab | 0.77 bc |
#21 | 1634 bc | 970 a | 2020 bc | 2776 abc | 1183 bcd | 2193 e | 0.59 ab | 0.82 a | 0.93 ab |
#48 | 641 d | 476 c | 2054 bc | 1043 d | 883 d | 3770 b | 0.86 a | 0.54 cd | 0.55 d |
#49 | 1070 cd | 729 b | 1345 d | 1457 cd | 1281 bc | 2448 de | 0.72 ab | 0.51 cd | 0.55 d |
#108 | 2636 a | 1172 a | 3150 a | 3451 ab | 1449 b | 2940 cd | 0.77ab | 0.81 a | 1.07 a |
#112 | 3066 a | 1147 a | 2524 ab | 3782 a | 1316 b | 3009 cd | 0.68 ab | 0.80 a | 0.85 b |
#128 | 1726 b | 739 b | 2163 bc | 2244 bcd | 1277 bcd | 3276 bc | 0.74 ab | 0.63 bc | 0.66 cd |
#190 | 2508 a | 1146 a | 2622 ab | 3145 ab | 2535 a | 4985 a | 0.79 ab | 0.46 d | 0.53 d |
Genotype | Total Root Length (cm) | Average Root Diameter (mm) | Shoot Height (cm) | ||||||
---|---|---|---|---|---|---|---|---|---|
Semi- Hydroponic | Sandy Soil | Sandy Loam Soil | Semi- Hydroponic | Sandy Soil | Sandy Loam Soil | Semi- Hydroponic | Sandy Soil | Sandy Loam Soil | |
#5 | 1892 cd | 791 c | 3466 e | 0.22 ab | 0.22 a | 0.19 ab | 24.8 b | 23.2 b | 29.3 a |
#21 | 3508 b | 2226 b | 6498 ab | 0.21 ab | 0.20 a | 0.19 ab | 28.4 ab | 21.8 b | 33.5 a |
#48 | 1578 d | 814 c | 4235 de | 0.22 ab | 0.19 a | 0.18 ab | 30.4 ab | 22.5 b | 28.4 a |
#49 | 2082 cd | 1244 c | 4751 cd | 0.21 ab | 0.21 a | 0.17 b | 29.2 ab | 22.2 b | 32 a |
#108 | 3243 b | 3180 a | 5511 bc | 0.21 ab | 0.21 a | 0.20 a | 31.6 ab | 25.7 b | 35.6 a |
#112 | 5380 a | 2955 a | 7495 a | 0.23 a | 0.21 a | 0.18 ab | 32.4 ab | 22.2 b | 33.9 a |
#128 | 3001 bc | 1958 b | 6910 ab | 0.20 b | 0.21 a | 0.19 ab | 29.4 ab | 21.3 b | 30.9 a |
#190 | 3886 b | 3012 a | 5788 bc | 0.22 a | 0.22 a | 0.19 ab | 36.7 a | 32.7 a | 35.8 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Chen, Y.; Zhang, Y.; Zhang, Y.; Ai, Y.; Feng, Y.; Moody, D.; Diggle, A.; Damon, P.; Rengel, Z. Phenotyping and Validation of Root Morphological Traits in Barley (Hordeum vulgare L.). Agronomy 2021, 11, 1583. https://doi.org/10.3390/agronomy11081583
Wang J, Chen Y, Zhang Y, Zhang Y, Ai Y, Feng Y, Moody D, Diggle A, Damon P, Rengel Z. Phenotyping and Validation of Root Morphological Traits in Barley (Hordeum vulgare L.). Agronomy. 2021; 11(8):1583. https://doi.org/10.3390/agronomy11081583
Chicago/Turabian StyleWang, Jidong, Yinglong Chen, Yongen Zhang, Yongchun Zhang, Yuchun Ai, Yupeng Feng, David Moody, Art Diggle, Paul Damon, and Zed Rengel. 2021. "Phenotyping and Validation of Root Morphological Traits in Barley (Hordeum vulgare L.)" Agronomy 11, no. 8: 1583. https://doi.org/10.3390/agronomy11081583
APA StyleWang, J., Chen, Y., Zhang, Y., Zhang, Y., Ai, Y., Feng, Y., Moody, D., Diggle, A., Damon, P., & Rengel, Z. (2021). Phenotyping and Validation of Root Morphological Traits in Barley (Hordeum vulgare L.). Agronomy, 11(8), 1583. https://doi.org/10.3390/agronomy11081583