Effects of Organic Amendments Produced from Agro-Wastes on Sandy Soil Properties and Black Pepper Morpho-Physiology and Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Treatments
2.3. Soil Physical, Chemical and Biological Analysis
2.4. Soil Respiration Measurements
2.5. Pepper Plant Physiological, Morphological and Yield Measurements
2.5.1. Pepper Leaves Gas Exchange Rates Measurements
2.5.2. Pepper Foliar Chlorophyll Concentration and NDVI
2.5.3. Average Length of Fruit Spike Measurements
2.5.4. Leaf Area Index Measurements
2.5.5. Fresh Berry Yield Determination
2.6. Statistical Analysis
3. Results
3.1. Selected Physicochemical Properties of Miri Series
3.2. Effects of Treatments on Soil Physical and Chemical Properties
3.3. Effects of Treatments on Soil Microbes, Temperature and Respiration
3.4. Pepper Physiological Characteristics
3.5. Pepper Morphological Characteristics and Fresh Berry Yield
4. Discussion
4.1. Soil Physical and Chemical Properties
4.2. Soil Microbes, Temperature and Respiration
4.3. Pepper Physiological Characteristics
4.4. Pepper Morphological Characteristics and Fresh Berry Yield
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, C.; Chen, S.; Yu, Y.; Xu, Z.; Zhu, B.; Xu, X.; Wang, Z. Evaluation of Agricultural Land Suitability Based on RS, AHP, and MEA: A Case Study in Jilin Province, China. Agriculture 2021, 11, 370. [Google Scholar] [CrossRef]
- Eswaran, H.; Vearasilp, T.; Reich, P.; Beinroth, F. Sandy soils of Asia: A new frontier for agricultural development? In A Holistic Approach for Sustainable Development of Problem Soils in the Tropics, Proceedings of the Management of Tropical Sandy Soils for Sustainable Agriculture, Khon Kaen, Thailand, 27 November–2 December 2005; FAO: Bangkok, Thailand, 2005; pp. 22–30. [Google Scholar]
- De Jesus Duarte, S.; Glaser, B.; Paiva de Lima, R.; Pelegrino Cerri, C.E. Chemical, Physical, and Hydraulic Properties as Affected by One Year of Miscanthus Biochar Interaction with Sandy and Loamy Tropical Soils. Soil Syst. 2019, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Sassenrath, G.F.; Davis, K.; Sassenrath-Cole, A.; Riding, N. Exploring the Physical, Chemical and Biological Components of Soil: Improving Soil Health for Better Productive Capacity. Kans. Agric. Exp. Stn. Res. Rep. 2018, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Abdul Khalil, H.P.S.; Hossain, M.S.; Rosamah, E.; Azli, N.A.; Saddon, N.; Davoudpoura, Y.; Islam, M.N.; Dungani, R. The role of soil properties and it’s interaction towards quality plant fiber: A review. Renew. Sustain. Energy Rev. 2015, 43, 1006–1015. [Google Scholar] [CrossRef]
- Tahat, M.M.; Alananbeh, K.; Othman, Y.A.; Leskovar, D.I. Soil Health and Sustainable Agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Gill, S.; Alshankiti, A.; Shahid, S.; Rodriguez, J.P. Amending Soil Health to Improve Productivity of Alternate Crops in Marginal Sandy Soils of the UAE. In Emerging Research in Alternative Crops; Springer Nature: Cham, Switzerland, 2020; pp. 93–124. [Google Scholar] [CrossRef]
- Oueriemmi, H.; Kidd, P.S.; Trasar-Cepeda, C.; Rodríguez-Garrido, B.; Zoghlami, R.I.; Ardhaoui, K.; Prieto-Fernández, Á.; Moussa, M. Evaluation of Composted Organic Wastes and Farmyard Manure for Improving Fertility of Poor Sandy Soils in Arid Regions. Agriculture 2021, 11, 415. [Google Scholar] [CrossRef]
- Manickam, T.; Cornelissen, G.; Bachmann, R.T.; Ibrahim, I.Z.; Mulder, J.; Hale, S.E. Biochar Application in Malaysian Sandy and Acid Sulfate Soils: Soil Amelioration Effects and Improved Crop Production over Two Cropping Seasons. Sustainability 2015, 7, 16756–16770. [Google Scholar] [CrossRef] [Green Version]
- Chatzistathis, T.; Tzanakakis, V.; Giannakoula, A.; Psoma, P. Inorganic and Organic Amendments Affect Soil Fertility, Nutrition, Photosystem II Activity, and Fruit Weight and May Enhance the Sustainability of Solanum lycopersicon L. (Cv. ‘Mountain Fresh’) Crop. Sustainability 2020, 12, 9028. [Google Scholar] [CrossRef]
- Chandini, K.R.; Kumar, R.; Prakash, O. The Impact of Chemical Fertilizers on Our Environment and Ecosystem. In Research Trends in Environmental Sciences; AkiNik Publications: New Delhi, India, 2019; pp. 69–86. [Google Scholar]
- Martínez-Dalmau, J.; Berbel, J.; Ordóñez-Fernández, R. Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses. Sustainability 2021, 13, 5625. [Google Scholar] [CrossRef]
- Mahmud, K.; Panday, D.; Mergoum, A.; Missaoui, A. Nitrogen Losses and Potential Mitigation Strategies for a Sustainable Agroecosystem. Sustainability 2021, 13, 2400. [Google Scholar] [CrossRef]
- Rahaman, M.A.; Zhan, X.; Zhang, Q.; Li, S.; Lv, S.; Long, Y.; Zeng, H. Ammonia Volatilization Reduced by Combined Application of Biogas Slurry and Chemical Fertilizer in Maize–Wheat Rotation System in North China Plain. Sustainability 2020, 12, 4400. [Google Scholar] [CrossRef]
- Rahman, K.M.A.; Zhang, D. Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability. Sustainability 2018, 10, 759. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Jiang, Y.; Zhao, F.; He, X.; Liu, H.; Yu, K. Increased organic fertilizer application and reduced chemical fertilizer application affect the soil properties and bacterial communities of grape rhizosphere soil. Sci. Rep. 2020, 10, 9568. [Google Scholar] [CrossRef]
- Liu, Z.; Xie, W.; Yang, Z.; Huang, X.; Zhou, H. Effects of Manure and Chemical Fertilizer on Bacterial Community Structure and Soil Enzyme Activities in North China. Agronomy 2021, 11, 1017. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Wang, T.; Liu, Y.; Jia, S.; Gao, Y.; Liu, S. Effects of Different Fertilizer Treatments on Rhizosphere Soil Microbiome Composition and Functions. Land 2020, 9, 329. [Google Scholar] [CrossRef]
- Tang, A.; Haruna, A.O.; Majid, N.M.A.; Jalloh, M.B. Effects of Selected Functional Bacteria on Maize Growth and Nutrient Use Efficiency. Microorganisms 2020, 8, 854. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, Y.; Dai, H.; Cui, J.; Wang, L.; Sui, P. Effects of Organic Amendments on the Improvement of Soil Nutrients and Crop Yield in Sandy Soils during a 4-Year Field Experiment in Huang-Huai-Hai Plain, Northern China. Agronomy 2021, 11, 157. [Google Scholar] [CrossRef]
- Doan, T.T.; Sisouvanh, P.; Sengkhrua, T.; Sritumboon, S.; Rumpel, C.; Jouquet, P.; Bottinelli, N. Site-Specific Effects of Organic Amendments on Parameters of Tropical Agricultural Soil and Yield: A Field Experiment in Three Countries in Southeast Asia. Agronomy 2021, 11, 348. [Google Scholar] [CrossRef]
- The Borneo Post. Available online: https://www.theborneopost.com/2018/11/29/farmers-struggle-with-low-prices/ (accessed on 17 August 2021).
- Soil Survey Staff. Kellogg Soil Survey Laboratory Methods Manual; Soil Survey Investigations Report No. 42, Version 5.0; Burt, R., Soil Survey Staff, Eds.; U.S. Department of Agriculture, Natural Resources Conservation Service: Lincoln, NE, USA, 2014; pp. 279–281.
- Paramananthan, S. Soils of Malaysia: Their Characteristics and Identification. Volume 1; Academy of Sciences Malaysia & Param Agricultural Soil Surveys: Selangor, Malaysia, 2000; pp. 121–125. [Google Scholar]
- Zamora, O.B.; Calub, B.M. Organic Agriculture Technologies and Systems Developed and Adapted by Farmers in the Phillippines; Department of Agriculture—Bureau of Agricultural Research and University of Philippines: Los Banos-College of Agriculture: Quezon City, Phillippines, 2016; p. 70. ISBN 978-971-0347-46-9.
- Malaysian Pepper Board. Laporan Kajian Verifikasi Hasil; Malaysian Pepper Board: Kuching, Malaysia, 2017; p. 11. [Google Scholar]
- Sulok, K.M.T.; Ahmed, O.H.; Khew, C.Y.; Zehnder, J.A.M.; Jalloh, M.B.; Musah, A.A.; Abdu, A. Chemical and Biological Characteristics of Organic Amendments Produced from Selected Agro-Wastes with Potential for Sustaining Soil Health: A Laboratory Assessment. Sustainability 2021, 13, 4919. [Google Scholar] [CrossRef]
- Paulus, A.D. Planting and Maintenance. In Pepper Production Technology in Malaysia; Lai, K.F., Sim, S.L., Eds.; Malaysian Pepper Board: Kuching, Malaysia, 2011; pp. 106–109. [Google Scholar]
- Tan, K.H. Soil Sampling, Preparation, and Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Cottenie, A. Soil testing and plant testing as a basis of fertilizer recommendation. FAO Soils Bull. 1980, 38, 70–73. [Google Scholar]
- Bremner, J.M. Total Nitrogen. In Methods of Soil Analysis, Part 2; Black, C.A., Evans, D.D., Ensminger, L.E., White, J.L., Clark, F.F., Dinauer, R.C., Eds.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 1149–1178. [Google Scholar]
- DiCristina, K.; Germino, M. Correlation of neighborhood relationships, carbon assimilation, and water status of Sagebrush seedlings establishing after fire. West. N. Am. Nat. 2006, 66, 441–449. [Google Scholar] [CrossRef]
- Bianco, S.; Pitelli, R.; Bianco, M. Estimate of Brachiaria Plantaginea Leaf Area Using Linear Dimensions of the Leaf Blade. Planta Daninha 2005, 23, 597–601. [Google Scholar] [CrossRef] [Green Version]
- International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil; IBI-STD-2.1; International Biochar Initiative: New York, NY, USA, 2015; p. 47. [Google Scholar]
- Javaid, A.; Bajwa, R. Field Evaluation of Effective Microorganisms (EM) Application for Growth, Nodulation, and Nutrition of Mungbean. Turk. J. Agric. For. 2011, 35, 443–452. [Google Scholar] [CrossRef]
- Schulz, H.; Glaser, B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J. Plant Nutr. Soil Sci. 2012, 175, 410–422. [Google Scholar] [CrossRef]
- Wahi, R.; Sharifah Mona, A.A.; Sinin, H.; Zainab, N. Biochar production from agricultural wastes via low-temperature microwave carbonization. In Proceedings of the 2015 IEEE International RF and Microwave Conference (RFM 2015), Kuching, Malaysia, 14–16 December 2015. [Google Scholar] [CrossRef]
- Paulus, A.D.; Anyi, W.L. Introduction. In Pepper Production Technology in Malaysia; Lai, K.F., Sim, S.L., Eds.; Malaysian Pepper Board: Kuching, Malaysia, 2011; pp. 3–4. [Google Scholar]
- Tedersoo, L.; Smith, M.E. Lineages of ectomycorrhizal fungi revisited: Foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol. Rev. 2013, 27, 83–99. [Google Scholar] [CrossRef] [Green Version]
- Yap, C.A. Determination of nutrient uptake characteristics of black pepper (Piper nigrum L.). J. Agric. Sci. Technol. 2012, 6, 86–89. [Google Scholar]
- Sanchez, J.E.; Willson, T.C.; Kizilkaya, K.; Parker, E.; Harwood, R.R. Enhancing the Mineralizable Nitrogen Pool Through Substrate Diversity in Long Term Cropping Systems. Soil Sci. Soc. Am. J. SSAJ 2001, 65, 1442–1447. [Google Scholar] [CrossRef]
- Adugna, G. A review on impact of compost on soil properties, water use and crop productivity. Acad. Res. J. Agric. Sci. Res. 2016, 4, 93–104. [Google Scholar]
- Lehmann, J.; Gaunt, J.; Rondon, M.B. Bio-char Sequestration in Terrestrial Ecosystems—A Review. Mitig. Adapt. Strat. Glob. Change 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Fischer, D.; Glaser, B. Synergisms between compost and biochar for sustainable soil amelioration, management of organic Waste. In Management of Organic Waste/Synergism between Biochar and Compost for Sustainable Soil Amelioration; Kumar, S.E., Ed.; InTechOpen: Shanghai, China, 2012; pp. 167–198. Available online: https://www.intechopen.com/books/management-of-organic-waste/synergism-between-biochar-and-compost-for-sustainable-soil-amelioration (accessed on 12 June 2021).
- Nigussie, A.; Kissi, E.; Misganaw, M.; Ambaw, G. Effect of biochar application on soil properties and nutrient uptake of let-tuces (Lactuca sativa) grown in chromium polluted soils. Am. Eurasian J. Agric. Environ. Sci. 2012, 12, 369–376. [Google Scholar]
- Agegnehu, G.; Nelson, P.N.; Bird, M.I. Crop yield, plant nutrient uptake and soil physicochemical properties under organic soil amendments and nitrogen fertilization on Nitisols. Soil Tillage Res. 2016, 160, 1–13. [Google Scholar] [CrossRef]
- Amlinger, F.; Peyr, S.; Geszti, J.; Dreher, P.; Karlheinz, W.; Nortcliff, S. Beneficial Effects of Compost Application on Fertility and Productivity of Soils. Literature Study; Federal Ministry for Agriculture and Forestry, Environment and Water Management: Vienna, Austria, 2007; 225p. [Google Scholar]
- Subler, S.; Edwards, C.A.; Metzger, J. Comparing vermicomposts and composts. Biocycle 1998, 39, 63–66. [Google Scholar]
- Ho, S.Y.; Wasli, M.E.B.; Perumal, M. Evaluation of Physicochemical Properties of Sandy-Textured Soils under Smallholder Agricultural Land Use Practices in Sarawak, East Malaysia. Appl. Environ. Soil Sci. 2019, 2019, e7685451. [Google Scholar] [CrossRef]
- Wong, T.H. Agronomic recommendations for pepper cultivation in Sarawak. In Proceedings of the National Conference on Pepper in Malaysia; Bong, C.F.J., Saad, M.S., Eds.; Universiti Pertanian Malaysia: Bintulu, Malaysia, 1986; pp. 96–103. [Google Scholar]
- Higa, T. Effective microorganisms and their role in Kyusei nature farming and sustainable agriculture. In Proceedings of the 2nd Conference on Effective Microorganisms, Kyusei Nature Farming Center, Saraburi, Thailand, 17–19 November 1993; pp. 1–6. [Google Scholar]
- Talaat, N.B.; Ghoniem, A.E.; Abdelhamid, M.T.; Shawky, B.T. Effective microorganisms improve growth performance, alter nutrient acquisition and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress. Plant Growth Regul. 2015, 75, 281–295. [Google Scholar] [CrossRef]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Rajkovich, S.; Enders, A.; Hanley, K.; Hyland, C.; Zimmerman, A.R.; Lehmann, J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 2012, 48, 271–284. [Google Scholar] [CrossRef]
- Suhaimee, S.; Ibrahim, I.Z.; Abdul Wahab, M.A.M. Organic Agriculture in Malaysia; FFTC Agricultural Policy Articles: Production Policy: Taipei, Taiwan, 2016; Available online: http://ap.fftc.agnet.org/ap_db.php?id=579 (accessed on 12 June 2021).
- Zimmermann, I. Trial with Charcoal as a Soil Amendment for Growing Lucerne; Polytechnic of Namibia: Windhoek, Namibia, 2008; unpublished report. [Google Scholar]
- Kim, J.-S.; Sparovek, G.; Longo, R.M.; de Melo, W.J.; Crowley, D. Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biol. Biochem. 2007, 39, 684–690. [Google Scholar] [CrossRef]
- Sun, P.-F.; Fang, W.-T.; Shin, L.-Y.; Wei, J.-Y.; Fu, S.-F.; Chou, J.-Y. Indole-3-Acetic Acid-Producing Yeasts in the Phyllosphere of the Carnivorous Plant Drosera indica L. PLoS ONE 2014, 9, e114196. [Google Scholar] [CrossRef]
- Saeid, A.; Prochownik, E.; Dobrowolska-Iwanek, J. Phosphorus Solubilization by Bacillus Species. Molecules 2018, 23, 2897. [Google Scholar] [CrossRef] [Green Version]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Muirhead, B.; Wright, G.; Bird, M.I. Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agric. Ecosyst. Environ. 2015, 213, 72–85. [Google Scholar] [CrossRef]
- Abideen, Z.; Koyro, H.-W.; Huchzermeyer, B.; Gul, B.; Khan, M.A. Impact of a biochar or a compost-biochar mixture on water relation, nutrient uptake and photosynthesis of Phragmites karka. Pedosphere 2017, 30, 466–477. [Google Scholar] [CrossRef]
- Mensah, A.K.; Frimpong, K.A. Biochar and/or Compost Applications Improve Soil Properties, Growth, and Yield of Maize Grown in Acidic Rainforest and Coastal Savannah Soils in Ghana. Int. J. Agron. 2018, 2018, e6837404. [Google Scholar] [CrossRef] [Green Version]
- Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W. The ‘Terra Preta’ phenomenon: A model for sustainable agriculture in the humid tropics. Naturwissneschaften 2001, 88, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Hunt, J.; DuPonte, M.; Sato, D.; Kawabata, A. The basics of Biochar: A Natural Soil Amendment. Soil Crop Manag. 2010, 30, 1–4. [Google Scholar]
- Khaliq, A.; Abbasi, M.K.; Hussain, T. Effects of integrated use of organic and inorganic nutrient sources with effective microorganisms (EM) on seed cotton yield in Pakistan. Bioresour. Technol. 2016, 97, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Megir, G.; Paulus, A.D. Organic Pepper Production. In Pepper Production Technology in Malaysia; Lai, K.F., Sim, S.L., Eds.; Malaysian Pepper Board: Kuching, Malaysia, 2011; pp. 229–233. [Google Scholar]
- Partanen, P.; Hultman, J.; Paulin, L.; Auvinen, P.; Romantschuk, M. Bacterial diversity at different stages of the composting process. BMC Microbiol. 2010, 10, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Saha, N.T.; Arora, A.; Shah, R.; Nain, L. Efficient microorganism compost benefits plant growth and improves soil health in Calendula and Marigold. Hortic. Plant J. 2017, 3, 67–72. [Google Scholar] [CrossRef]
- Sattelmacher, B.; Horst, W.J.; Becker, H.C. Factors that contribute to genetic variation for nutrient efficiency of crop plants. Zeitschrift für Pflanzenernährung und Bodenkunde 1994, 157, 215–224. [Google Scholar] [CrossRef]
- Miller, S.A.; Ikeda, D.M.; Weinert, E., Jr.; Chang, K.; McGinn, J.M.; Keliihoomalu, C.; Duponte, M.W. Natural Farming: Fermented Plant Juice; Sustainable Agriculture, SA-7; Universiti of Hawaii, College of Tropical Agriculture and Human Resources: Honolulu, HI, USA, 2013; p. 6. [Google Scholar]
- Huerta-Pujol, O.; Soliva, M.; Martinez-Farre, F.X.; Valero, J.; Lopez, M. Bulk density determination as a simple and complementary too in composting process control. Bioresour. Technol. 2010, 101, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzadeh, A.; Jaafar, H.Z.E. Effect of CO2 Enrichment on Synthesis of Some Primary and Secondary Metabolites in Ginger (Zingiber officinale Roscoe). Int. J. Mol. Sci. 2011, 12, 1101–1114. [Google Scholar] [CrossRef] [Green Version]
- McGrath, D.; Henry, J. Organic amendments decrease bulk density and improve tree establishment and growth in roadside plantings. Urban For. Urban Green. 2016, 20, 120–127. [Google Scholar] [CrossRef]
- Tanaka, S.; Tachibe, S.; Wasli, M.E.; Lat, J.; Seman, L.; Kendawang, J.J.; Iwasaki, K.; Sakurai, K. Soil characteristics under cash crop farming in upland areas of Sarawak, Malaysia. Agric. Ecosyst. Environ. 2009, 129, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Thies, J.E.; Rillig, M.C. Characteristics of biochar: Biological properties. In Biochar for Environmental Management: Science and Technology, 1st ed.; Lehmann, J., Joseph, S., Eds.; Earthscan Publications Ltd.: London, UK, 2009; pp. 85–105. [Google Scholar]
- Atiyeh, R.M.; Subler, S.; Edwards, C.A.; Metzger, J. Growth of tomato plants in horticultural potting media amended with vermicomposts. Pedobiologia 2000, 43, 724–728. [Google Scholar]
- Clark, K.M.; Boardman, D.L.; Staples, J.S.; Easterby, S.; Reinbott, T.M.; Kremer, R.J.; Kitchen, N.R.; Veum, K.S. Crop Yield and Soil Organic Carbon in Conventional and No-till Organic Systems on a Claypan Soil. Agron. J. 2017, 109, 588–599. [Google Scholar] [CrossRef]
Treatment | Description | Composition | Rate of Application |
---|---|---|---|
T1 (NPK) | Control | NPK 12:12:17 | Standard recommended rate as shown in Table 2 |
T2 (FPJ) | Fermented Plant Juice (FPJ) | 1 kg of water spinach, Chinese mustard, black pepper leaves, tapioca leaves, 1 kg molasses | 200 mL of FPJ in 16 litres of water per month per 100 vines |
T3 (FPJBC) | Fermented Plant Juice incorporated with biochar and compost (FPJBC) | FPJ, palm kernel shell biochar, and plant waste compost | 200 mL of FPJ in 16 litres of water per month per 100 vines. 1 kg of biochar applied per vine per year. 3.5 kg compost applied per vine every 3 months |
T4 (FFJ) | Fermented Fruit Juice (FFJ) | 1 kg banana, papaya, pumpkin, and pepper berries, 1 kg molasses | 200 mL of FFJ in 16 litres of water per month per 100 vines |
T5 (FFJBC) | Fermented Fruit Juice incorporated with biochar and compost (FFJBC) | FFJ, palm kernel shell biochar and plant waste compost | 200 mL of FFJ in 16 litres of water per month per 100 vines. 1 kg of biochar applied per vine per year. 3.5 kg compost applied per vine every 3 months |
Month after Planting | Compound Chemical Fertilizer | Quantity per Vine (g) |
---|---|---|
September | 12:12:17:2 + TE * | 500 |
October | 12:12:17:2 + TE | 500 |
November | 12:12:17:2 + TE | 250 |
December | 12:12:17:2 + TE | 250 |
Total for third year and above | 1500 g |
Property | Value Obtained |
---|---|
BD (g/cm3) | 1.40 |
Porosity (%) | 39.20 |
Sand (%) | 76 |
Silt (%) | 9 |
Clay (%) | 15 |
Soil texture | Sandy loam |
pH (water) | 4.08 |
EC (dS/m) | 2.3 |
CEC (cmol(+)/kg) | 8.06 |
TOC (%) | 1.32 |
Total N (%) | 0.14 |
C/N Ratio | 9.43 |
Available P (mg/kg) | 144 |
Exchangeable K (cmol(+)/kg) | 0.13 |
Exchangeable Ca (cmol(+)/kg) | 0.57 |
Exchangeable Na (cmol(+)/kg) | 0.32 |
Exchangeable Mg (cmol(+)/kg) | 0.19 |
Treatment | Year | Bulk Density (g cm−3) | Porosity (%) | pHwater | pHKCl | EC (dS/m) | CEC (cmol(+)/kg) |
---|---|---|---|---|---|---|---|
NPK | 2017 | 1.38 ± 0.03 a | 52.08 ± 2.81 a | 4.06 ± 0.23 c | 3.58 ± 0.40 c | 2.30 ± 0.38 a | 11.69 ± 0.39 c |
FPJ | 1.33 ± 0.07 ab | 50.19 ± 1.21 b | 4.59 ± 0.16 b | 4.02 ± 0.28 b | 1.40 ± 0.22 b | 11.99 ± 0.42 c | |
FPJBC | 1.32 ± 0.06 b | 49.81 ± 1.53 b | 4.50 ± 0.18 b | 4.18 ± 0.27 b | 1.30 ± 0.27 b | 12.77 ± 0.31 b | |
FFJ | 1.33 ± 0.04 b | 49.62 ± 0.85 b | 4.55 ± 0.17 b | 4.16 ± 0.19 b | 1.50 ± 0.24 b | 11.77 ± 0.49 c | |
FFJBC | 1.21 ± 0.05 b | 50.11 ± 0.85 b | 5.08 ± 0.24 a | 4.52 ± 0.20 a | 1.40 ± 0.28 b | 15.26 ± 0.47 a | |
NPK | 2018 | 1.42 ± 0.05 a | 46.41 ± 1.86 b | 4.03 ± 0.24 d | 3.29 ± 0.42 d | 2.71 ± 0.25 a | 10.71 ± 0.99 c |
FPJ | 1.31 ± 0.09 a | 50.41 ± 3.53 b | 4.64 ± 0.15 c | 3.80 ± 0.15 c | 1.30 ± 0.17 b | 11.73 ± 0.65 b | |
FPJBC | 1.13 ± 0.19 b | 57.41 ± 7.28 a | 5.07 ± 0.13 b | 4.10 ± 0.06 b | 1.21 ± 0.26 b | 11.88 ± 0.70 b | |
FFJ | 1.34 ± 0.09 a | 49.28 ± 3.43 b | 4.47 ± 0.20 c | 3.62 ± 0.22 c | 1.27 ± 0.31 b | 11.05 ± 1.49 bc | |
FFJBC | 1.11 ± 0.10 b | 58.21 ± 3.87 a | 5.32 ± 0.16 a | 4.86 ± 0.22 a | 1.19 ± 0.25 b | 15.97 ± 0.85 a |
Treatment | Year | TOC | Total N | C/N Ratio | Available P | Exch. K | Exch. Ca | Exch. Na | Exch. Mg |
---|---|---|---|---|---|---|---|---|---|
(%) | (%) | - | (mg/kg) | (cmol(+)/kg) | |||||
NPK | 2017 | 0.80 ± 0.08 c | 0.40 ± 0.10 a | 2.09 ± 0.45 c | 123.67 ± 15.18 b | 0.88 ± 0.18 a | 0.69 ± 0.10 a | 0.63 ± 0.07 a | 0.35 ± 0.10 a |
FPJ | 0.93 ± 0.09 c | 0.11 ± 0.11 b | 12.19 ± 4.84 b | 88.33 ± 6.08 c | 0.31 ± 0.13 c | 0.44 ± 0.07 b | 0.17 ± 0.03 b | 0.22 ± 0.06 c | |
FPJBC | 1.47 ± 0.08 a | 0.10 ± 0.05 b | 19.05 ± 10.96 ab | 167.00 ± 13.71 a | 0.82 ± 0.18 a | 0.74 ± 0.09 a | 0.15 ± 0.03 bc | 0.28 ± 0.06 b | |
FFJ | 1.24 ± 0.28 b | 0.09 ± 0.05 b | 16.72 ± 11.35 ab | 165.01 ± 10.29 a | 0.46 ± 0.09 b | 0.53 ± 0.15 b | 0.12 ± 0.04 cd | 0.32 ± 0.02 ab | |
FFJBC | 1.56 ± 0.08 a | 0.08 ± 0.03 b | 20.89 ± 7.02 a | 156.50 ± 13.49 a | 0.80 ± 0.09 a | 0.65 ± 0.12 a | 0.10 ± 0.04 d | 0.28 ± 0.04 b | |
NPK | 2018 | 0.75 ± 0.09 b | 0.53 ± 0.09 a | 1.46 ± 0.15 c | 202.07 ± 31.35 a | 0.90 ± 0.06 a | 0.71 ± 0.11 b | 0.72 ± 0.04 a | 0.42 ± 0.06 a |
FPJ | 0.70 ± 0.06 b | 0.11 ± 0.04 b | 7.55 ± 2.99 b | 78.95 ± 10.41 d | 0.31 ± 0.03 c | 0.40 ± 0.04 c | 0.12 ± 0.02 bc | 0.21 ± 0.04 d | |
FPJBC | 2.06 ± 0.28 a | 0.11 ± 0.02 b | 19.30 ± 3.87 a | 179.93 ± 8.06 b | 0.89 ± 0.05 a | 0.82 ± 0.06 a | 0.14 ± 0.03 b | 0.25 ± 0.03 cd | |
FFJ | 0.85 ± 0.07 b | 0.10 ± 0.02 b | 9.26 ± 1.78 b | 101.62 ± 5.66 c | 0.39 ± 0.02 b | 0.46 ± 0.06 c | 0.10 ± 0.03 c | 0.29 ± 0.05 bc | |
FFJBC | 2.06 ± 0.23 a | 0.12 ± 0.02 b | 18.73 ± 4.93 a | 175.55 ± 7.45 b | 0.90 ± 0.05 a | 0.81 ± 0.06 a | 0.12 ± 0.03 bc | 0.30 ± 0.05 b |
Treatment | Year | Soil Temperature (°C) | Soil Respiration (µmolm−2s−1) | Bact. in 1 g of Dry Soil (×106 Cells/g) | Actino. in 1 g of Dry Soil (×103 Cells/g) | Fungi in 1 g of Dry Soil (×103 Cells/g) |
---|---|---|---|---|---|---|
NPK | 2017 | 32.56 ± 0.76 a | 2.20 ± 0.25 c | 10.33 ± 2.85 d | 25.33 ± 2.61 b | 4.07 ± 2.05 c |
FPJ | 27.38 ± 0.54 d | 4.87 ± 0.16 b | 14.73 ± 2.19 c | 31.67 ± 1.76 a | 6.93 ± 1.98 b | |
FPJBC | 28.58 ± 0.72 c | 6.11 ± 0.26 a | 18.67 ± 2.35 b | 34.20 ± 2.40 a | 12.13 ± 2.40 a | |
FFJ | 29.78 ± 1.24 b | 4.99 ± 0.13 b | 13.40 ± 2.17 c | 33.87 ± 3.54 a | 4.27 ± 4.36 c | |
FFJBC | 27.91 ± 0.48 cd | 5.96 ± 0.30 a | 24.13 ± 2.80 a | 33.67 ± 2.55 a | 13.00 ± 6.17 a | |
NPK | 2018 | 31.57 ± 0.03 a | 1.87 ± 0.08 d | 7.13 ± 2.03 d | 19.93 ± 3.33 d | 3.20 ± 1.78 b |
FPJ | 29.02 ± 0.02 c | 3.64 ± 0.17 b | 16.27 ± 3.45 b | 32.67 ± 5.49 bc | 4.80 ± 3.95 b | |
FPJBC | 28.55 ± 0.03 d | 6.81 ± 0.35 a | 24.00 ± 2.42 a | 38.73 ± 1.79 a | 11.93 ± 1.93 a | |
FFJ | 29.21 ± 0.10 b | 2.91 ± 0.19 c | 11.13 ± 3.25 c | 29.07 ± 3.52 c | 5.00 ± 1.93 b | |
FFJBC | 28.45 ± 0.04 e | 6.67 ± 0.34 a | 26.00 ± 1.07 a | 36.47 ± 5.36 ab | 15.20 ± 4.78 a |
Treatment | Year | Chlorophyll (µmol per m2 of Leaf) | NDVI | Photosynthesis (A) (µmol CO2 m−2s−1) | Conductance (gs) (mol H2O m−2s−1) | Transiration (E) (mmol H2O m−2s−1) |
---|---|---|---|---|---|---|
NPK | 2017 | 85.33 ± 2.72 a | 0.95 ± 0.04 a | 9.78 ± 0.51 a | 0.26 ± 0.03 a | 3.78 ± 0.16 a |
FPJ | 80.21 ± 2.31 b | 0.89 ± 0.04 bc | 8.24 ± 0.45 b | 0.18 ± 0.02 bc | 2.78 ± 0.16 b | |
FPJBC | 81.62 ± 2.25 b | 0.90 ± 0.03 ab | 7.97 ± 0.33 b | 0.16 ± 0.03 c | 2.14 ± 0.19 c | |
FFJ | 79.89 ± 4.86 b | 0.82 ± 0.06 c | 8.25 ± 0.34 b | 0.19 ± 0.03 b | 3.58 ± 0.20 a | |
FFJBC | 81.36 ± 1.69 b | 0.85 ± 0.05 c | 8.10 ± 0.33 b | 0.14 ± 0.05 c | 2.31 ± 0.33 c | |
NPK | 2018 | 89.71 ± 4.67 a | 0.86 ± 0.03 b | 13.48 ± 1.81 a | 0.24 ± 0.02 a | 4.29 ± 0.34 a |
FPJ | 82.53 ± 1.64 c | 0.85 ± 0.03 b | 9.56 ± 1.93 b | 0.11 ± 0.06 c | 2.17 ± 1.08 c | |
FPJBC | 85.44 ± 1.58 b | 0.89 ± 0.02 a | 12.52 ± 0.94 a | 0.20 ± 0.06 ab | 3.93 ± 0.78 ab | |
FFJ | 83.53 ± 1.59 bc | 0.86 ± 0.03 b | 10.09 ± 2.19 b | 0.17 ± 0.07 b | 3.22 ± 1.14 b | |
FFJBC | 85.47 ± 1.70 b | 0.89 ± 0.02 a | 13.16 ± 1.48 a | 0.24 ± 0.02 a | 4.25 ± 0.24 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulok, K.M.T.; Ahmed, O.H.; Khew, C.Y.; Zehnder, J.A.M.; Lai, P.S.; Jalloh, M.B.; Musah, A.A.; Awang, A.; Abdu, A. Effects of Organic Amendments Produced from Agro-Wastes on Sandy Soil Properties and Black Pepper Morpho-Physiology and Yield. Agronomy 2021, 11, 1738. https://doi.org/10.3390/agronomy11091738
Sulok KMT, Ahmed OH, Khew CY, Zehnder JAM, Lai PS, Jalloh MB, Musah AA, Awang A, Abdu A. Effects of Organic Amendments Produced from Agro-Wastes on Sandy Soil Properties and Black Pepper Morpho-Physiology and Yield. Agronomy. 2021; 11(9):1738. https://doi.org/10.3390/agronomy11091738
Chicago/Turabian StyleSulok, Kevin Muyang Tawie, Osumanu Haruna Ahmed, Choy Yuen Khew, Jarroop Augustine Mercer Zehnder, Pei Sing Lai, Mohamadu Boyie Jalloh, Adiza Alhassan Musah, Azwan Awang, and Arifin Abdu. 2021. "Effects of Organic Amendments Produced from Agro-Wastes on Sandy Soil Properties and Black Pepper Morpho-Physiology and Yield" Agronomy 11, no. 9: 1738. https://doi.org/10.3390/agronomy11091738
APA StyleSulok, K. M. T., Ahmed, O. H., Khew, C. Y., Zehnder, J. A. M., Lai, P. S., Jalloh, M. B., Musah, A. A., Awang, A., & Abdu, A. (2021). Effects of Organic Amendments Produced from Agro-Wastes on Sandy Soil Properties and Black Pepper Morpho-Physiology and Yield. Agronomy, 11(9), 1738. https://doi.org/10.3390/agronomy11091738