Licorice, Doum, and Banana Peel Extracts Inhibit Aspergillus flavus Growth and Suppress Metabolic Pathway of Aflatoxin B1 Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Isolation and Identification
2.2. Preparation of Extracts
2.3. Determination of Total Phenol Contents of Extracts
2.4. Determination of Extracts’ Antioxidant Activities
2.5. GC–MS Analysis
2.6. Effect of Plant Extracts on A. flavus Growth and AFB1 Production
2.6.1. Dry and Wet Weight Estimations
2.6.2. Effect of Plant Extracts on Maize Storage
2.6.3. HPLC Analysis of AFB1
2.6.4. Real-Time PCR Assay
2.7. Statistical Analysis
3. Results and Discussion
3.1. The Ability of Aspergillus Isolate to Produce Aflatoxin and Identification
3.2. Effect of the Applied Plant Extracts on A. flavus Growth and AFB1 Production
3.3. Corn Storage Experiment
3.3.1. Effect of Applied Extracts on AFB1 Production
3.3.2. Effect of Applied Plant Extracts on Grain Appearance
3.4. Expression of AFB1 Biosynthesis Genes Using qRT-PCR
3.5. Total Phenolic Content (TPC) of the Tested Plant Extracts
3.6. Antioxidant Activities of the Tested Plant Materials
3.7. Phytocompounds Identified in the Extracts of Doum, Licorice, and Banana Peels by GC–MS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, F.; Bhatnagar, D.; Bui-Klimke, T.; Carbone, I.; Hellmich, R.; Munkvold, G.; Paul, P.; Payne, G.; Takle, E. Climate change impacts on mycotoxin risks in US maize. World Mycotoxin J. 2011, 4, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Perrone, G.; Haidukowski, M.; Stea, G.; Epifani, F.; Bandyopadhyay, R.; Leslie, J.F.; Logrieco, A. Population structure and aflatoxin production by Aspergillus Sect. Flavi from maize in Nigeria and Ghana. Food Microbiol. 2014, 41, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Asters, M.C.; Williams, W.P.; Perkins, A.D.; Mylroie, J.E.; Windham, G.L.; Shan, X. Relating significance and relations of differentially expressed genes in response to Aspergillus flavus infection in maize. Sci. Rep. 2014, 4, 4815. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, B.N.; Bandyopadhyay, R.; Cotty, P.J. Degeneration of aflatoxin gene clusters in Aspergillus flavus from Africa and North America. AMB Express 2016, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Suleiman, M.N.; Omafe, O.M. Activity of three medicinal plants on fungi isolated from stored maize seeds (Zea mays (L.). Glob. J. Med. Plant Res. 2013, 1, 77–81. [Google Scholar]
- Pietri, A.; Bertuzzi, T.; Pallaroni, L.; Piva, G. Occurrence of mycotoxins and ergosterol in maize harvested over 5 years in northern Italy. Food Addit. Contam. 2004, 21, 479–487. [Google Scholar] [CrossRef]
- Galvano, F.; Ritieni, A.; Piva, G.; Pietri, A. Mycotoxins in the human food chain. In The Mycotoxin Blue Book; Diaz, D.E., Ed.; Nottingham University Press: Nottingham, UK, 2005; Volume 1, pp. 187–224. [Google Scholar]
- Strosnider, H.; Azziz-Baumgartner, E.; Banziger, M.; Bhat, R.V.; Breiman, R.; Brune, M.-N.; Decock, K.; Dilley, A.; Groopman, J.; Hell, K.; et al. Workgroup report: Public health strategies for reducing aflatoxin exposure in developing countries. Environ. Health Perspect. 2006, 114, 1898–1903. [Google Scholar] [CrossRef] [PubMed]
- Ogodo, A.C.; Ugbogu, O.C. Public health significance of aflatoxin in food industry—A review. Eur. J. Clin. Biomed. Sci. 2016, 2, 51–58. [Google Scholar]
- Abdel-Kareem, M.M.; Rasmey, A.M.; Zohri, A.A. The action mechanism and biocontrol potentiality of novel isolates of Saccharomyces cerevisiae against the aflatoxigenic Aspergillus flavus. Lett. Appl. Microbiol. 2018, 68, 104–111. [Google Scholar] [CrossRef]
- Gauthier, L.; Bonnin-Verdal, M.-N.; Marchegay, G.; Pinson-Gadais, L.; Ducos, C.; Richard-Forget, F.; Atanasova-Penichon, V. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals. Int. J. Food Microbiol. 2016, 221, 61–68. [Google Scholar] [CrossRef]
- Lagogianni, C.; Tsitsigiannis, D. Effective chemical management for prevention of aflatoxins in maize. Phytopathol. Mediterr. 2018, 57, 186–197. [Google Scholar]
- Kaur, R.; Kaur, H. The antimicrobial activity of essential oil and plant extracts of Woodfordia fruticosa. Arch. Appl. Sci. Res. 2010, 2, 302–309. [Google Scholar]
- Ashmawy, N.A.; Behiry, S.I.; Ali, H.M.; Salem, M.Z.M. Evaluation of Tecoma stans and Callistemon viminalis extracts against potato soft rot bacteria in vitro. J. Pure Appl. Microbiol. 2014, 8, 667–673. [Google Scholar]
- Abdelkhalek, A.; Salem, M.Z.; Kordy, A.M.; Salem, A.Z.; Behiry, S.I. Antiviral, antifungal, and insecticidal activities of Eucalyptus bark extract: HPLC analysis of polyphenolic compounds. Microb. Pathog. 2020, 147, 104383. [Google Scholar] [CrossRef] [PubMed]
- Tagne, A.; Feujio, T.P.; Sonna, C. Essential oil and plant extracts as potential substitutes to synthetic fungicides in the control of fungi. In Proceedings of the International Conference Diversifying Crop Protection, La Grande Motte, France, 12–15 October 2008; pp. 12–15. [Google Scholar]
- Ferrochio, L.; Cendoya, E.; Farnochi, M.C.; Massad, W.; Ramirez, M.L. Evaluation of ability of ferulic acid to control growth and fumonisin production of Fusarium verticillioides and Fusarium proliferatum on maize based media. Int. J. Food Microbiol. 2013, 167, 215–220. [Google Scholar] [CrossRef]
- Martin, J.G.P.; Porto, E.; Corrêa, C.B.; Alencar, S.M.; Gloria, E.M.; Cabral, I.S.R.; Aquino, L.M. Antimicrobial potential and chemical composition of agro-industrial wastes. J. Nat. Prod. 2012, 5, 27–36. [Google Scholar]
- Stabnikova, O.; Wang, J.-Y.; Ding, H.B.; Tay, J.-H. Biotransformation of vegetable and fruit processing wastes into yeast biomass enriched with selenium. Bioresour. Technol. 2005, 96, 747–751. [Google Scholar] [CrossRef]
- García-Marino, M.; Rivas-Gonzalo, J.-C.; Ibáñez, E.; García-Moreno, C. Recovery of catechins and proanthocyanidins from winery by-products using subcritical water extraction. Anal. Chim. Acta 2006, 563, 44–50. [Google Scholar] [CrossRef]
- Mohamed, S.; Hassan, Z.; Hamid, N.A. Antimicrobial activity of some tropical fruit wastes (guava, starfruit, banana, papaya, passionfruit, langsat, duku, rambutan and rambai). Pertanika 1994, 17, 219. [Google Scholar]
- Hossain, M.A.; Ngo, H.H.; Guo, W.S.; Nguyen, T.V. Removal of copper from water by adsorption onto banana peel as bioadsorbent. Int. J. Geomate 2012, 2, 227–234. [Google Scholar] [CrossRef]
- Oliveira, L.; Freire, C.S.R.; Silvestre, A.J.D.; Cordeiro, N. Lipophilic extracts from banana fruit residues: A source of valuable phytosterols. J. Agric. Food Chem. 2008, 56, 9520–9524. [Google Scholar] [CrossRef]
- Lim, Y.; Lim, T.; Tee, J. Antioxidant properties of several tropical fruits: A comparative study. Food Chem. 2007, 103, 1003–1008. [Google Scholar] [CrossRef]
- Chabuck, Z.A.G.; Al-Charrakh, A.H.; Hindi, N.K.K.; Hindi, S.K.K. Antimicrobial effect of aqueous banana peel extract, Iraq. Res. Gate. Pharm. Sci. 2013, 1, 73–75. [Google Scholar]
- Singh, J.P.; Kaur, A.; Shevkani, K.; Singh, N. Influence of jambolan (Syzygium cumini) and xanthan gum incorporation on the physicochemical, antioxidant and sensory properties of gluten-free eggless rice muffins. Int. J. Food Sci. Technol. 2015, 50, 1190–1197. [Google Scholar] [CrossRef]
- Praveena, M.; Prabha, M.S.; Ravi, I.; Vaganan, M.M. Anti-colorectal cancer properties of Hill banana (cv. Virupakshi AAB) fruits: An in vitro assay. ICAR Int. Bimon. 2018, 8, 47. [Google Scholar]
- Bouchra, C.; Mohamed, A.; Mina, I.H.; Hmamouchi, M. Antifungal Activity of Essential Oils from Several Medicinal Plants against Four Postharvest Citrus Pathogens; Firenze University Press: Florence, Italy, 2003. [Google Scholar]
- Shehata, M.G.; Badr, A.N.; El Sohaimy, S.A.; Asker, D.; Awad, T.S. Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives. Ann. Agric. Sci. 2019, 64, 71–78. [Google Scholar] [CrossRef]
- Raynor, L.; Mitchell, A.; Walker, R. Antifungal activities of four fatty acids against plant pathogenic fungi. Mycopathology 2004, 157, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Yu, J. Current understanding on aflatoxin biosynthesis and future perspective in reducing aflatoxin contamination. Toxins 2012, 4, 1024–1057. [Google Scholar] [CrossRef] [Green Version]
- Roze, L.V.; Hong, S.-Y.; Linz, J.E. Aflatoxin biosynthesis: Current frontiers. Annu. Rev. Food Sci. Technol. 2013, 4, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, K.C. Predicted roles of the uncharacterized clustered genes in aflatoxin biosynthesis. Toxins 2009, 1, 37–58. [Google Scholar] [CrossRef] [Green Version]
- Liang, D.; Xing, F.; Selvaraj, J.N.; Liu, X.; Wang, L.; Hua, H.; Zhou, L.; Zhao, Y.; Wang, Y.; Liu, Y. Inhibitory effect of cinnamaldehyde, citral, and eugenol on aflatoxin biosynthetic gene expression and aflatoxin B1 biosynthesis in Aspergillus flavus. J. Food Sci. 2015, 80, M2917–M2924. [Google Scholar] [CrossRef] [PubMed]
- Caceres, I.; El Khoury, R.; Medina, Á.; Lippi, Y.; Naylies, C.; Atoui, A.; El Khoury, A.; Oswald, I.P.; Bailly, J.-D.; Puel, O. Deciphering the anti-aflatoxinogenic properties of eugenol using a large-scale q-PCR approach. Toxins 2016, 8, 123. [Google Scholar] [CrossRef] [Green Version]
- El Khoury, R.; Caceres, I.; Puel, O.; Bailly, S.; Atoui, A.; Oswald, I.P.; El Khoury, A.; Bailly, J.-D. Identification of the anti-aflatoxinogenic activity of Micromeria graeca and elucidation of its molecular mechanism in Aspergillus flavus. Toxins 2017, 9, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samson, R.A.; Hoekstra, E.S.; Frisvad, J.C.; Filtenborg, O. Introduction to Food and Airborne Fungi; Centraalbureau voor Schimmelcultures: Utrecht, The Netherlands, 2004; Volume 4, pp. 169–172. [Google Scholar]
- Klich, M.A. Identification of Common Aspergillus Species; Centraalbureau voor Schimmelcultures: Utrecht, The Netherlands, 2002; ISBN 9070351463. [Google Scholar]
- Alshannaq, A.F.; Gibbons, J.G.; Lee, M.-K.; Han, K.-H.; Hong, S.-B.; Yu, J.-H. Controlling aflatoxin contamination and propagation of Aspergillus flavus by a soy-fermenting Aspergillus oryzae strain. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef]
- Velluti, A.; Sanchis, V.; Ramos, A.J.; Egido, J.; Marın, S. Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B1 production by Fusarium proliferatum in maize grain. Int. J. Food Microbiol. 2003, 89, 145–154. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Behiry, S.I.; EL-Hefny, M. Inhibition of Fusarium culmorum, Penicillium chrysogenum and Rhizoctonia solani by n-hexane extracts of three plant species as a wood-treated oil fungicide. J. Appl. Microbiol. 2019, 126, 1683–1699. [Google Scholar] [CrossRef]
- Abdelkhalek, A.; Behiry, S.I.; Al-Askar, A.A. Bacillus velezensis PEA1 inhibits Fusarium oxysporum growth and induces systemic resistance to cucumber mosaic virus. Agronomy 2020, 10, 1312. [Google Scholar] [CrossRef]
- Di Pinto, A.; Forte, V.; Guastadisegni, M.C.; Martino, C.; Schena, F.P.; Tantillo, G.M. A comparison of DNA extraction methods for food analysis. Food Control 2007, 18, 76–80. [Google Scholar] [CrossRef]
- Turkmen, N.; Sari, F.; Velioglu, Y.S. Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chem. 2006, 99, 835–841. [Google Scholar] [CrossRef]
- Farahmandfar, R.; Asnaashari, M.; Sayyad, R. Comparison antioxidant activity of Tarom Mahali rice bran extracted from different extraction methods and its effect on canola oil stabilization. J. Food Sci. Technol. 2015, 52, 6385–6394. [Google Scholar] [CrossRef] [Green Version]
- Asnaashari, M.; Farhoosh, R.; Sharif, A. Antioxidant activity of gallic acid and methyl gallate in triacylglycerols of Kilka fish oil and its oil-in-water emulsion. Food Chem. 2014, 159, 439–444. [Google Scholar] [CrossRef]
- Okla, M.K.; Alamri, S.A.; Salem, M.Z.; Ali, H.M.; Behiry, S.I.; Nasser, R.A.; Alaraidh, I.A.; Al-Ghtani, S.M.; Soufan, W. Yield, phytochemical constituents, and antibacterial activity of essential oils from the leaves/twigs, branches, branch wood, and branch bark of sour orange (Citrus aurantium L.). Processes 2019, 7, 363. [Google Scholar] [CrossRef] [Green Version]
- Abdelkhalek, A.; Salem, M.Z.M.; Hafez, E.; Behiry, S.I.; Qari, S.H. The phytochemical, antifungal, and first report of the antiviral properties of Egyptian Haplophyllum tuberculatum extract. Biology 2020, 9, 248. [Google Scholar] [CrossRef] [PubMed]
- Youssef, N.H.; Qari, S.H.; Behiry, S.I.; Dessoky, E.S.; El-Hallous, E.I.; Elshaer, M.M.; Kordy, A.; Maresca, V.; Abdelkhalek, A.; Heflish, A.A. Antimycotoxigenic activity of beetroot extracts against Altenaria alternata mycotoxins on potato crop. Appl. Sci. 2021, 11, 4239. [Google Scholar] [CrossRef]
- Hoeltz, M.; Welke, J.E.; Noll, I.B.; Dottori, H.A. Photometric procedure for quantitative analysis of aflatoxin B1 in peanuts by thin-layer chromatography using charge coupled device detector. Química Nova 2010, 33, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Adi, P.J.; Matcha, B. Analysis of aflatoxin B1 in contaminated feed, media, and serum samples of Cyprinus carpio L. by high-performance liquid chromatography. Food Qual. Saf. 2018. [Google Scholar] [CrossRef]
- Abdelkhalek, A.; Sanan-Mishra, N. Differential expression profiles of tomato miRNAs induced by tobacco mosaic virus. J. Agric. Sci. Technol. 2019, 21. [Google Scholar]
- Hafez, E.E.; El-Morsi, A.A.; El-Shahaby, O.A.; Abdelkhalek, A. Occurrence of Iris yellow spot virus from onion crops in Egypt. VirusDisease 2014, 25, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Abdelkhalek, A.; Elmorsi, A.; Alshehaby, O.; Sanan-Mishra, N.; Hafez, E. Identification of genes differentially expressed in onion infected with Iris yellow spot virus. Phytopathol. Mediterr. 2018, 57. [Google Scholar] [CrossRef]
- Abo-Zaid, G.; Matar, S.; Abdelkhalek, A. Induction of plant resistance against tobacco mosaic virus using the biocontrol agent Streptomyces cellulosae isolate Actino 48. Agronomy 2020, 10, 1620. [Google Scholar] [CrossRef]
- Abdelkhalek, A.; Al-Askar, A.A.; Hafez, E. Differential induction and suppression of the potato innate immune system in response to Alfalfa mosaic virus infection. Physiol. Mol. Plant Pathol. 2020, 110, 101485. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley and Sons: Hoboken, NJ, USA, 1984; ISBN 0471870927. [Google Scholar]
- McDonald, J.H. Handbook of Biological Statistics; Sparky House Publishing: Baltimore, MD, USA, 2009; Volume 2. [Google Scholar]
- Al-Huqail, A.A.; Behiry, S.I.; Salem, M.Z.M.; Ali, H.M.; Siddiqui, M.H.; Salem, A.Z.M. Antifungal, antibacterial, and antioxidant activities of Acacia Saligna (Labill.) H.L. Wendl flower extract: HPLC analysis of phenolic and flavonoid compounds. Molecules 2019, 24, 700. [Google Scholar] [CrossRef] [Green Version]
- Hojo, H.; Sato, J. Antifungal activity of licorice (Glycyrrhiza glabra) and potential applications in beverage, foods. J. Food Ingred. 2002, 203, 27–33. [Google Scholar]
- Mohseni, R.; Noorbakhsh, F.; Moazeni, M.; Omran, A.N.; Rezaie, S. Antitoxin characteristic of licorice extract: The inhibitory effect on aflatoxin production in Aspergillus parasiticus. J. Food Saf. 2014, 34, 119–125. [Google Scholar] [CrossRef]
- El Zawawy, N.A. Antioxidant, antitumor, antimicrobial studies and quantitative phytochemical estimation of ethanolic extracts of selected fruit peels. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 298–309. [Google Scholar]
- Olakunle, O.; Deborah, J.; Irene, O. Antifungal activity and phytochemical analysis of selected fruit peels. J. Biol. Med. 2019, 3, 040–043. [Google Scholar] [CrossRef] [Green Version]
- Behiry, S.I.; Okla, M.K.; Alamri, S.; El-Hefny, M.; Salem, M.Z.M.; Alaraidh, I.A.; Ali, H.M.; Al-Ghtani, S.M.; Monroy, J.C.; Salem, A.Z.M. Antifungal and antibacterial activities of wood treated with Musa paradisiaca L. peel extract: HPLC analysis of phenolic and flavonoid contents. Processes 2019, 7, 215. [Google Scholar] [CrossRef] [Green Version]
- Taha, G.A.; Abdel-Farid, I.B.; Elgebaly, H.A.; Mahalel, U.A.; Sheded, M.G.; Bin-Jumah, M.; Mahmoud, A.M. Metabolomic profiling and antioxidant, anticancer and antimicrobial activities of Hyphaene thebaica. Processes 2020, 8, 266. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, E.M. Screening of methanolic extract for antimicrobial activity of Hyphaene thebaica L. fruit pulp from Sudanese folklore. South Asian J. Res. Microbiol. 2021, 9, 6–12. [Google Scholar] [CrossRef]
- Okorondu, S.I.; Sokari, T.G.; Akujobi, C.O.; Braide, W. Phytochemical and antibacterial properties of Musa paradisiaca stalk plant. Int. J. Biol. Sci. 2010, 2, 128–132. [Google Scholar]
- Borges, C.V.; Amorim, V.B.D.O.; Ramlov, F.; Ledo, C.A.D.S.; Donato, M.; Maraschin, M.; Amorim, E.P. Characterisation of metabolic profile of banana genotypes, aiming at biofortified Musa spp. cultivars. Food Chem. 2014, 145, 496–504. [Google Scholar] [CrossRef]
- Naik, P.; Wedel, M.; Bacon, L.; Bodapati, A.; Bradlow, E.; Kamakura, W.; Kreulen, J.; Lenk, P.; Madigan, D.M.; Montgomery, A. Challenges and opportunities in high-dimensional choice data analyses. Mark. Lett. 2008, 19, 201–213. [Google Scholar] [CrossRef]
- Bernardo, J.S.; Sagum, R.S. Eggplant (Solanum melongena L.) peel as a potential functional ingredient in pan de sal. J. Nutr. Food Sci. 2016, 6. [Google Scholar] [CrossRef]
- Adom, K.K.; Sorrells, A.M.E.; Liu, R.H. Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J. Agric. Food Chem. 2005, 53, 2297–2306. [Google Scholar] [CrossRef] [PubMed]
- Laddomada, B.; Caretto, S.; Mita, G. Wheat bran phenolic acids: Bioavailability and stability in whole wheat-based foods. Molecules 2015, 20, 15666–15685. [Google Scholar] [CrossRef]
- Gemeda, N.; Woldeamanuel, Y.; Asrat, D.; Debella, A. Effect of essential oils on Aspergillus spore germination, growth and mycotoxin production: A potential source of botanical food preservative. Asian Pac. J. Trop. Biomed. 2014, 4, S373–S381. [Google Scholar] [CrossRef] [Green Version]
- El-Aziz, A.R.M.A.; Mahmoud, M.A.; Al-Othman, M.R.; Al-Gahtani, M.F. Use of selected essential oils to control aflatoxin contaminated stored cashew and detection of aflatoxin biosynthesis gene. Sci. World J. 2015, 2015, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mabrouk, S.S.; El-Shayeb, N.M.A. Isolation of inhibitors of Aspergillus flavus from lentils (Lens culinris Medicus). In Proceedings of the 5th International Symposium on Mycotoxins and Phycotoxins, Vienna, Austria, 18–21 September 1982. [Google Scholar]
- Yazdani, D.; Ahmad, Z.A.M.; How, T.Y.; Jaganath, I.B.; Shahnazi, S. Inhibition of aflatoxin biosynthesis in Aspergillus flavus by phenolic compounds extracted of Piper betle L. Iran. J. Microbiol. 2013, 5, 428–433. [Google Scholar]
- Cleveland, T.E.; Yu, J.; Fedorova, N.; Bhatnagar, D.; Payne, G.A.; Nierman, W.C.; Bennett, J.W. Potential of Aspergillus flavus genomics for applications in biotechnology. Trends Biotechnol. 2009, 27, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Fedorova, N.D.; Montalbano, B.G.; Bhatnagar, D.; Cleveland, T.E.; Bennett, J.W.; Nierman, W.C. Tight control of mycotoxin biosynthesis gene expression in Aspergillus flavus by temperature as revealed by RNA-Seq. FEMS Microbiol. Lett. 2011, 322, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Lappa, I.K.; Dionysopoulou, A.M.; Paramithiotis, S.; Georgiadou, M.; Drosinos, E.H. Dual transcriptional profile of Aspergillus flavus during co-culture with Listeria monocytogenes and aflatoxin B1 production: A pathogen-pathogen interaction. Pathogens 2019, 8, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullah, N.; Akhtar, K.P.; Hassan, S.W.U.; Asi, M.R.; Sadef, Y. First report of molecular characterization of Aspergillus flavus from maize in Pakistan. J. Plant Pathol. 2019, 101, 1289–1290. [Google Scholar] [CrossRef]
- Papa, K.E. Norsolorinic acid mutant of Aspergillus flavus. Microbiology 1982, 128, 1345–1348. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar, D.; Ehrlich, K.C.; Cleveland, T.E. Molecular genetic analysis and regulation of aflatoxin biosynthesis. Appl. Microbiol. Biotechnol. 2003, 61, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Scherm, B.; Palomba, M.; Serra, D.; Marcello, A.; Migheli, Q. Detection of transcripts of the aflatoxin genes aflD, aflO, and aflP by reverse transcription–polymerase chain reaction allows differentiation of aflatoxin-producing and non-producing isolates of Aspergillus flavus and Aspergillus parasiticus. Int. J. Food Microbiol. 2005, 98, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Verheecke, C.; Liboz, T.; Anson, P.; Zhu, Y.; Mathieu, F. Streptomyces-Aspergillus flavus interactions: Impact on aflatoxin B accumulation. Food Addit. Contam. Part A 2015, 32, 572–576. [Google Scholar] [CrossRef] [PubMed]
- Mayer, Z.; Färber, P.; Geisen, R. Monitoring the production of aflatoxin B1 in wheat by measuring the concentration of nor-1 mRNA. Appl. Environ. Microbiol. 2003, 69, 1154–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, P.; Venâncio, A.; Kozakiewicz, Z.; Lima, N. A polyphasic approach to the identification of aflatoxigenic and non-aflatoxigenic strains of Aspergillus Section Flavi isolated from Portuguese almonds. Int. J. Food Microbiol. 2009, 129, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, M.J.; Pàmies, P.; Dobson, A.D. The use of reverse transcription-polymerase chain reaction (RT-PCR) for monitoring aflatoxin production in Aspergillus parasiticus 439. Int. J. Food Microbiol. 2000, 56, 97–103. [Google Scholar] [CrossRef]
- Degola, F.; Berni, E.; Spotti, E.; Ferrero, I.; Restivo, F.M. Facing the problem of “false positives”: Re-assessment and improvement of a multiplex RT-PCR procedure for the diagnosis of A. flavus mycotoxin producers. Int. J. Food Microbiol. 2009, 129, 300–305. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nat. Cell Biol. 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Hsu, B.; Coupar, I.M.; Ng, K. Antioxidant activity of hot water extract from the fruit of the Doum palm, Hyphaene thebaica. Food Chem. 2006, 98, 317–328. [Google Scholar] [CrossRef]
- Satish, S.; Mohana, D.C.; Ranhavendra, M.P.; Raveesha, K.A. Antifungal activity of some plant extracts against important seed borne pathogens of Aspergillus sp. J. Agric. Technol. 2007, 3, 109–119. [Google Scholar]
- González-Montelongo, R.; Lobo, M.G.; González, M. Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chem. 2010, 119, 1030–1039. [Google Scholar] [CrossRef]
- Fatemeh, S.R.; Saifullah, R.; Abbas, F.M.A.; Azhar, M.E. Total phenolics, flavonoids and antioxidant activity of banana pulp and peel flours: Influence of variety and stage of ripeness. Int. Food Res. J. 2012, 19, 1041. [Google Scholar]
- Qadeer, G.; Rama, N.H.; Zareef, M.; Al-Masoudi, N.P. Antibacterial, antifungal, antiherbicidal, and antifungicidal activity of 4,6-dimethoxyhomophthalic acid and related compounds. Pharm. Chem. J. 2008, 42, 335–339. [Google Scholar] [CrossRef]
- Ali, I.; Khan, F.G.; Suri, K.A.; Gupta, B.D.; Satti, N.K.; Dutt, P.; Afrin, F.; Qazi, G.N.; Khan, I.A. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L. Ann. Clin. Microbiol. Antimicrob. 2010, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Hua, S.T.; Grosjean, O.K.; Baker, J.L. Inhibition of aflatoxin biosynthesis by phenolic compounds. Lett. Appl. Microbiol. 1999, 29, 289–291. [Google Scholar] [CrossRef] [Green Version]
- Calvo, H.; Marco, P.; Blanco, D.; Oria, R.; Venturini, M. Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases. Food Microbiol. 2017, 63, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Qiao, H.; Huang, L.; Buchenauer, H.; Han, Q.; Kang, Z.; Gong, Y. Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. Biol. Control 2009, 49, 277–285. [Google Scholar] [CrossRef]
- Christensen, S.A.; Kolomiets, M.V. The lipid language of plant-fungal interactions. Fungal Genet. Biol. 2011, 48, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Vio-Michaelis, S.; Apablaza-Hidalgo, G.; Gómez, M.; Peña-Vera, R.; Montenegro, G. Antifungal activity of three Chilean plant extracts on Botrytis cinerea. Bot. Sci. 2012, 90, 179. [Google Scholar] [CrossRef]
- Sadhasivam, S.; Shapiro, O.H.; Ziv, C.; Barda, O.; Zakin, V.; Sionov, E. Synergistic inhibition of mycotoxigenic fungi and mycotoxin production by combination of pomegranate peel extract and azole fungicide. Front. Microbiol. 2019, 10, 1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Grain Shape Change | Odor Change | Approval | Scale |
---|---|---|---|
Whole grains (no change in shape) | No smell | Most approved | 5 |
Mild simple | Mild simple | Highly approved | 4 |
Moderate | Moderate | Very approved | 3 |
Great | Great | Approved | 2 |
Very great | Pungent | Unapproved | 1 |
Target Gene | Sequences (5′—3′) | Function in the Biosynthetic Pathway | Target Size (bp) |
---|---|---|---|
β-Tubulin (benA) | Forward: CTTGTTGACCAGGTTGTGGAT Reverse: GTCGCAGCCCTCAGCCT | Reference housekeeping gene | 51 |
aflD (nor-1) | Forward: GTCCAAGCAACAGGCCAAGT Reverse: TCGTGCATGTTGGTGATGGT | Norsolorinic acid (NOR) → averantin (AVN) | 66 |
aflP (omtA) | Forward: GGCCGCCGCTTTGATCTAGG Reverse: ACCACGACCGCCGCC | Sterigmatocystin (ST) → O-methylsterigmatocystin (OMST) | 123 |
aflQ (ordA) | Forward: GTGTCCGCAGTGTCTAGCTT Reverse: GCTCAAAGGTCGCCAGAGTA | O-methylsterigmatocystin (OMST) → aflatoxin B1(AFB1) | 115 |
aflR | Forward: CTCAAGGTGCTGGCATGGTA Reverse: CAGCTGCCACTGTTGGTTTC | Pathway regulator | 86 |
aflS | Forward: CTGCAGCTATATTGCCCACA Reverse: TAAACCCAGGCAGAGTTGGT | Pathway regulator | 117 |
Solvent | Concentration (%) | A Wet and Dry Weight of A. flavus (g) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Doum | Licorice | Banana | ||||||||
Wet | Dry | ER% | Wet | Dry | ER% | Wet | Dry | ER% | ||
Ethanol | 25 | 0.19 k | 0.06 m | 85.96 b | 3.53 h | 0.81 f | 50.56 k | 2.83 d | 0.29 e | 85.65 a |
50 | 5.13 de | 0.83 g | 62.17 h | 0.23 k | 0.06 k | 64.68 f | 1.36 g | 0.21 f | 73.52 f | |
75 | 1.30 j | 0.23 l | 61.87 i | 3.04 j | 0.77 g | 68.13 e | 1.32 h | 0.20 f | 77.35 d | |
Acetone | 25 | 5.06 f | 0.98 c | 71.61 f | 0.15 l | 0.04 l | 59.14 g | 0.45 k | 0.05 i | 69.74 i |
50 | 5.17 d | 0.81 h | 64.30 g | 6.42 b | 0.84 e | 69.28 d | 0.30 m | 0.02 j | 79.39 c | |
75 | 5.65 c | 0.89 e | 44.65 k | 0.08 m | 0.02 m | 45.03 l | 1.41 f | 0.14 g | 85.08 b | |
Methanol | 25 | 4.32 g | 0.59 i | 46.37 j | 6.23 c | 0.96 c | 56.61 h | 3.68 c | 0.42 c | 49.15 j |
50 | 7.36 b | 1.03b | 83.04 c | 6.11 d | 1.01 b | 52.68 j | 1.17 i | 0.07 h | 34.38 l | |
75 | 5.15 de | 0.93 d | 40.61 l | 5.72 e | 0.89 d | 56.01 i | 4.59 b | 0.47 b | 39.24 k | |
Diethyl ether | 25 | 3.75 h | 0.26 k | 76.32 d | 4.46 g | 0.66 i | 74.68 c | 2.82 e | 0.38 d | 70.86 g |
50 | 5.09 ef | 0.27 j | 71.94 e | 5.02 f | 0.70 h | 88.38 b | 0.43 l | 0.02 j | 70.85 h | |
75 | 3.60 i | 0.86 f | 86.86 a | 3.44 i | 0.41 j | 91.43 a | 0.75 b | 0.05 i | 77.08 e | |
Control | 7.74 a | 1.72 a | 0 m | 7.74 a | 1.72 a | 0 m | 7.74 a | 1.72 a | 0 m |
Treatments | Solvent Concentration | AFB1 (ppb) | ER% |
---|---|---|---|
Healthy moistened control | --- | 0.00 | --- |
Infected control | --- | 425 | --- |
Doum | Di ethyl ether 75% | 66.21 | 84.42 |
Licorice | Di ethyl ether 75% | 9.56 | 97.75 |
Banana | Ethanol 25% | 110.48 | 74.12 |
Thiram | 2.5 mg/mL | 339.37 | 20.15 |
LSD0.05 | 5.60 |
Treatments | Solvent Concentration | Grain Shape | Smell | Scale |
---|---|---|---|---|
Healthy moistened control | --- | 5 | 0 | 5 |
Infected control | --- | 0 | 5 | 0 |
Doum | Di ethyl ether 75% | 5 | 1 | 4 |
Licorice | Di ethyl ether 75% | 4 | 1 | 4 |
Banana | Ethanol 25% | 4 | 1 | 4 |
Thiram | 2.5 mg/mL | 0 | 5 | 0 |
Plant Extract | Solvent Concentration | TPC (mgGAE/g Dry Extract wt) ± SD | AA (μg/mL) |
---|---|---|---|
Ascorbic acid | - | - | 4.28 |
Doum | Diethyl ether 75% | 60.48 ± 0.74 | 84.71 |
Licorice | Diethyl ether 75% | 18.83 ± 1.55 | 67.53 |
Banana | Ethanol 25% | 37.28 ± 0.64 | 84.26 |
Peak No. | Retention Time | Compound Name | Doum % | Licorice % | Banana % |
---|---|---|---|---|---|
1 | 6.246 | 2,5-Dimethyl-para-anisalehyde | 10.41 | - | - |
2 | 9.85 | 2,6-Dihydroxycineol | 9.82 | - | - |
3 | 7.03 | 3,5-Dimethoxycinnamic acid | - | 26.37 | - |
4 | 8.4 | 6-Hydroxyflavone | - | 1.82 | 0.59 |
5 | 15.547 | 3′,4′,7-Trimethylquercetin | 1.06 | - | - |
6 | 10.599 | 3,5,7-Tri-O-methylgalangin | - | - | 0.58 |
7 | 10.19 | 3,5-Dihydroxyphenol | 10.66 | - | - |
8 | 6.2 | 4- Methylcatechol | - | - | 4.54 |
9 | 6.683 | 4-Ethylbenzaldehye | 4.01 | - | - |
10 | 17.114 | 1,16-Hexadecanedioic acid | - | 2 | - |
11 | 17.044 | 5β,7βH,10α-Eudesm-11-en-1α-ol | 2.31 | 0.6 | 0.49 |
12 | 8.4 | 6-Hydroxyflavone | 1.65 | - | - |
13 | 6.62 | 7,8-Dihydro-α-ionone | 1.3 | - | 1.7 |
14 | 18.48 | n-Docosane | - | 1.47 | - |
15 | 23.5 | Cannabinol | - | 0.9 | - |
16 | 5.589 | Cedrol | - | - | 0.82 |
17 | 9.716 | d-Mannose | 2.46 | - | 0.14 |
18 | 4.988 | Deoxyribose | - | - | 7.14 |
19 | 6.884 | Dimethoxyurene | 0.54 | - | - |
20 | 19.68 | DL-Malic acid | - | 1.7 | - |
21 | 22.337 | Estriol 16α-(β-D-glucuronide) | - | 1.23 | - |
22 | 5.391 | Ethylnorbornane | 7.03 | - | 0.97 |
23 | 7.428 | Farnesol | 2.15 | - | 3.23 |
24 | 21.146 | Squalane | - | 1.16 | - |
25 | 15.852 | Glycitein | 1.22 | 1.45 | 1.85 |
26 | 7.776 | Hexestrol | 0.8 | - | 0.75 |
27 | 15.107 | 4-Hydroxy-2-methoxybenzaldehyde | - | - | 0.76 |
28 | 3.88 | L-Aspartic acid | - | 11.28 | - |
29 | 7.016 | Ledol | 1.22 | - | - |
30 | 8.537 | Levoglucosenone | 1.93 | - | 1.28 |
31 | 16.857 | Linoleic acid | 16.49 | 10.23 | 4.28 |
32 | 16.534 | Luteolin 6,8-C-diglucoside | 0.99 | 1.98 | 2.21 |
33 | 9.8 | Malonamic acid | - | 2.32 | - |
34 | 4.56 | Methionine | - | 6.45 | - |
35 | 15.419 | Methyl 17-methyloctadecanoate | 1.16 | - | 0.61 |
36 | 6.158 | Methyl cuminate | - | 2.69 | - |
37 | 3.913 | Methyl β-D-ribopyranoside | - | - | 13.42 |
38 | 9.364 | N-Acetylneuraminic acid | 1.93 | - | 2.21 |
39 | 9.5 | Nabilone | - | 1.73 | - |
40 | 15.672 | Octadecanoic acid | 9.51 | 6.41 | 6.17 |
41 | 8.65 | Octahyrochromen-2-one | 2.2 | - | - |
42 | 4.942 | p-Allylphenol | 2.19 | 2.96 | 5.86 |
43 | 7.886 | p-Cimene | - | - | 1.04 |
44 | 5.559 | Phenylglyoxylic acid | 1.44 | - | - |
45 | 13.05 | Quercetin 7,3′,4′-trimethoxy | - | 1.54 | 0.55 |
46 | 8.919 | Resveratrol | - | - | 2.16 |
47 | 23.623 | Rhodopin | - | 1.33 | 10.96 |
48 | 6.328 | Sorbitol | 0.83 | - | - |
50 | 4.38 | Sinapyl alcohol | - | 6.2 | - |
51 | 5.57 | Sebacic acid | - | 3.24 | - |
52 | 8.082 | Stevioside | 2.51 | - | - |
53 | 10.36 | Tetra-O-methylfisetin | - | - | 0.33 |
54 | 5.079 | Valproic acid | - | - | 13.44 |
55 | 9.835 | Xanthinin | - | - | 4.99 |
56 | 23.65 | Zeaxanthin | 1.63 | - | - |
57 | 6.866 | α-Bisabolol | - | - | 4.49 |
58 | 13.241 | α-Himachalene | - | - | 0.74 |
59 | 8.14 | γ-Terpinene | - | - | 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, N.H.; Qari, S.H.; Matar, S.; Hamad, N.A.; Dessoky, E.S.; Elshaer, M.M.; Sobhy, S.; Abdelkhalek, A.; Zakaria, H.M.; Heflish, A.A.; et al. Licorice, Doum, and Banana Peel Extracts Inhibit Aspergillus flavus Growth and Suppress Metabolic Pathway of Aflatoxin B1 Production. Agronomy 2021, 11, 1587. https://doi.org/10.3390/agronomy11081587
Youssef NH, Qari SH, Matar S, Hamad NA, Dessoky ES, Elshaer MM, Sobhy S, Abdelkhalek A, Zakaria HM, Heflish AA, et al. Licorice, Doum, and Banana Peel Extracts Inhibit Aspergillus flavus Growth and Suppress Metabolic Pathway of Aflatoxin B1 Production. Agronomy. 2021; 11(8):1587. https://doi.org/10.3390/agronomy11081587
Chicago/Turabian StyleYoussef, Nesrine H., Sameer H. Qari, Saleh Matar, Najwa A. Hamad, Eldessoky S. Dessoky, Moustafa M. Elshaer, Sherien Sobhy, Ahmed Abdelkhalek, Hossam M. Zakaria, Ahmed A. Heflish, and et al. 2021. "Licorice, Doum, and Banana Peel Extracts Inhibit Aspergillus flavus Growth and Suppress Metabolic Pathway of Aflatoxin B1 Production" Agronomy 11, no. 8: 1587. https://doi.org/10.3390/agronomy11081587
APA StyleYoussef, N. H., Qari, S. H., Matar, S., Hamad, N. A., Dessoky, E. S., Elshaer, M. M., Sobhy, S., Abdelkhalek, A., Zakaria, H. M., Heflish, A. A., Elsamra, I. A., & Behiry, S. I. (2021). Licorice, Doum, and Banana Peel Extracts Inhibit Aspergillus flavus Growth and Suppress Metabolic Pathway of Aflatoxin B1 Production. Agronomy, 11(8), 1587. https://doi.org/10.3390/agronomy11081587