Modeling the Impacts of Climate Change on Yields of Various Korean Soybean Sprout Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Determination of Base Temperature for Each Soybean Cultivar
2.3. Statistical Analysis and K-Mean Clustering Analysis
2.4. Development of ALMANAC Soybean Sprout Plant Parameters
2.5. Climate Change Projection
3. Results and Discussion
3.1. Determination of Optimal Base Temperatures for All Six Soybean Sprout Cultivars
3.2. Estimations of Lodging, Height, and Grain Yield for All Six Soybean Cultivars
3.3. ALMANAC Soybean Simulation Development
3.4. Soybean Yields in Future Climate
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, Y.H.; Kim, S.D.; Hong, E.H. Characteristics of soy sprouts cultivated with soybeans for sprouts. RDA J. Agric. Sci. 1994, 36, 107–112. [Google Scholar]
- Lee, C.; Choi, M.S.; Kim, H.T.; Yun, H.T.; Lee, B.; Chung, Y.S.; Kim, R.W.; Choi, H.K. Soybean [Glycine max (L.) Merrill]: Importance as a crop and pedigree reconstruction of Korean varieties. Plant Breed. Biotechnol. 2015, 3, 179–196. [Google Scholar] [CrossRef] [Green Version]
- Li, M.-W.; Wang, Z.; Jiang, B.; Kaga, A.; Wong, F.-L.; Zhang, G.; Han, T.; Chung, G.; Nguyen, H.; Lam, H.-M. Impacts of genomic research on soybean improvement in East Asia. Theor. Appl. Genet. 2020, 133, 1655–1678. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Park, K.Y.; Lee, H.S.; Park, E.H.; Boerma, H.R. Genetic mapping of QTLs conditioning soybean sprout yield and quality. Theor. Appl. Genet. 2001, 103, 702–709. [Google Scholar] [CrossRef]
- Yoon, C.Y.; Kim, S.; An, K.N.; Kim, S. Simulated impacted of rainfall extremes on yield responses of various barley in a temperate region. Int. Agrophysics 2021, 35, 119–129. [Google Scholar] [CrossRef]
- Acosta-Gallegos, J.A.; Vargars-Vazquez, P.; White, J.W. Effect of sowing date on the growth and seed yield of common bean (Phaseolus vulgaris L.) in highland environments. Field Crops Res. 1996, 49, 1–10. [Google Scholar] [CrossRef]
- Messina, C.D.; Podlich, D.; Dong, Z.; Samples, M.; Cooper, M. Yieldtrait performance landscapes: From theory to application in breeding maize for drought tolerance. J. Exp. Bot. 2011, 62, 855–868. [Google Scholar] [CrossRef]
- Whish, J.; Butler, G.; Castor, M.; Cawthray, S.; Broad, I.; Carberry, P.; Hammer, G.; McLean, G.; Routley, R.; Yeates, S. Modelling the effects of row configuration on sorghum yield reliability in north-eastern Australia. Aust. J. Agric. Res. 2005, 56, 11–23. [Google Scholar] [CrossRef]
- Chauhan, Y.S.; Wright, G.C.; Holzworth, D.; Rachaputi, R.C.N.; Payero, J.O. AQUAMAN: A web-based decision support system for irrigation scheduling in peanuts. Irrig. Sci. 2013, 31, 271–283. [Google Scholar] [CrossRef]
- Kim, H.K.; van Oosterom, E.; Dingkuhn, M.; Luquet, D.; Hammer, G. Regulation of tillering in sorghum: Environmental effects. Ann. Bot. 2010, 106, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Battisti, R.; Sentelhas, P.C.; Boote, K.J. Sensitivity and requirement of improvement of four soybean crop simulation models for climate change studies in Southern Brazil. Int. J. Biometerol. 2018, 62, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Jagtap, S.S.; Jones, J.W. Adaptation and evaluation of the CROPGRO-soybean model to predict regional yield and production. Agric. Ecosyst. Environ. 2002, 93, 73–85. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Boahen, S.K.; Zhang, M. Simulation and prediction of soybean growth and development under field conditions. Am. Eur. J. Agric. Environ. Sci. 2010, 7, 374–385. [Google Scholar]
- No, D.H.; Baek, D.; Lee, S.H.; Cheong, M.S.; Chun, H.J.; Park, M.S.; Cho, H.M.; Jin, B.J.; Lim, L.H.; Lee, Y.B.; et al. High-temperature conditions promote soybean flowering through the transcriptional reprogramming of flowering genes in the photoperiod pathway. Int. J. Mol. Sci. 2021, 22, 1314. [Google Scholar] [CrossRef] [PubMed]
- Hadley, O.; Roberts, E.H.; Summerfield, R.J.; Minchin, F.R. Effects of temperature and photoperiod on flowering in Soya bean [Glycine max (L.) Merrill]: A quantitative model. Ann. Bot. 1984, 53, 669–681. [Google Scholar] [CrossRef]
- Jenni, S.; Bourgeois, G.; Laurence, H.M.; Roy, G.; Tremblay, N. Improving the prediction of processing bean maturity based on the growing degree day approach. HortScience 2000, 35, 1234–1237. [Google Scholar] [CrossRef] [Green Version]
- Kiniry, J.R.; Shmer, M.R.; Bogel, K.P.; Mitchell, R.B. Switchgrass biomass simulation at diverse sites in the Northern Great Palins of the U.S. Bioenergy Res. 2008, 1, 259–264. [Google Scholar] [CrossRef]
- Im, E.S.; Thanh, N.X.; Kim, Y.H.; Ahn, J.B. 2018 summer extreme temperatures in South Korea and their intensification under 3C global warming. Environ. Res. Lett. 2019, 14, 094020. [Google Scholar] [CrossRef]
- NICS, National Institute of Crop Science. Research on Crop Cultivation and Environment. Available online: http://www.nics.go.kr/contents/page.do?m=700000013&homepageSeCode=english&contentsId=69 (accessed on 28 June 2021).
- KMA, Korea Meteorological Administration Weather Data. 2018. Available online: http://www.weather.go.kr/weather/climate/average_regional05.jsp (accessed on 14 June 2021).
- An, K.; Kim, S.; Shin, S.; Min, H.; Kim, S. Optimized Supply Chain Management of Rice in South Korea: Location–Allocation Model of Rice Production. Agronomy 2021, 11, 270. [Google Scholar] [CrossRef]
- Lin, H.; Xie, Y.; Liu, G.; Zhai, J.; Li, S. Soybean and maize simulation under different degrees of soil erosion. Field Crops Res. 2019, 230, 1–10. [Google Scholar] [CrossRef]
- Shiogama, H.; Abe, M.; Tatebe, H. MIROC MIROC6 model output prepared for CMIP6 ScenarioMIP. Earth Syst. Grid Fed. 2019. [Google Scholar] [CrossRef]
- Tatebe, H.; Ogura, T.; Nitta, T.; Komuro, Y.; Ogochi, K.; Takemura, T.; Sudo, K.; Sekiguchi, M.; Abe, M.; Saito, F.; et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 2019, 12, 2727–2765. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Chang. 2014, 122, 387–400. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijven, B.; van Vuuren, D.; Birkmann, J.; Kok, K.; et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Chang. 2017, 42, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Van Vuuren, D.P.; Stehfest, E.; Elzen, M.G.J.D.; Kram, T.; Van Vliet, J.; Deetman, S.; Isaac, M.; Goldewijk, K.K.; Hof, A.; Beltran, A.M.; et al. RCP2. 6: Exploring the possibility to keep global mean temperature increase below 2 C. Clim. Chang. 2011, 109, 95. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4. 5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Pandey, V.; Shekh, A.M.; Kumar, M. Growth and yield response of soybean (Glycine max L.) in relation to temperature, photoperiod and sunshine duration at Anand, Gujarat, India. Am. Eur. J. Agron. 2008, 1, 45–50. [Google Scholar]
- Castiel, S. Soybean Physiology: How Well Do You Know Soybean? Purdue University. Soybean Station. 2010. Available online: https://www.agry.purdue.edu/ext/soybean/arrivals/10soydevt.pdf (accessed on 28 June 2021).
- Alsajri, F.A.; Wijewardana, C.; Krutz, L.J.; Irby, J.T.; Golden, B.; Reddy, K.R. Quantifying and Validating Soybean Seed Emergence Model as a Function of Temperature. Am. J. Plant Sci. 2019, 10, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.Y. A critique of the heat unit approach to plant response studies. Ecology 1960, 41, 785–790. [Google Scholar] [CrossRef]
- Wilcox, J.R.; Sediyama, T. Interrelationships among height, lodging and yield in determinate and indeterminate soybeans. Euphytica 1981, 30, 323–326. [Google Scholar] [CrossRef]
- Khan, I.A. Path coefficient analysis of yield attributes in mungbean (Vigana radiata L.). Legumes Res. 1988, 11, 41–43. [Google Scholar]
- Hakim, L. Variability and correlation of agronomic characters of mungbean germplasm and their utilization for variety improvement program. Indones. J. Agric. Sci. 2008, 9, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Pundir, S.R.; Gupta, R.; Singh, V.P. Studies on correlation coefficient analysis in mungbean (Vigna radiata). Haryana Agric. Univ. J. Res. 1992, 22, 256–258. [Google Scholar]
- Moriasi, D.; Arnold, J.; Van Liew, M.; Bingner, R.; Harmel, R.D.; Veith, T. Model Evaluation Guidelines for Systematic Quantification of Accuracy inWatershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.R.; Thomson, A.M.; Wolfe, D. Climate impacts on agriculture: Implications for crop production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef] [Green Version]
- Boote, K.J. Improving soybean cultivars for adaptation to cli-mate change and climate variability. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, E.A., Eds.; John Wiley & Sons, Ltd.: West Sussex, UK, 2011; pp. 370–395. [Google Scholar]
- Springthorpe, V.; Penfield, S. Flowering time and seed dormancy control use external coincidence to generate life history strategy. eLife 2015, 4, e05557. [Google Scholar] [CrossRef]
Province Name | Location ID | Tmax °C | Tmin °C | Precipitation mm | Humidity % | Wind Speed m s−1 |
---|---|---|---|---|---|---|
Gyeonggi | I | 17.0 | 8.6 | 1450.5 | 64.4 | 2.3 |
Gangwon | II | 17.4 | 6 | 1343.6 | 69.3 | 1.1 |
North Chungcheong | III | 18.2 | 7.6 | 1239.1 | 67.7 | 1.8 |
Soungh Chuncheong | IV | 18.4 | 8.3 | 1458.7 | 66.0 | 1.9 |
North Gyeonsang | V | 19.5 | 9.5 | 1064.4 | 61.6 | 2.7 |
South Gyeongsang | VI | 19.5 | 7.6 | 1512.8 | 70.9 | 1.8 |
North Jeolla | VII | 18.9 | 8.6 | 1313.1 | 69.4 | 1.6 |
South Jeolla | VIII | 19.1 | 9.5 | 1391 | 69.5 | 2.1 |
Jeju | IX | 18.7 | 12.4 | 1456.9 | 73.3 | 3.8 |
All Cultivars | Pungsan | Pungwon | Dawon | Soweon | Seonam | Haepum | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | SW | FW | MT | FW | MT | FW | MT | FW | MT | FW | MT | FW | MT |
2003 | 6/15 | 7/30 | 10/8 | - | - | - | - | 8/1 | 10/11 | 7/29 | 9/26 | - | - |
2004 | 6/13 | 7/31 | 10/12 | - | - | - | - | 7/31 | 10/6 | 7/31 | 9/24 | - | - |
2005 | 6/13 | 7/27 | 10/12 | - | - | - | - | 7/26 | 10/3 | 7/25 | 9/23 | - | - |
2006 | 6/12 | 8/1 | 10/9 | - | - | 7/19 | 9/25 | 7/30 | 10/7 | - | - | - | - |
2007 | 6/12 | 7/31 | 10/19 | - | - | 7/19 | 10/1 | - | - | - | - | - | - |
2008 | 6/12 | 8/2 | 10/15 | - | - | 7/22 | 10/3 | - | - | 7/23 | 10/7 | - | - |
2009 | 6/11 | 7/31 | 10/2 | - | - | 7/23 | 9/18 | - | - | 7/29 | 9/22 | - | - |
2010 | 6/13 | 7/30 | 10/20 | - | - | 7/20 | 9/26 | - | - | 7/26 | 9/22 | - | - |
2011 | 6/16 | 8/1 | 10/10 | 7/29 | 10/1 | 7/21 | 9/28 | - | - | - | - | - | - |
2012 | 6/16 | 8/3 | 10/20 | 8/1 | 10/3 | - | - | - | - | - | - | - | - |
2013 | 6/10 | 7/27 | 10/14 | 7/24 | 10/8 | - | - | - | - | - | - | - | - |
2014 | 6/19 | 8/3 | 10/6 | 8/1 | 10/4 | - | - | - | - | - | - | 8/6 | 10/13 |
2015 | 6/16 | 8/4 | 10/5 | - | - | - | - | - | - | - | - | 8/4 | 10/6 |
2016 | 6/20 | 8/3 | 10/17 | - | - | - | - | - | - | - | - | 8/3 | 10/4 |
2017 | 6/23 | 8/4 | 10/15 | - | - | - | - | - | - | - | - | 8/4 | 10/10 |
2018 | 6/25 | 8/8 | 10/22 | - | - | - | - | - | - | - | - | 8/6 | 10/18 |
Parameter | Definition | Soy15 | Soy6 | Soy0 |
---|---|---|---|---|
WA | Radiation use efficiency, kg ha−1 per MJ m−2 | 20 | 23 | 17.5 |
DMLA | Potential leaf area index, NA | 4.7 | ||
DLAP1 | Two points on optimal (nonstress) leaf area development curve, NA | 15.05 | ||
DLAP2 | 50.95 | |||
DLAI | The fraction of the growing season in heat units in divided by the total heat units accumulated between planting and crop maturity, NA | 0.85 | ||
RLAD | Leaf-area-index decline rate parameter, NA | 0.1 | ||
TG | Optimal growth temperature, °C | 25 | ||
TB | Base growth temperature, °C | 15 | 6 | 0 |
PHU | Potential heat unit, °C | 1200 | 2100 | 3000 |
FRST1 | Two points on the frost damage curve, NA | 5.01 | ||
FRST2 | 15.05 | |||
HMX | Maximum height, m | 0.8 | 0.8 | 0.53 |
HI | Harvest index, NA | 0.41 | 0.45 | 0.43 |
Sowing–Flowering | |||||||||||
Base Temperature | 0 °C | 5 °C | 10 °C | 15 °C | |||||||
Cultivars | Years | Days | Optimal | GDD | CV | GDD | CV | GDD | CV | GDD | CV |
Tbase (°C) | (%) | (%) | (%) | (%) | |||||||
Pungsan | 16 | 46 | 0 | 1212 | 6.7 | 979 | 7 | 746 | 7.8 | 513 | 9.8 |
Pungwon | 4 | 44 | 15 | 1077 | 16.5 | 860 | 18 | 670 | 14.0 | 482 | 8.6 |
Dawon | 6 | 37 | 14 | 825 | 22.0 | 651 | 27 | 515 | 18.0 | 386 | 10.5 |
Soweon | 4 | 47 | 0 | 1197 | 6.8 | 967 | 7 | 736 | 7.8 | 506 | 9.2 |
Seonam | 6 | 43 | 13 | 1027 | 1.3 | 815 | 15 | 639 | 9.0 | 468 | 10.0 |
Haepum | 5 | 45 | 6 | 928 | 2.6 | 973 | 3 | 745 | 3.2 | 518 | 6.3 |
Sowing–Maturity | |||||||||||
Base Temperature | 0 °C | 5 °C | 10 °C | 15 °C | |||||||
Cultivars | Years | Days | Optimal | GDD | CV | GDD | CV | GDD | CV | GDD | CV |
Tbase (°C) | (%) | (%) | (%) | (%) | |||||||
Pungsan | 16 | 119 | 0 | 2928 | 5.7 | 2333 | 6.0 | 1739 | 6.7 | 1151 | 8.0 |
Pungwon | 4 | 110 | 0 | 2764 | 6.9 | 2208 | 7.4 | 1650 | 8.4 | 1091 | 10.7 |
Dawon | 6 | 106 | 0 | 2701 | 5.2 | 2175 | 5.6 | 1650 | 6.3 | 1124 | 7.9 |
Soweon | 4 | 116 | 0 | 2894 | 2.8 | 2324 | 3.2 | 1754 | 3.9 | 1185 | 5.5 |
Seonam | 6 | 105 | 15 | 2446 | 18.4 | 1945 | 21.1 | 1528 | 16.0 | 1123 | 8.1 |
Haepum | 5 | 112 | 0 | 2743 | 1.8 | 2183 | 2.5 | 1622 | 4.1 | 1070 | 8.2 |
Cultivars | Lodging (1–10) | Plant Height (cm) | Number of Pods Per Plant | 100-Seed Weight (g) | Grain Yield (Mg ha−1) |
---|---|---|---|---|---|
Pungsan | 2.5 | 52 | 62 | 11.9 | 3.25 |
Pungwon | 0.8 | 49 | 55 | 11 | 3.39 |
Dawon | 3 | 35 | 45 | 9.2 | 1.55 |
Soweon | 1.3 | 55 | 44 | 11.6 | 2.58 |
Seonam | 1.2 | 64 | 52 | 10.6 | 2.2 |
Haepum | 0.8 | 53 | 70 | 11.3 | 3.95 |
p-value | 0.006 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
H(P-F) | H(P-M) | Height | Lodging | Pods | 100 Grain | Yield | |
---|---|---|---|---|---|---|---|
H(P-F) | 1 | ||||||
H(P-M) | 0.97 | 1 | |||||
Height | 0.32 | 0.19 | 1 | ||||
Lodging | 0.74 | 0.6 | 0.4 | 1 | |||
Pods | 0.27 | 0.38 | 0.21 | 0.26 | 1 | ||
100 Grain | 0.88 | 0.80 | 0.5 | 0.76 | 0.46 | 1 | |
Yield | 0.39 | 0.48 | 0.13 | 0.18 | 0.86 | 0.63 | 1 |
Simulated | Measured Yield | Simulated Yield | Pbias | RMSE | ||
---|---|---|---|---|---|---|
Model | Years | (Mg ha−1) | (Mg ha−1) | (%) | (Mg ha−1) | |
Calibration | Soy15 | 2003–2008 | 2.22 | 2.38 | −6.9 | 0.27 |
Soy6 | 2014–2016 | 3.82 | 4.13 | −8.2 | 0.54 | |
Soy0 | 2003–2010 | 2.59 | 2.97 | −14.6 | 0.42 | |
Validation | Soy15 | 2009–2014 | 2.44 | 2.36 | 3.1 | 0.59 |
Soy6 | 2017–2018 | 4.14 | 3.9 | 5.8 | 0.25 | |
Soy0 | 20121–2018 | 3.57 | 3.04 | 14.2 | 0.92 |
Scenario | Time Range | CO2 Level ppm | Tmax °C | Tmin °C | Precipitation mm |
---|---|---|---|---|---|
History | 1986–2005 | 380 | 28.74 | 20.32 | 941.7 |
SSP245 | 2020–2039 | 550 | 29.72 | 22.16 | 871.5 |
2040–2059 | 30.04 | 22.82 | 925.4 | ||
SSP585 | 2020–2039 | 936 | 29.91 | 22.46 | 801 |
2040–2059 | 30.66 | 23.61 | 857 |
Grain Yields (Mg ha−1) | ||||
---|---|---|---|---|
Scenario | Time Range | Soy15 | Soy6 | Soy0 |
History | 1986–2005 | 2.21 | 3.55 | 2.71 |
SSP245 | 2020–2039 | 1.98 (−10%) | 3.20 (−10%) | 2.57 (−5%) |
2040–2059 | 1.83 (−17%) | 3.18 (−10%) | 2.57 (−5%) | |
SSP585 | 2020–2039 | 1.90 (−14%) | 3.26 (−8%) | 2.62 (−3%) |
2040–2059 | 1.61 (−27%) | 3.06 (−14%) | 2.49 (−8%) |
Climate Change | Months | Yield | |||||
---|---|---|---|---|---|---|---|
Type | Scenarios | Year | June | July | August | September | Mg ha−1 |
Soy15 | History | 2005 | 0.07 | 2.52 | 3.03 | 2.72 | 2.32 |
SSP245 | 2039 | 0.11 | 2.88 | 2.75 | 1.05 | 1.64 | |
2059 | 0.07 | 2.72 | 2.91 | 1.07 | 2.03 | ||
SSP585 | 2039 | 0.7 | 2.75 | 2.77 | 1.04 | 1.94 | |
2059 | 0.13 | 2.83 | 2.47 | 1 | 1.47 | ||
Soy6 | History | 2005 | 0.1 | 2.68 | 3.07 | 2.56 | 3.56 |
SSP245 | 2039 | 0.12 | 2.87 | 3.05 | 1.17 | 2.92 | |
2059 | 0.09 | 2.75 | 3.06 | 1.17 | 3.37 | ||
SSP585 | 2039 | 0.09 | 2.81 | 3.05 | 1.17 | 3.36 | |
2059 | 0.13 | 2.9 | 3.03 | 1.16 | 3.01 | ||
Soy0 | History | 2005 | 0.08 | 2.42 | 3.06 | 2.96 | 2.82 |
SSP245 | 2039 | 0.09 | 2.65 | 3.06 | 2.65 | 2.46 | |
2059 | 0.07 | 2.48 | 3.06 | 2.79 | 2.7 | ||
SSP585 | 2039 | 0.08 | 2.58 | 3.06 | 2.78 | 2.67 | |
2059 | 0.1 | 2.47 | 3.06 | 1.17 | 2.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, C.Y.; Kim, S.; Cho, J.; Kim, S. Modeling the Impacts of Climate Change on Yields of Various Korean Soybean Sprout Cultivars. Agronomy 2021, 11, 1590. https://doi.org/10.3390/agronomy11081590
Yoon CY, Kim S, Cho J, Kim S. Modeling the Impacts of Climate Change on Yields of Various Korean Soybean Sprout Cultivars. Agronomy. 2021; 11(8):1590. https://doi.org/10.3390/agronomy11081590
Chicago/Turabian StyleYoon, Chang Yong, Sojung Kim, Jaepil Cho, and Sumin Kim. 2021. "Modeling the Impacts of Climate Change on Yields of Various Korean Soybean Sprout Cultivars" Agronomy 11, no. 8: 1590. https://doi.org/10.3390/agronomy11081590
APA StyleYoon, C. Y., Kim, S., Cho, J., & Kim, S. (2021). Modeling the Impacts of Climate Change on Yields of Various Korean Soybean Sprout Cultivars. Agronomy, 11(8), 1590. https://doi.org/10.3390/agronomy11081590