Modelling the Organic Evolution of a Mediterranean Limestone Soil under Usual Cropping of Durum Wheat and Faba Bean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area
2.2. Field Experiment
2.3. Modeling the C and N Exchanges
3. Results
3.1. Robustness of the Microbial Core of MOMOS
3.2. Transfer Parameters Regulating Plant Growth
3.3. Continuous Predictions of Organic Evolution of Soil
4. Discussion
4.1. Flow Simulations during Intercropping
4.2. C Sequestration in Mediterranean Limestone Soil
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ludwig, B.; Schulz, E.; Rethemeyer, J.; Merbach, I.; Flessa, H. Predictive modelling of C dynamics in the long-term fertilization experiment at Bad Lauchstädt with the Rothamsted Carbon Model. Eur. J. Soil Sci. 2007, 58, 1155–1163. [Google Scholar] [CrossRef] [Green Version]
- Sikorski, J. The prokaryotic biology of soil. Soil Org. 2015, 87, 1–28. [Google Scholar]
- Fatichi, S.; Pappas, C.; Zscheischler, J.; Leuzinger, S. Modelling carbon sources and sinks in terrestrial vegetation. New Phytol. 2019, 221, 652–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkinson, D.S.; Harris, H.C.; Ryan, J.; McNeill, A.M.; Pilbeam, C.J.; Coleman, K. Organic matter turnover in a calcareous clay soil from Syria under a two-course cereal rotation. Soil Biol. Biochem. 1999, 31, 687–693. [Google Scholar] [CrossRef]
- Kintché, K.; Guibert, H.; Sogbedji, J.M.; Levêque, J.; Tittonell, P. Carbon losses and primary productivity decline in savannah soils under cotton-cereal rotations in semiarid Togo. Plant Soil 2010, 336, 469–484. [Google Scholar] [CrossRef]
- Romanyaa, J.; Falloon, P.; Coleman, K.; Smith, P. Modelling changes in soil organic matter after planting fast-growing Pinus radiata on Mediterranean agricultural soils. Eur. J. Soil Sci. 2000, 51, 627–641. [Google Scholar] [CrossRef]
- Dornbush, M.E.; Raich, J.W. Soil Temperature, Not Aboveground Plant Productivity, Best Predicts Intra-Annual Variations of Soil Respiration in Central Iowa Grasslands. Ecosystems 2006, 9, 909–920. [Google Scholar] [CrossRef]
- Farage, P.K.; Ardo, J.; Olsson, L.; Rienzi, E.A.; Ball, A.S.; Pretty, J.N. The potential for soil carbon sequestration in three tropical dryland farming systems of Africa and Latin America: A modelling approach. Soil Tillage Res. 2007, 94, 457–472. [Google Scholar] [CrossRef]
- Nieto, O.M.; Castro, J.; Fernandez, E.; Smith, P. Simulation of soil organic carbon stocks in a Mediterranean olive grove under different soil-management systems using the RothC model. Soil Use Manag. 2010, 26, 118–125. [Google Scholar] [CrossRef]
- Garten, C.T.; Smith, J.L.; Tyler, D.D.; Amonette, J.E.; Bailey, V.L.; Brice, D.J.; Castro, H.F.; Graham, R.L.; Gunderson, C.A.; Izaurralde, R.C.; et al. Intra-annual changes in biomass, carbon, and nitrogen dynamics at 4-year old switchgrass field trials in west Tennessee. Agric. Ecosyst. Environ. 2010, 136, 177–184. [Google Scholar] [CrossRef]
- Marti-Roura, M.; Casals, P.; Romanyà, J. Temporal changes in soil organic C under Mediterranean shrublands and grasslands: Impact of fire and drought. Plant Soil 2011, 338, 289–300. [Google Scholar] [CrossRef]
- Alvaro-Fuentes, J.A.; Morell, F.J.; Plaza-Bonilla, D.; Arrue, J.L.; Cantero-Martınez, C. Modelling tillage and nitrogen fertilization effects on soil organic carbon dynamics. Soil Tillage Res. 2012, 120, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Palosuo, T.; Foereid, B.; Svensson, M.; Shurpali, N.; Lehtonen, A.; Herbst, M.; Linkosalo, T.; Ortiz, C.; Rampazzo Todorovic, G.; Marcinkonis, S.; et al. A multi-model comparison of soil carbon assessment of a coniferous forest stand. Environ. Model. Softw. 2012, 35, 38–49. [Google Scholar] [CrossRef]
- Shirato, Y. Testing the suitability of the DNDC model for simulating long-term soil organic carbon dynamics in Japanese paddy soils. Soil Sci. Plant Nutr. 2005, 51, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Robertson, M.J.; Carberry, P.S.; Huth, N.I.; Turpin, J.E.; Probert, M.E.; Poulton, P.L.; Bell, M.; Wright, G.C.; Yeates, S.J.; Brinsmead, R.B. Simulation of growth and development of diverse legume species in APSIM. Aust. J. Agric. Res. 2002, 53, 429–446. [Google Scholar] [CrossRef]
- Corre-Hellou, G.; Faure, M.; Launay, M.; Brisson, N.; Crozat, Y. Adaptation of the STICS intercrop model to simulate crop growth and N accumulation in pea–barley intercrops. Field Crops Res. 2009, 113, 72–81. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, L.; Baddeley, J.A.; Watson, C.A. Models of biological nitrogen fixation of legumes: A review. Agron. Sustain. Dev. 2011, 31, 155–172. [Google Scholar] [CrossRef]
- Pansu, M.; Bottner, P.; Sarmiento, L.; Metselaar, K. Comparison of five soil organic matter decomposition models using data from a 14C and 15N labeling field experiment. Glob. Biogeochem. Cycles 2004, 18, 1–11. [Google Scholar] [CrossRef]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis—Mineralogical, Organic and Inorganic Methods; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2006. [Google Scholar]
- Pansu, M.; Sarmiento, L.; Metselaar, K.; Hervé, D.; Bottner, P. Modelling the transformations and sequestration of soil organic matter in two contrasting ecosystems of the Andes. Eur. J. Soil Sci. 2007, 58, 775–785. [Google Scholar] [CrossRef] [Green Version]
- Pansu, M.; Sarmiento, L.; Rujano, M.A.; Ablan, M.; Acevedo, D.; Bottner, P. Modeling organic transformations by microorganisms of soils in six contrasting ecosystems: Validation of the MOMOS model. Glob. Biogeochem. Cycles 2010, 24, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Pansu, M.; Machado, D.; Bottner, P.; Sarmiento, L. Modelling microbial exchanges between forms of soil nitrogen in contrasting ecosystems. Biogeosciences 2014, 11, 915–927. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, H.; Hatira, A.; Pansu, M. Modelling the functional role of microorganisms in the daily exchanges of carbon between atmosphere, plants and soil. Procedia Environ. Sci. 2013, 19, 96–105. [Google Scholar] [CrossRef]
- Ibrahim, H.; Pansu, M.; Blavet, D.; Hatira, A.; McDonald, P.; Bernoux, M.; Drevon, J.J. Modelling the continuous exchange of carbon between living organisms, the soil and the atmosphere. Plant Soil 2016, 398, 381–397. [Google Scholar] [CrossRef]
- Pansu, M.; Ibrahim, H.; Hatira, A.; Brahim, N.; Drevon, J.J.; Harmand, J.M.; Chotte, J.L.; Blavet, D. Modelling the continuous exchange of Nitrogen between microbial decomposers, the organs and symbionts of plants, the soil reserves and the atmosphere. Soil Biol. Biochem. 2018, 125, 185–196. [Google Scholar] [CrossRef]
- Brookes Andrea Landman, P.C.; Pruden, G.; Jenkinson, D.S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Balesdent, J. The turnover of soil organic fractions estimated by radiocarbon dating. Sci. Total Environ. 1987, 62, 405–408. [Google Scholar] [CrossRef]
- Kherif, O.; Keskes, M.I.; Pansu, M.; Ouaret, W.; Rebouh, Y.N.; Dokukin, P.; Kucher, D.; Latati, M. Agroecological modeling of nitrogen and carbon transfers between decomposer micro-organisms, plant symbionts, soil and atmosphere in an intercropping system. Ecol. Model. 2021, 440, 109–390. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, H.; Gaieb, S.; Brahim, N.; Blavet, D.; Van den Meersche, K.; Pansu, M. Modelling the Organic Evolution of a Mediterranean Limestone Soil under Usual Cropping of Durum Wheat and Faba Bean. Agronomy 2021, 11, 1688. https://doi.org/10.3390/agronomy11091688
Ibrahim H, Gaieb S, Brahim N, Blavet D, Van den Meersche K, Pansu M. Modelling the Organic Evolution of a Mediterranean Limestone Soil under Usual Cropping of Durum Wheat and Faba Bean. Agronomy. 2021; 11(9):1688. https://doi.org/10.3390/agronomy11091688
Chicago/Turabian StyleIbrahim, Hatem, Sinda Gaieb, Nadhem Brahim, Didier Blavet, Karel Van den Meersche, and Marc Pansu. 2021. "Modelling the Organic Evolution of a Mediterranean Limestone Soil under Usual Cropping of Durum Wheat and Faba Bean" Agronomy 11, no. 9: 1688. https://doi.org/10.3390/agronomy11091688
APA StyleIbrahim, H., Gaieb, S., Brahim, N., Blavet, D., Van den Meersche, K., & Pansu, M. (2021). Modelling the Organic Evolution of a Mediterranean Limestone Soil under Usual Cropping of Durum Wheat and Faba Bean. Agronomy, 11(9), 1688. https://doi.org/10.3390/agronomy11091688