Quality, Nutritional, Volatile and Sensory Profiles and Consumer Acceptance of Fondillón, a Sustainable European Protected Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Samples and Experimental Design
2.2. Enological Parameters
2.3. Chromatic Characteristics, Total Polyphenol Index (TPI), Total Anthocyanin Content (TA), Antioxidant Activity (AA) and Total Condensed Tannins (TCT)
- Yellow, Y (%) = (A420/CI) × 100
- Red, R (%) = (A520/CI) × 100
- Blue, B (%) = (A620/CI) × 100
- (i)
- The free radical scavenging capacity using the ABTS+• [2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid)] method described by Re et al. [17], with absorbance being measured at 734 nm (UV-visible spectrophotometer, Helios Gamma model, UVG 1002E). Calibration curve (3.5–5.0 mmol Trolox L−1) with good linearity (R2 ≥ 0.999) was used for the quantification. Analyses were run in triplicate and results were expressed as mmol Trolox L−1.
- (ii)
- The free radical scavenging capacity was also measured using the DPPH• method as proposed by Katalinic et al. [18], with absorbance being measured at 517 nm. The inhibition percentage of the DPPH• radical was determined according to the following Equation (1):
- (iii)
- The ferric reducing/antioxidant power (FRAP) was performed on a modified version of the method by Benzie et al. [19]. It is based on the reducing power of antioxidants, which will reduce the Fe3+ to Fe2+ in the form of a blue complex (Fe2+/TPTZ). Absorbance was measured at 593 m. Analyses were run in triplicate and results were expressed as mmol Trolox L−1.
2.4. Volatile Compounds
2.5. Descriptive Sensory Analysis with Trained Panel
2.6. Affective Sensory Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Enological Parameters
3.2. Chromatic Characteristics, Total Polyphenol Index (TPI), Total Anthocyanin Content (TA), Antioxidant Activity (AA) and Total Condensed Tannins (TCT)
3.3. Volatile Compounds
3.4. Descriptive Sensory Analysis with Trained Panel
3.5. Affective Sensory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Chang Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Agencia Estatal de Meteorología. Accumulated Precipitation (mm). Available online: https://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/valoresclimatologicos (accessed on 30 July 2021).
- Escribano Francés, G.; Quevauviller, P.; San Martín González, E.; Vargas Amelin, E. Climate change policy and water resources in the EU and Spain. A closer look into the Water Framework Directive. Environ. Sci. Policy 2017, 69, 1–12. [Google Scholar] [CrossRef]
- Sánchez-Bravo, P.; Edgar Chambers, V.; Noguera-Artiaga, L.; Sendra, E.; Edgar Chambers, I.V.; Carbonell-Barrachina, A.A. How consumers perceivewater sustainability (hydrosostainable) in food products and how to identify it by a logo. Agronomy 2020, 10, 1495. [Google Scholar] [CrossRef]
- Andreu-Coll, L.; Cano-Lamadrid, M.; Noguera-Artiaga, L.; Lipan, L.; Carbonell-Barrachina, Á.A.; Rocamora-Montiel, B.; Legua, P.; Hernández, F.; López-Lluch, D. Economic estimation of cactus pear production and its feasibility in Spain. Trends. Food Sci. Technol. 2020, 103, 379–385. [Google Scholar] [CrossRef]
- Issa-Issa, H.; Noguera-Artiaga, L.; Sendra, E.; Pérez-López, A.J.; Burló, F.; Carbonell-Barrachina, A.A.; López-Lluch, D. Volatile Composition, Sensory Profile, and Consumers’ Acceptance of Fondillón. J. Food Qual. 2019, 2019, 5981762. [Google Scholar] [CrossRef] [Green Version]
- Council Regulation (EC) No 479/2008. Common Organisation of the Market in Wine. Official Journal of the European Union, 29 April 2008; No L 148/1-84. [Google Scholar]
- Cutzach, I.; Chatonnet, P.; Dubourdieu, D. Study of the formation mechanisms of some volatile compounds during the aging of sweet fortified wines. J. Agric. Food Chem. 1999, 47, 2837–2846. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.M.; Ferreira, A.C.S.; De Freitas, V.; Silva, A.M.S. Oxidation mechanisms occurring in wines. Food Res. Int. 2011, 44, 1115–1126. [Google Scholar] [CrossRef]
- Pereira, V.; Albuquerque, F.; Cacho, J.; Marques, J.C. Polyphenols, antioxidant potential and color of fortified wines during accelerated ageing: The madeira wine case study. Molecules 2013, 18, 2997–3017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gambuti, A.; Rinaldi, A.; Ugliano, M.; Moio, L. Evolution of phenolic compounds and astringency during aging of red wine: Effect of oxygen exposure before and after bottling. J. Agric. Food Chem. 2013, 61, 1618–1627. [Google Scholar] [CrossRef]
- International Organization of Vine and Wine (OIV). Compendium of International Methods of Wine and Must Analysis, Vol. 1; OIV: Paris, France, 2020. [Google Scholar]
- OIV (International Organization of Vine and Wine). Compendium of International Methods of Wine and Must Analysis, Vol 2; OIV: Paris, France, 2021. [Google Scholar]
- Glories, Y. The color of red wines. Connaissance Vignevini 1984, 18, 253–271. [Google Scholar]
- Luna, J.M.; Garau, M.C.; Negre, A.; March, J.; Martorell, A. Composición Fenólica y Actividad Antioxidante de Variedades Minoritarias de Vid de las Islas Baleares. In Proceedings of the VII Foro Mundial del Vino, Logroño, La Rioja, Spain, 12–14 May 2010; Sáenz-Navajas, M.P., Fernández-Zurbano, P., Valentín, D., Ferreira-González, V., Eds.; Consejería de Agricultura, Ganadería y Desarrollo Rural: Logroño, La Rioja, Spain, 2010; p. 62. [Google Scholar]
- Di Stefano, R.; Genfilini, N. Metodi per lo studio dei polifenoli dei vini. In L’Enotecnico; ResearchGate: Berlin, Germany, 1989; pp. 83–89. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Katalinic, V.; Milos, M.; Kulisic, T.; Jukic, M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 2006, 94, 550–557. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability 7, of plasma (FRAP) as a measure of ‘antioxidant power’: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Ribéreau-Gayon, P.; Stonestreet, E. Determination of anthocyanins in red wine. Bulletin de la Societe Chimique de France 1965, 9, 2649–2652. [Google Scholar] [PubMed]
- International Organization of Standardization. ISO 8586:2012. Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. Available online: https://www.iso.org/standard/45352.html (accessed on 8 June 2021).
- International Organization of Standardization. ISO/IEC 17065:2012. Conformity Assessment—Requirements for Bodies Certifying Products, Processes and Services. Available online: https://www.iso.org/standard/46568.html (accessed on 8 June 2021).
- Orden 5/2011. Reglamento y Pliego de Condiciones de la Denominación de Origen Protegida Alicante y su Consejo Regulador. Diario Oficial de la Comunitat Valenciana, 16 November 2011; DOCV, No 6661/39267-39289. [Google Scholar]
- Forino, M.; Picariello, L.; Rinaldi, A.; Moio, L.; Gambuti, A. How must pH affects the level of red wine phenols. LWT 2020, 129, 109546. [Google Scholar] [CrossRef]
- Nogueira, J.M.F.; Nascimento, A.M.D. Analytical characterization of Madeira wine. J. Agric. Food Chem. 1999, 47, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Miranda, A.; Pereira, V.; Pontes, M.; Albuquerque, F.; Marques, J.C. Acetic acid and ethyl acetate in Madeira wines: Evolution with ageing and assessment of the odour rejection threshold. Ciencia e Tecnica Vitivinicola 2017, 32, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Cebrián, R. Characterization of Fondillón Wines from the Denomination of Origin Alicante. Master’s Thesis, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain, 2015. (In Spanish). [Google Scholar]
- Council Regulation (EEC) No 4252/88. Preparation and Marketing of Liquer Wines Produced in the Community. Official Journal of the European Communities, 21 December 1988; No L 373/59-65. [Google Scholar]
- González-Neves, g.; Balado, J.; Barreiro, L.; Bochicchio, R.; Gatto, G.; Gil, G.; Tessore, A.; Ferrer, M. Efecto de Algunas Prácticas de Manejo del Viñedo y de la Vinificación en la Composición Fenólica y el Color de los Vinos Tintos. In Proceedings of the X Congresso Brasileiro de Viticultura e Enologia, Anais, Bento Gonçalves, RS, Brazil, 3–5 December 2003. [Google Scholar]
- Reyes-Cortés, C.A. Red Wine Quality usign Analysis of the Color Intensity and Anthocyanins Content (Degree Thesis, in Spanish); Universidad de Chile: Santiago de Chile, Chile, 2020. [Google Scholar]
- Gómez-Cordovés, C.; González-SanJosé, M.L. Interpretation of Color Variables during the Aging of Red Wines: Relationship with Families of Phenolic Compounds. J. Agric. Food Chem. 1995, 43, 557–561. [Google Scholar] [CrossRef]
- Del Fresno, J.M.; Morata, A.; Loira, I.; Escott, C.; Suárez Lepe, J.A. Evolution of the Phenolic Fraction and Aromatic Profile of Red Wines Aged in Oak Barrels. ACS Omega 2020, 5, 7235–7243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivero-Pérez, M.D.; González-Sanjosé, M.L.; Muñiz, P.; Pérez-Magariño, S. Antioxidant profile of red-single variety wines microoxygenated before malolactic fermentation. Food Chem. 2008, 111, 1004–1011. [Google Scholar] [CrossRef]
- Larrauri, J.A.; Sánchez-Moreno, C.; Rupérez, P.; Saura-Calixto, F. Free radical scavenging capacity in the aging of selected red spanish wines. J. Agric. Food Chem. 1999, 47, 1603–1606. [Google Scholar] [CrossRef]
- Rivero-Pérez, M.D.; González-Sanjosé, M.L.; Ortega-Herás, M.; Muñiz, P. Antioxidant potential of single-variety red wines aged in the barrel and in the bottle. Food Chem. 2008, 111, 957–964. [Google Scholar] [CrossRef]
- Moreno, J.; Peinado, J.; Peinado, R.A. Antioxidant activity of musts from Pedro Ximénez grapes subjected to off-vine drying process. Food Chem. 2007, 104, 224–228. [Google Scholar] [CrossRef]
- López de Lerma, N.; Peinado, J.; Moreno, J.; Peinado, R.A. Antioxidant activity, browning and volatile Maillard compounds in Pedro Ximénez sweet wines under accelerated oxidative aging. LWT−Food Sci. Technol. 2010, 43, 1557–1563. [Google Scholar] [CrossRef]
- Robinson, A.L.; Boss, P.K.; Solomon, P.S.; Trengove, R.D.; Heymann, H.; Ebeler, S.E. Origins of grape and wine aroma. Part 1. Chemical components and viticultural impacts. Am. J. Enol. Vitic. 2014, 65, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Full, G.; Winterhalter, P. Application of on-line coupled mass spectrometric techniques for the study of isomeric vitispiranes and their precursors of grapevine cv. Riesling. Vitis 1994, 33, 241–244. [Google Scholar]
- Winterhalter, P.; Sefton, M.A.; Williams , P.J. Volatile C13-Norisoprenoid Compounds in Riesling Wine Are Generated From Multiple Precursors. Am. J. Enol. Vitic. 1990, 41, 277–283. [Google Scholar]
- Ángeles Pozo-Bayón, M.; Victoria Moreno-Arribas, M. Sherry wines. Adv. Food Nutr. Res. 2011, 63, 17–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Institute of Standards and Technology (NIST), NIST Chemistry Webbook. Available online: https://webbook.nist.gov/chemistry (accessed on 8 July 2021).
- Sigma-Aldrich. Flavors & Fragrances; Sigma-Aldrich: Saint Louis, MO, USA, 2012. [Google Scholar]
Solera | pH | Relative Density (20 °C) | Total Alcohol Content | Total Acidity | Volatile Acidity |
---|---|---|---|---|---|
(g mL−1) | (% v/v) | (g tartaric acid L−1) | (g acetic acid L−1) | ||
ANOVA † | |||||
NS | NS | ** | ** | *** | |
Tukey Multiple Range Test ‡ | |||||
1930 | 3.55 | 0.9967 | 21.17 a | 8.63 ab | 1.16 cd |
1944 | 3.67 | 1.0098 | 20.46 ab | 8.40 ab | 1.46 ab |
1950 | 3.59 | 0.9972 | 19.30 ab | 8.63 ab | 1.13 d |
1960 | 3.44 | 0.9985 | 19.60 ab | 10.01 a | 1.31 bc |
1969 | 3.68 | 0.9978 | 18.53 ab | 9.00 ab | 1.37 ab |
1975 | 3.82 | 1.0000 | 18.93 ab | 7.80 b | 1.01 d |
1980 | 3.35 | 0.9959 | 18.90 ab | 8.33 ab | 1.50 a |
1987 | 3.51 | 0.9984 | 18.44 ab | 7.65 b | 1.13 cd |
1996 | 3.43 | 0.9970 | 18.30 b | 7.28 b | 1.16 cd |
Minimum | 3.35 | 0.9959 | 18.30 | 7.28 | 1.01 |
Maximum | 3.82 | 1.0098 | 21.17 | 10.01 | 1.50 |
Legal threshold ¥ | >16 | >3.5 | <1.5 |
Solera | Color Intensity | Tonality | Color Density | Y¶ | R¶ | B¶ | ABTS•+ | FRAP | DPPH• | Total Phenolic Index, TPI | Total Condensed Tannins Content, TCT | Total Anthocyanin Content, TA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | (mmol Trolox kg−1) | (%) | (g L−1) | (mg L−1) | ||||||||
ANOVA † | ||||||||||||
*** | *** | *** | *** | *** | *** | *** | ** | *** | *** | *** | *** | |
Tukey Multiple Range Test ‡ | ||||||||||||
1930 | 4.03 cd | 2.30 c | 3.72 bcd | 64.2 b | 27.9 d | 7.88 f | 1.63 c | 4.61 ab | 45.3 e | 14.5 b | 0.60 bc | 0.53 ef |
1944 | 3.69 d | 2.46 ab | 3.43 cd | 66.2 a | 26.9 e | 6.96 g | 1.82 b | 4.48 ab | 49.7 cd | 14.2 bc | 1.24 a | 0.54 ef |
1950 | 4.81 ab | 2.01 de | 4.27 ab | 59.3 d | 29.5 c | 11.3 b | 1.78 b | 4.54 ab | 51.6 bc | 17.7 a | 1.07 a | 0.69 abc |
1960 | 5.49 a | 1.62 f | 4.80 a | 54.1 e | 33.3 a | 12.5 a | 2.02 a | 4.97 a | 64.4 a | 17.0 a | 0.98 ab | 0.76 a |
1969 | 3.73 d | 2.37 bc | 3.42 d | 64.5 b | 27.2 de | 8.29 e | 1.49 d | 4.37 ab | 37.9 f | 14.4 b | 0.38 cd | 0.62 cde |
1975 | 3.79 cd | 2.49 a | 3.52 cd | 66.2 a | 26.6 e | 7.14 g | 1.73 bc | 4.15 b | 48.8 d | 12.5 bcd | 0.45 cd | 0.65 bcd |
1980 | 4.50 bc | 1.97 e | 4.07 bc | 60.0 d | 30.5 b | 9.46 d | 1.98 a | 4.91 ab | 52.3 b | 13.8 bc | 0.61 bc | 0.73 ab |
1987 | 4.10 bcd | 2.12 d | 3.70 bcd | 61.2 c | 28.9 c | 9.93 c | 1.63 c | 4.47 ab | 38.5 f | 12.0 cd | 0.18 d | 0.59 de |
1996 | 3.16 d | 2.45 abc | 2.90 d | 65.2 ab | 26.6 e | 8.14 ef | 1.28 e | 4.28 ab | 29.0 g | 10.6 d | 0.10 d | 0.48 f |
Code | Volatile Compounds | ANOVA † | 1930 | 1944 | 1950 | 1960 | 1969 | 1975 | 1980 | 1987 | 1996 |
---|---|---|---|---|---|---|---|---|---|---|---|
mg L−1 | |||||||||||
Tukey Multiple Range Test ‡ | |||||||||||
1 | Acetaldehyde | NS | 0.03 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 |
2 | Ethanol | ** | 12.3 a | 10.9 ab | 10.9 ab | 11.4 a | 6.98 ab | 8.82 ab | 5.66 b | 9.09 ab | 8.10 ab |
3 | Isopropyl alcohol | NS | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
4 | Acetic acid | NS | 0.33 | 0.34 | 0.30 | 0.37 | 0.26 | 0.23 | 0.28 | 0.32 | 0.27 |
5 | Hexane | *** | 0.15 a | 0.02 b | 0.01 b | 0.01 b | 0.01 b | 0.01 b | 0.00 b | 0.01 b | 0.01 b |
6 | Ethyl acetate | ** | 6.38 a | 6.03 ab | 5.16 b | 6.09 ab | 3.84 bc | 3.66 c | 3.66 c | 4.51 bc | 3.69 bc |
7 | Isobutyl alcohol | ** | 0.58 a | 0.44 abc | 0.44 abc | 0.49 ab | 0.33 abc | 0.34 abc | 0.23 c | 0.39 abc | 0.33 bc |
8 | 3-Methyl butanal | NS | 0.04 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.01 | 0.03 | 0.02 |
9 | Ethyl propionate | *** | 0.18 a | 0.11 bc | 0.12 abc | 0.14 ab | 0.10 bc | 0.10 bc | 0.06 c | 0.09 bc | 0.07 bc |
10 | 2,4,5-trimethyl-1,3-dioxolane | *** | 1.62 a | 1.38 ab | 1.48 ab | 1.59 a | 0.82 bc | 1.03 abc | 0.57 c | 0.98 abc | 0.78 bc |
11 | Isoamyl alcohol | ** | 7.44 a | 6.19 ab | 5.38 abc | 6.00 ab | 3.98 bc | 4.46 bc | 3.04 c | 5.17 abc | 4.57 abc |
12 | 2-Methyl-1-butanol | ** | 2.93 a | 2.33 ab | 2.00 abc | 2.22 abc | 1.56 bc | 1.68 bc | 1.15 c | 2.05 abc | 1.72 bc |
13 | Ethyl isobutyrate | ** | 0.15 a | 0.10 abc | 0.11 ab | 0.12 ab | 0.07 bc | 0.08 bc | 0.04 c | 0.10 abc | 0.08 bc |
14 | Isobutyl acetate | NS | 0.03 | 0.03 | 0.02 | 0.03 | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 |
15 | 2,3-Butanediol | NS | 0.22 | 0.19 | 0.23 | 0.24 | 0.14 | 0.20 | 0.14 | 0.15 | 0.16 |
16 | 2-Hexanol | NS | 0.04 | 0.02 | 0.04 | 0.04 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 |
17 | Ethyl butanoate | *** | 0.18 ab | 0.13 b | 0.12 b | 0.26 a | 0.10 b | 0.09 b | 0.07 b | 0.17 ab | 0.12 b |
18 | Ethyl lactate | *** | 0.98 ab | 0.80 abc | 0.84 abc | 1.09 a | 0.52 bc | 0.60 bc | 0.40 c | 0.54 bc | 0.48 c |
19 | Furfural | ** | 0.27 abc | 0.25 abc | 0.28 ab | 0.35 a | 0.17 bc | 0.22 abc | 0.11 c | 0.19 bc | 0.17 bc |
20 | Ethyl 2-methylbutyrate | ** | 0.12 a | 0.09 ab | 0.10 ab | 0.09 abc | 0.06 bc | 0.07 abc | 0.04 c | 0.09 abc | 0.07 bc |
21 | Ethyl isovalerate | ** | 0.25 a | 0.21 abc | 0.21 abc | 0.23 ab | 0.12 bc | 0.16 abc | 0.10 c | 0.22 ab | 0.16 abc |
22 | 1-Hexanol | *** | 0.30 a | 0.22 ab | 0.17 bc | 0.20 abc | 0.16 bc | 0.16 bc | 0.12 c | 0.23 ab | 0.21 abc |
23 | Isoamyl acetate | ** | 0.62 a | 0.51 ab | 0.37 b | 0.52 ab | 0.37 ab | 0.29 b | 0.36 b | 0.43 ab | 0.34 b |
24 | Ethyl pentanoate | NS | 0.03 | 0.02 | 0.02 | 0.03 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 |
25 | Butyrolactone | NS | 0.03 | 0.03 | 0.02 | 0.03 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 |
26 | 1,1-Diethoxy-3-methylbutane | NS | 0.07 | 0.04 | 0.05 | 0.05 | 0.03 | 0.03 | 0.01 | 0.03 | 0.02 |
27 | Benzaldehyde | *** | 0.50 a | 0.35 ab | 0.36 ab | 0.36 ab | 0.29 bc | 0.29 bc | 0.14 c | 0.28 bc | 0.31 bc |
28 | Ethyl hexanoate | ** | 1.35 ab | 1.08 abc | 1.05 abc | 1.44 a | 0.66 c | 0.82 abc | 0.52 c | 0.89 abc | 0.74 bc |
29 | Hexyl acetate | NS | 0.03 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 |
30 | Limonene | NS | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.02 | 0.00 |
31 | Benzyl alcohol | NS | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 |
32 | Ethyl E-2-hexenoate | NS | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
33 | Ethyl 2-furoate | NS | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
34 | Isoamyl butyrate | NS | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
35 | 2-Nonanol | NS | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
36 | 3-Nonanone | NS | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
37 | 2-Nonanone | NS | 0.03 | 0.03 | 0.02 | 0.03 | 0.02 | 0.02 | 0.01 | 0.03 | 0.02 |
38 | Ethyl heptanoate | NS | 0.06 | 0.06 | 0.05 | 0.05 | 0.03 | 0.04 | 0.02 | 0.04 | 0.03 |
39 | Phenethyl alcohol | ** | 4.24 a | 3.84 ab | 3.09 abc | 3.46 abc | 2.35 bc | 2.65 abc | 1.78 c | 3.15 abc | 2.90 abc |
40 | Ethyl benzoate | ** | 0.09 ab | 0.09 ab | 0.05 bc | 0.10 a | 0.06 abc | 0.07 abc | 0.04 c | 0.06 abc | 0.06 abc |
41 | Diethyl butanedioate | ** | 8.19 a | 7.64 a | 7.34 a | 8.36 a | 4.55 ab | 5.68 ab | 3.14 b | 5.30 ab | 4.64 ab |
42 | Ethyl octanoate | *** | 7.45 a | 5.55 abc | 6.67 ab | 5.23 abc | 3.40 c | 4.77 abc | 2.72 c | 4.88 abc | 4.25 bc |
43 | Ethylphenyl acetate | *** | 0.10 ab | 0.08 abc | 0.05 bc | 0.12 a | 0.07 abc | 0.05 bc | 0.03 c | 0.12 a | 0.10 ab |
44 | Phenethyl acetate | ** | 0.08 a | 0.07 ab | 0.05 bc | 0.08 a | 0.06 abc | 0.04 c | 0.05 bc | 0.06 abc | 0.05 abc |
45 | Ethyl salicylate | *** | 0.05 bcd | 0.06 abc | 0.10 a | 0.07 ab | 0.03 cd | 0.07 ab | 0.03 cd | 0.04 bcd | 0.02 d |
46 | Ethyl glutarate | NS | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 |
47 | Vitispirane | *** | 0.20 a | 0.15 ab | 0.12 bc | 0.10 bc | 0.08 c | 0.11 bc | 0.10 bc | 0.16 ab | 0.11 bc |
48 | Ethyl nonanoate | ** | 0.07 a | 0.05 abc | 0.07 ab | 0.06 abc | 0.03 bc | 0.05 abc | 0.03 c | 0.05 abc | 0.04 bc |
49 | Tridecane | NS | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 |
50 | TDN | *** | 0.19 a | 0.12 b | 0.13 b | 0.09 bc | 0.06 c | 0.09 bc | 0.07 c | 0.13 ab | 0.08 bc |
51 | Ethyl decanoate | *** | 2.12 ab | 1.82 abc | 2.83 a | 1.82 abc | 1.17 bc | 1.70 abc | 0.83 c | 1.52 bc | 1.46 bc |
52 | Tetradecane | ** | 0.08 a | 0.01 b | 0.01 b | 0.01 b | 0.00 b | 0.01 b | 0.00 b | 0.01 b | 0.01 b |
53 | Ethyl 3-methylbutyl butanedioate | ** | 0.11 a | 0.09 ab | 0.08 ab | 0.10 ab | 0.06 b | 0.07 ab | 0.04 c | 0.06 b | 0.06 b |
54 | Isoamyl octanoate | NS | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 |
55 | Pentadecane | *** | 0.11 a | 0.02 b | 0.01 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b |
56 | 2,3,5-Trimethylnaphthalene | NS | 0.03 | 0.03 | 0.04 | 0.03 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 |
Attribute | ANOVA † | Fondillón solera | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1930 | 1944 | 1950 | 1960 | 1969 | 1975 | 1980 | 1987 | 1996 | ||
Tukey Multiple Range Test ‡ | ||||||||||
Appearance | ||||||||||
Color | NS | 5.2 | 5.2 | 5.2 | 5.0 | 5.2 | 5.7 | 5.8 | 5.3 | 5.7 |
Odor | ||||||||||
Alcohol | * | 6.0 a | 5.0 ab | 3.7 b | 4.5 ab | 4.2 ab | 4.5 ab | 5.0 ab | 4.0 ab | 3.7 b |
Fruity | ** | 7.0 a | 5.2 ab | 3.3 b | 5.0 ab | 4.7 ab | 4.8 ab | 5.2 ab | 4.5 b | 3.7 b |
Floral | NS | 1.3 | 1.5 | 1.5 | 1.7 | 1.7 | 1.7 | 1.8 | 1.7 | 1.5 |
Mediterranean forest | NS | 2.0 | 1.8 | 2.0 | 1.8 | 1.5 | 1.8 | 1.7 | 1.7 | 1.7 |
Spicy | * | 4.2 a | 3.5 ab | 2.0 b | 3.7 ab | 3.3 ab | 3.3 ab | 3.8 a | 3.5 ab | 3.0 ab |
Animal | NS | 1.5 | 2.2 | 1.0 | 1.7 | 1.7 | 2.2 | 2.0 | 1.7 | 1.3 |
Toasted | NS | 6.7 | 5.7 | 4.0 | 4.2 | 5.0 | 4.7 | 5.3 | 4.7 | 4.2 |
Chemical | NS | 0.8 | 2.5 | 2.5 | 2.7 | 2.3 | 2.7 | 3.5 | 2.0 | 1.3 |
Basic taste | ||||||||||
Sweetness | * | 3.0 ab | 5.0 a | 2.7 b | 3.8 ab | 3.7 ab | 3.7 ab | 3.2 ab | 3.0 ab | 2.7 b |
Sourness | ** | 4.5 a | 3.5 abc | 2.5 c | 3.5 abc | 3.0 bc | 3.8 abc | 4.2 ab | 3.3 abc | 2.8 bc |
Bitterness | NS | 1.5 | 1.3 | 2.2 | 2.0 | 2.5 | 2.5 | 1.8 | 1.8 | 1.5 |
Flavor | ||||||||||
Alcohol | * | 5.7 a | 5.0 ab | 4.0 b | 5.2 ab | 4.5 ab | 4.7 ab | 4.7 ab | 4.5 ab | 4.5 ab |
Fruity | * | 4.8 a | 4.7 a | 3.3 b | 4.7 a | 4.8 a | 4.5 a | 4.0 ab | 4.0 ab | 3.5 ab |
Floral | NS | 0.8 | 1.5 | 1.2 | 2.0 | 2.0 | 1.8 | 1.5 | 1.5 | 1.3 |
Mediterranean forest | NS | 1.7 | 1.7 | 0.8 | 1.7 | 2.0 | 2.0 | 1.7 | 1.7 | 1.5 |
Spicy | * | 3.8 a | 3.0 ab | 2.8 b | 3.3 ab | 3.0 ab | 3.0 ab | 3.2 ab | 3.0 ab | 2.8 b |
Animal | NS | 1.0 | 1.5 | 1.0 | 1.7 | 1.7 | 1.8 | 1.3 | 1.7 | 1.2 |
Toasted | NS | 5.5 | 4.8 | 3.3 | 4.7 | 5.3 | 5.0 | 4.8 | 4.2 | 3.8 |
Chemical | NS | 0.8 | 1.5 | 1.8 | 2.0 | 1.3 | 2.3 | 2.2 | 1.7 | 1.7 |
Astringency | ** | 1.0 b | 0.8 b | 0.8 b | 0.8 b | 1.2 b | 2.0 a | 1.2 b | 1.2 b | 1.0 b |
Aftertaste | *** | 6.3 bc | 6.8 ab | 3.7 d | 7.2 a | 6.3 bc | 6.3 bc | 5.8 c | 4.2 d | 6.3 bc |
Solera | Overall | Sweetness | Aftertaste |
---|---|---|---|
ANOVA † | |||
*** | *** | *** | |
Tukey Multiple Range Test ‡ | |||
1930 | 5.8 b | 5.1 bc | 5.9 ab |
1944 | 6.3 a | 5.8 ab | 6.3 a |
1950 | 5.4 bc | 5.1 bc | 6.1 a |
1960 | 6.2 a | 6.1 a | 6.1 a |
1969 | 5.5 bc | 5.1 bc | 5.7 ab |
1975 | 5.2 bc | 5.1 bc | 5.6 ab |
1980 | 4.3 c | 4.8 c | 4.9 b |
1987 | 5.8 b | 5.7 b | 5.9 ab |
1996 | 6.1 ab | 6.3 a | 6.2 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Issa-Issa, H.; Hernández, F.; Lipan, L.; López-Lluch, D.; Carbonell-Barrachina, Á.A. Quality, Nutritional, Volatile and Sensory Profiles and Consumer Acceptance of Fondillón, a Sustainable European Protected Wine. Agronomy 2021, 11, 1701. https://doi.org/10.3390/agronomy11091701
Issa-Issa H, Hernández F, Lipan L, López-Lluch D, Carbonell-Barrachina ÁA. Quality, Nutritional, Volatile and Sensory Profiles and Consumer Acceptance of Fondillón, a Sustainable European Protected Wine. Agronomy. 2021; 11(9):1701. https://doi.org/10.3390/agronomy11091701
Chicago/Turabian StyleIssa-Issa, Hanán, Francisca Hernández, Leontina Lipan, David López-Lluch, and Ángel A. Carbonell-Barrachina. 2021. "Quality, Nutritional, Volatile and Sensory Profiles and Consumer Acceptance of Fondillón, a Sustainable European Protected Wine" Agronomy 11, no. 9: 1701. https://doi.org/10.3390/agronomy11091701
APA StyleIssa-Issa, H., Hernández, F., Lipan, L., López-Lluch, D., & Carbonell-Barrachina, Á. A. (2021). Quality, Nutritional, Volatile and Sensory Profiles and Consumer Acceptance of Fondillón, a Sustainable European Protected Wine. Agronomy, 11(9), 1701. https://doi.org/10.3390/agronomy11091701