Heavy Metal Pollution and Its Effects on Agriculture
Funding
Acknowledgments
Conflicts of Interest
References
- Adriano, D.C. Trace Elements in Terrestrial Environments; Springer: New York, NY, USA, 2001; ISBN 9781468495058. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1992; p. 365. ISBN 0849366437. [Google Scholar]
- Dung, T.T.T.; Cappuyns, V.; Swennen, R.; Phung, N.K. From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Rev. Environ. Sci. Bio. Technol. 2013, 2, 335–353. [Google Scholar] [CrossRef]
- Vácha, R.; Sáňka, M.; Hauptman, I.; Zimová, M.; Čechmánková, J. Assessment of limit values of risk elements and persistent organic pollutants in soil for Czech legislation. Plant Soil Environ. 2014, 60, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Hellmann, H. Definitions of background-concentrations—An overview. Acta Hydrochim. Et Hydrobiol. 2002, 29, 391–398. [Google Scholar] [CrossRef]
- Lokeshappa, B.; Dikshit, A.K.; Luo, Y.; Hutchinson, T.J.; Giammar, D.E. Assessing bioaccessible fractions of arsenic, chromium, lead, selenium and zinc in coal fly ashes. Int. J. Environ. Sci. Technol. 2014, 11, 1601–1610. [Google Scholar] [CrossRef] [Green Version]
- Lyung, K.; Selinus, O.; Otabbong, E.; Berglund, M. Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. Appl. Geochem. 2006, 21, 1613–1624. [Google Scholar]
- Kumpiene, J.; Giagnoni, L.; Marschner, B.; Denys, S.; Mench, M.; Adriaensen, K.; Vangronsveld, J.; Puschenreiter, M.; Renella, G. Assessment of methods for determining bioavailability of trace elements in soils: A review. Pedosphere 2017, 27, 389–406. [Google Scholar] [CrossRef]
- Bright, D.A.; Richardson, G.M.; Dodd, M. Do current standards of practice in Canada measure what is relevant to human exposure at contaminated sites? I: A discussion of soil particle size and contaminant partitioning in soil. Hum. Ecol. Risk Assess. Int. J. 2006, 12, 591–605. [Google Scholar] [CrossRef]
- Malinowska, E.; Jankowski, K. The effect of different doses of sewage sludge and liming on total cobalt content and its speciation in soil. Agronomy 2020, 10, 1550. [Google Scholar] [CrossRef]
- Kazberuk, W.; Szulc, W.; Rutkowska, B. Use bottom sediment to agriculture—Effect on plant and heavy metal content in soil. Agronomy 2021, 11, 1077. [Google Scholar] [CrossRef]
- Menšík, L.; Hlisnikovský, L.; Nerušil, P.; Kunzová, E. Comparison of the concentration of risk elements in alluvial soils determined by pXRF in situ, in the laboratory, and by ICP-OES. Agronomy 2021, 11, 938. [Google Scholar] [CrossRef]
- Pikula, D.; Stepieň, W. Effect of the degree of soil contamination with heavy metals on their mobility in the soil profile in a microplot experiment. Agronomy 2021, 11, 878. [Google Scholar] [CrossRef]
- Rosales-Huamani, J.A.; Breňa-Ore, J.L.; Sespedes-Varkarsel, S.; Huamanchumo de la Cuba, L.; Centeno-Rojas, L.; Otiniano-Zavala, A.; Andrade-Choque, J.; Valverde-Espinoza, S.; Castillo-Sequera, J.L. Study to determine levels of cadmium in cocoa crops applied to inland areas of peru: “The Case of the Campo Verde-Honoria Tournavista Corridor”. Agronomy 2020, 10, 1576. [Google Scholar] [CrossRef]
- Franič, M.; Galič, V.; Lončarič, Z.; Šimič, D. Genotypic variability of photosynthetic parameters in maize ear-leaves at different cadmium levels in soil. Agronomy 2020, 10, 986. [Google Scholar] [CrossRef]
- Skála, J.; Vácha, R.; Čechmánková, J. Identifying controlling factors of bioaccumulation of selected metal(loid)s in various soil–Cereal crop systems within cultivated fluvisols. Agronomy 2021, 11, 1180. [Google Scholar] [CrossRef]
- Kuziemska, B.; Trebicka, J.; Wysokinski, A.; Jaremko, D. Supplementation of organic amendments improve yield and adaptability by reducing the toxic effect of copper in cocksfoot grass (Dactylis glomerata L. Cv Amera). Agronomy 2021, 11, 791. [Google Scholar] [CrossRef]
- Jakubus, M.; Graczyk, M. The effect of compost and fly ash treatment on contaminated soil on immobilisation and bioavailability of lead. Agronomy 2021, 11, 1188. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vácha, R. Heavy Metal Pollution and Its Effects on Agriculture. Agronomy 2021, 11, 1719. https://doi.org/10.3390/agronomy11091719
Vácha R. Heavy Metal Pollution and Its Effects on Agriculture. Agronomy. 2021; 11(9):1719. https://doi.org/10.3390/agronomy11091719
Chicago/Turabian StyleVácha, Radim. 2021. "Heavy Metal Pollution and Its Effects on Agriculture" Agronomy 11, no. 9: 1719. https://doi.org/10.3390/agronomy11091719
APA StyleVácha, R. (2021). Heavy Metal Pollution and Its Effects on Agriculture. Agronomy, 11(9), 1719. https://doi.org/10.3390/agronomy11091719