Impact of Foliar Fungicides on Frogeye Leaf Spot Severity, Radiation Use Efficiency and Yield of Soybean in Iowa
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akem, C.N.; Dashiell, K.E.; Uwala, A.C. Prevalence of frogeye leaf spot of soybean in Nigeria. Int. J. Trop. Plant Dis. 1992, 10, 181–183. [Google Scholar]
- Athow, K.L.; Probst, A.H. The inheritance of resistance to frogeye leaf spot of soybeans. Phytopathology 1952, 42, 660–662. [Google Scholar]
- Bernaux, P. Identification of some soybean diseases in Cameroon. Agron. Trop. 1979, 34, 301–304. [Google Scholar]
- Dashiell, K.E.; Akem, C.N. Yield losses in soybeans from frogeye leaf spot caused by Cercospora sojina. Crop Prot. 1991, 10, 465–468. [Google Scholar] [CrossRef]
- Ma, G.Z. Review and forecast of study on frogeye leaf spot. Soybean J. 1994, 1, 6–7. [Google Scholar]
- Cruz, C.D.; Dorrance, A.E. Characterization and survival of Cercospora sojina in Ohio. Online Plant Health Prog. 2009, 10, 17. [Google Scholar] [CrossRef]
- Mengistu, A.; Kurtzweil, N.C.; Grau, C.R. First report of frogeye leaf spot (Cercospora sojina) in Wisconsin. Plant Dis. 2002, 11, 1272. [Google Scholar] [CrossRef]
- Yang, X.B.; Uphoff, M.D.; Sanogo, S. Outbreaks of soybean frogeye leaf spot in Iowa. Plant Dis. 2001, 85, 443. [Google Scholar] [CrossRef]
- CPN. Disease Loss Calculator, Crop Protection Network. 2020. Available online: https://loss.cropprotectionnetwork.org/ (accessed on 16 July 2021).
- Mian, M.A.R.; Phillips, D.V.; Boerma, H.R.; Missaoui, A.M.; Walker, D.R. Frogeye leaf spot of soybean: A review and proposed race designations for isolates of Cercospora sojina Hara. Crop Sci. 2008, 48, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Westphal, A.; Abney, T.S.; Shaner, G. Diseases of Soybean. Frogeye Leaf Spot. Purdue University Department of Botany and Plant Pathology and USDA-ARS. 2006. Available online: http://www.ces.purdue.edu/extmedia/BP/BP-131-W.pdf (accessed on 16 July 2021).
- Sherwin, H.S.; Kreitlow, K.W. Discoloration of soybean seeds by the frogeye fungus, Cercospora sojina. Phytopathology 1952, 42, 568–572. [Google Scholar]
- Dorrance, A.E.; Cruz, C.; Mills, D.; Bender, R.; Koenig, M.; LaBarge, G.; Leeds, R.; Mangione, D.; McCluer, G.; Ruhl, S.; et al. Effects of foliar fungicide and insecticide applications on soybean in Ohio. Plant Health Prog. 2010, 11, 31. [Google Scholar] [CrossRef]
- Roth, M.G.; Webster, R.W.; Mueller, D.S.; Chilvers, M.I.; Faske, T.R.; Mathew, F.M.; Bradley, C.A.; Damicone, J.P.; Kabbage, M.; Smith, D.L. Integrated management of important soybean pathogens of the united states in changing climate. J. Integr. Pest Manag. 2020, 11, 17. [Google Scholar] [CrossRef]
- Wrather, J.A.; Koenning, S.R. Estimates of disease effects on soybean yields in the United States 2003–2005. J. Nematol. 2006, 38, 173–180. [Google Scholar]
- Mengistu, A.; Kelly, H.M.; Bellaloui, N.; Arelli, P.R.; Reddy, K.N.; Wrather, A.J. Tillage, fungicide, and cultivar effects on frogeye leaf spot severity and yield in soybean. Plant Dis. 2014, 98, 1476–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.R.; Newman, M.A.; Bradley, C.A. First report of the soybean frogeye leaf spot fungus (Cercospora sojina) resistant to quinone outside inhibitor fungicides in North America. Plant Dis. 2012, 96, 767. [Google Scholar] [CrossRef]
- Mathew, F.M.; Byamukama, E.; Neves, D.L.; Bradley, C.A. Resistance to quinone outside inhibitor fungicides conferred by the G143A mutation in Cercospora sojina (causal agent of frogeye leaf spot) isolates from South Dakota soybean fields. Plant Health Prog. 2019, 20, 104–105. [Google Scholar] [CrossRef]
- Zhang, G.R.; Allen, T.W.; Bond, J.P.; Fakhoury, A.M.; Dorrance, A.E.; Weber, L.; Faske, T.R.; Giesler, L.J.; Hershamn, D.E.; Kennedy, B.S.; et al. Widespread occurrence of quinone outside inhibitor fungicide-resistant isolates of Cercospora sojina, causal agent of frogeye leaf spot of soybean, in the United States. Plant Health Prog. 2018, 19, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Bradley, K.W.; Sweets, L.E. Influence of glyphosate and fungicide coapplications on weed control, spray penetration, soybean response, and yield in glyphosate-resistant soybean. Agron. J. 2008, 100, 1360–1365. [Google Scholar] [CrossRef]
- Kandel, Y.R.; Mueller, D.S.; Bestor, N.R.C.; Bradley, C.A.; Giesler, L.J.; Wise, K.A. Analyses of yield and net economic response from foliar fungicide and insecticide applications to soybean in the North Central United States. Plant Health Prog. 2016, 17, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Kyveryga, P.M.; Blackmer, T.M.; Mueller, D.S. When do foliar pyraclostrobin fungicide applications produce profitable soybean yield responses? Online Plant Health Prog. 2013, 14, 6. [Google Scholar] [CrossRef] [Green Version]
- Wise, K.; Mueller, D. Are fungicides no longer just for fungi? An analysis of foliar fungicide use in corn. APSnet Features 2011, 10. [Google Scholar] [CrossRef]
- Balba, H. Review of strobilurin fungicide chemicals. J. Environ. Sci. 2007, 42, 441–451. [Google Scholar] [CrossRef]
- Bartlett, D.W.; Clough, J.M.; Godwin, J.R.; Hall, A.A.; Hamer, M.; Parr-Dobrzanski, B. The strobilurin fungicides. Pest Manag. Sci. 2002, 58, 649–662. [Google Scholar] [CrossRef] [PubMed]
- Kumudini, S.; Godoy, C.V.; Board, J.E.; Omielan, J.; Tollenaar, M. Mechanisms involved in soybean rust-induced yield reduction. Crop Sci. 2008, 48, 2334–2342. [Google Scholar] [CrossRef]
- Morrison, M.J.; Voldeng, H.D.; Cober, E.R. Physiological changes from 58 years of genetic improvement of short-season soybean cultivars in Canada. Agron. J. 1999, 91, 685–689. [Google Scholar] [CrossRef] [Green Version]
- Joshi, J.; Sharma, S.; Guruprasad, K.N. Foliar application of pyraclostrobin fungicide enhances the growth, rhizobial-nodule formation and nitrogenase activity in soybean (var. JS-335). Pestic. Biochem. Physiol. 2014, 114, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Amaro, A.C.E.; Baron, D.; Ono, E.O.; Rodrigues, J.D. Physiological effects of strobilurin and carboxamides on plants: An overview. Acta Physiol. Plant 2019, 42, 4–10. [Google Scholar] [CrossRef]
- Filho, A.B.; Carneiro, S.M.T.P.G.; Godoy, C.V.; Amorim, L.; Berger, R.D.; Hau, B. Angular leaf spot of Phaseolus beans: Relationships between disease, healthy leaf area, and yield. Phytopathology 1997, 87, 506–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madden, L.V.; Nutter, F.W. Modeling crop losses at the field scale. Can. J. Plant Pathol. 1995, 17, 124–135. [Google Scholar] [CrossRef]
- Carretero, R.; Serrago, R.A.; Bancal, M.O.; Perelló, A.E.; Miralles, D.J. Absorbed radiation and radiation use efficiency as affected by foliar diseases in relation to their vertical position into the canopy in wheat. Field Crops Res. 2010, 116, 184–195. [Google Scholar] [CrossRef]
- Serrago, R.A.; Carretero, R.; Bancal, M.O.; Miralles, D.J. Foliar diseases affect the ecophysiological attributes linked with yield and biomass in wheat (Triticuma estivum L.). Eur. J. Agron. 2009, 31, 195–203. [Google Scholar] [CrossRef]
- Waggoner, P.E.; Berger, R.D. Defoliation, disease, and growth. Phytopathology 1987, 77, 393–398. [Google Scholar]
- Bryson, R.J.; Paveley, N.D.; Clark, W.S.; Sylvester-Bradley, R.; Scott, R.K. Use of in-field measurements of green leaf area and incident radiation to estimate the effects of yellow rust epidemics on the yield of winter wheat. Eur. J. Agron. 1997, 7, 53–62. [Google Scholar] [CrossRef]
- Leite, R.M.B.V.C.; Amorim, L.; Filho, A.B. Relationships of disease and leaf area variables with yield in the Alternaria helianthi-sunflower pathosystem. Plant Pathol. 2006, 55, 73–81. [Google Scholar] [CrossRef]
- Genovese, G.; Vignolles, C.; Nègre, T.; Passera, G. A methodology for a combined use of normalised difference vegetation index and CORINE land cover data for crop yield monitoring and forecasting. A case study on Spain. Agronomie 2001, 21, 91–111. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Cao, Q.; Zhang, K.; Ata-Ul-Karim, S.T.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Optimal leaf positions for spad meter measurement in rice. Front. Plant Sci. 2016, 7, 719. [Google Scholar] [CrossRef] [Green Version]
- Fox, R.H.; Piekielek, W.P.; Macneal, K.M. Using a chlorophyll meter to predict nitrogen fertilizer needs of winter wheat. Commun. Soil Sci. Plant Anal. 1994, 25, 171–181. [Google Scholar] [CrossRef]
- Kaakeh, W.; Pfeiffer, D.G.; Marini, R.P. Combined effects of spirea aphid (Homoptera: Aphididae) and nitrogen fertilization on net photosynthesis, total chlorophyll content, and greenness of apple leaves. J. Econ. Entomol. 1992, 185, 939–946. [Google Scholar] [CrossRef]
- Piekielek, W.P.; Fox, R.H. Use of a chlorophyll meter to predict sidedress nitrogen requirements for maize. Agron. J. 1992, 84, 59–65. [Google Scholar] [CrossRef]
- Turner, F.T.; Jund, M.F. Chlorophyll meter to predict nitrogen topdress requirement for semidwarf rice. Agron. J. 1991, 83, 926–928. [Google Scholar] [CrossRef]
- Uddling, J.; Gelang-Alfredsson, J.; Piikki, K.; Pleijel, H. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth. Res. 2007, 91, 37–46. [Google Scholar] [CrossRef]
- Wood, C.W.; Reeves, D.W.; Duffield, R.R.; Edmisten, K.L. Field chlorophyll measurements for evaluation of corn nitrogen status. J. Plant Nutr. 1992, 15, 487–500. [Google Scholar] [CrossRef]
- Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 2013, 173, 74–84. [Google Scholar] [CrossRef]
- Devadas, R.; Lamb, D.W.; Simpfendorfer, S.; Backhouse, D. Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves. Precis. Agric. 2009, 10, 459–470. [Google Scholar] [CrossRef]
- Ceotto, E.; Castelli, F. Radiation use efficiency in flue-cured tobacco (Nicotiana tabacum L.): Response to nitrogen supply, climate variability and sink limitations. Field Crops Res. 2002, 74, 117–130. [Google Scholar] [CrossRef]
- Monteith, J.L. Climate and the efficiency of crop production in Britian. Philos. Trans. R. Soc. Lond. B. 1977, 281, 277–294. [Google Scholar]
- Muchow, R.C.; Robertson, M.J.; Pengelly, B.C. Radiation-use efficiency of soybean, mugbean and cowpea under different environmental conditions. Field Crops Res. 1993, 32, 1–16. [Google Scholar] [CrossRef]
- Warren-Wilson, J.W. Ecological data on dry-matter production by plants and plant communities. In The Collection and Processing of Field Data; Bradley, E.F., Denmead, O.T., Eds.; Interscience Publ.: New York, NY, USA, 1967; pp. 77–123. [Google Scholar]
- Gitelson, A.A.; Gamon, J.A. The need for a common basis for defining light-use efficiency: Implications for productivity estimation. Remote Sens. Environ. 2015, 156, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Tewes, A.; Schellberg, J. Towards remote estimation of radiation use efficiency in maize using UAV-based low-cost camera imagery. Agronomy 2018, 8, e16. [Google Scholar] [CrossRef] [Green Version]
- Phillips, X.A.; Kandel, Y.R.; Licht, M.A.; Mueller, D.S. Estimating soybean radiation use efficiency using a UAV in Iowa. Agronomy 2020, 10, 2002. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef] [Green Version]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Calderón, R.; Navas-Cortés, J.A.; Zarco-Tejada, P.J. Early detection and quantification of verticillium wilt in olive using hyperspectral and thermal imagery over large areas. Remote Sens. 2015, 7, 5584–5610. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Nolan, A.; Ryu, D.; Fuentes, S.; Hernandez, E.; Chung, H.; O’Connell, M. Estimation of crop water stress in a nectarine orchard using high-resolution imagery from unmanned aerial vehicle (UAV). In Proceedings of the 21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 November–1 December 2015; pp. 1413–1419. [Google Scholar]
- Primicerio, J.; Di Gennaro, S.F.; Fiorillo, E.; Genesio, L.; Lugato, E.; Matese, A.; Vaccari, F.P. A flexible unmanned aerial vehicle for precision agriculture. Precis. Agric. 2012, 13, 517–523. [Google Scholar] [CrossRef]
- Beloev, I.H. A review on current and emerging application possibilities for unmanned aerial vehicles. Acta Technol. Agric. 2016, 19, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Altas, Z.; Ozguven, M.M.; Yanar, Y. Determination of sugar beet leaf spot disease level (Cercospora Beticola Sacc.) with image processing technique by using drone. Curr. Investig. Agric. Curr. Res. 2018, 5, 621–631. [Google Scholar]
- Calderón, R.; Montes-Borrego, M.; Landa, B.B.; Navas-Cortés, J.A.; Zarco-Tejada, P.J. Detection of downy mildew of opium poppy using high-resolution multi-spectral and thermal imagery acquired with an unmanned aerial vehicle. Precis. Agric. 2014, 15, 639–661. [Google Scholar] [CrossRef]
- Kerkech, M.; Hafiane, A.; Canals, R. Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases detection in uav images. Comput. Electron. Agric. 2018, 155, 237–243. [Google Scholar] [CrossRef]
- Sugiura, R.; Tsuda, S.; Tsuji, H.; Murakami, N. Virus-infected plant detection in potato seed production field by uav imagery. In Proceedings of the 2018 ASABE Annual International Meeting, Detroit, MI, USA, 29 July–1 August 2018; p. 1800594. [Google Scholar]
- Tetila, E.C.; Machado, B.B.; Belete, N.A.S.; Guimarães, D.A.; Pistori, H. Identification of soybean foliar diseases using unmanned aerial vehicle images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2190–2194. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, X.; Zhang, J.; Huang, L.; Zhao, J. Developing a small uav platform to detect sheath blight of rice. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 3190–3193. [Google Scholar]
- Santos, J.B.; Procopio, S.O.; Silva, A.A.; Costa, L.C. Capture and utilization of solar radiation by the soybean and common bean crops and by weeds. Bragantia 2003, 62, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Fehr, W.R.; Caviness, C.E. Stages of Soybean Development. Iowa State University Cooperative Extension Service, Special Report. 1977, p. 80, Online Publication. Available online: htttp://lib.dr.iastate.edu/specialreports/87 (accessed on 16 July 2021).
- Probst, A.H. Border effects in soybean nursery plots. J. Am. Soc. Agron. 1943, 35, 662–666. [Google Scholar] [CrossRef]
- Maitree, L.; Toyota, M. A high seed yield and associated attributes of dry matter production achieved by recent Japanese soybean cultivars. Plant Prod. Sci. 2017, 20, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Mengistu, A.; Kelly, H.M.; Arelli, P.R.; Bellaloui, N.; Lin, B. Quantifying the effects of fungicides and tillage on Cercospora sojina severity and yield of soybean. Plant Health Prog. 2018, 19, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, V.; Kumar, P.; Long, S.P. Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change. Glob. Chang. Biol. 2016, 23, 1626–1635. [Google Scholar] [CrossRef] [Green Version]
- Camera, J.N.; Ghissi, V.C.; Reis, E.M.; Deuner, C.C. The combined effects of temperature and leaf wetness periods on soybean frogeye leaf spot intensity. Semin. Cienc. Agrar. 2016, 37, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Mueller, D.S.; Kandel, Y.R.; Wiggs, S.N. Evaluation of Foliar Fungicides on Soybeans in 2018. Iowa State University Integrated Crop Management Newsletter. 2019. Available online: https://crops.extension.iastate.edu/cropnews/2019/02/evaluation-foliar-fungicides-soybeans-2018 (accessed on 16 July 2021).
- Swoboda, C.; Pedersen, P. Effect of fungicide on soybean growth and yield. Agron. J. 2009, 101, 352–356. [Google Scholar] [CrossRef] [Green Version]
- Phillips, X.A.; Singh, A.K.; Kandel, Y.R.; Mueller, D.S. Effect of pod removal, foliar fungicides, and cultivar on green stem disorder of soybean. Agron. J. 2017, 109, 2680–2688. [Google Scholar] [CrossRef]
- Ball, R.A.; Purcell, L.C.; Vories, E.D. Optimizing soybean plant population for a short-season production system in the Southern USA. Crop Sci. 2000, 40, 757–764. [Google Scholar] [CrossRef]
- Board, J. Light interception efficiency and light quality affect yield compensation of soybean at low plant populations. Crop Sci. 2000, 40, 1285–1294. [Google Scholar] [CrossRef]
- Purcell, L.C.; Ball, R.A.; Reaper, J.D.; Vories, E.D. Radiation use efficiency and biomass production in soybean at different plant population densities. Crop. Sci. 2002, 42, 172–177. [Google Scholar] [CrossRef]
- Bryson, R.J.; Leandro, L.; Jones, D.R. The physiological effects of kresoxim-methyl on wheat leaf greenness and the implications for crop yield. In Proceedings of the BCPC Conf., Brighton, UK, 13–16 November 2000; British Crop Production Council: Hampshire, UK; pp. 739–749. [Google Scholar]
- Grossmann, K.; Kwaltowski, J.; Caspar, G. Regulation of phytohormone levels, leaf senescence and transpiration by the strobilurin kresoxim-methyl in wheat (Triticum aestivum). J. Plant Physiol. 1999, 154, 805–808. [Google Scholar] [CrossRef]
Site Year | Soil Type/Slope | Cultivar | Planting Population | Planting Date | Fungicide Application x | Sampling Dates (GDD;GDDG) y,z | Harvest Date |
---|---|---|---|---|---|---|---|
Kanawha 2018 | Nicollet clay loam/1 to 3 | S28-N6 | 370,000 | 29 May | 30 July | 25 July (1280;1), 9 August (1560;2), 21 August (1808;3), 12 September (2204;4) | 23 October |
Lewis 2018 | Marshall silty clay loam/2 to 5 | S28-N6 | 370,000 | 9 May | 23 July | 30 July (1858;3), 15 August (2243;4), 6 September (2711;5), 13 September (2832;6) | 24 October |
Kanawha 2019 | Nicollet clay loam/1 to 3 | S29-K3X | 395,200 | 16 May | 22 July | 25 July (1298;1), 6 August (1542;2), 22 August (1824;3), 2 September (1975), 13 September (2140;4), 23 September (2344;5) | 26 October |
Effect | PC | DM | CC | TLAI | GLAIDx | NDVI | SPAD | Frogeye Leaf Spot | RUE | Yield |
---|---|---|---|---|---|---|---|---|---|---|
Site-year | 0.212 | <0.001 | 0.185 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.773 | 0.035 |
Treatment | 0.594 | 0.908 | 0.012 | 0.764 | 0.689 | 0.431 | 0.773 | 0.005 | 0.342 | 0.005 |
Site-year × treatment | 0.824 | 0.552 | 0.987 | 0.378 | 0.477 | 0.952 | 0.860 | 0.010 | 0.462 | 0.080 |
GDDG | 0.039 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |||
Site-year × GDDG | <0.001 | 0.429 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |||
Treatment × GDDG | 0.908 | 0.959 | 0.024 | 0.824 | 0.885 | 0.644 | 0.297 | |||
Site-year × treatment × GDDG | 0.968 | 0.991 | 0.984 | 0.982 | 0.945 | 0.999 | 0.878 |
Site Year | Treatment z | Frogeye Leaf Spot (%) | RUE (g Mj−1) | Yield (kg ha−1) |
---|---|---|---|---|
Kanawha 2018 | 4.5 b | 1.29 | 3174.2 b | |
Lewis 2018 | 14.9 a | 1.38 | 3880.3 a | |
Kanawha 2019 | 1.5 c | 1.27 | 3840.0 a | |
NTC | 8.9 a | 1.19 | 3503.7 b | |
Fluxapyroxad + pyraclostrobin | 7.0 b | 1.43 | 3571.0 b | |
Flutriafol + fluoxastrobin | 4.9 c | 1.33 | 3826.5 a |
Site Year | Treatment y | Frogeye Leaf Spot (%) | RUE (g Mj−1) | Yield z (kg ha−1) |
---|---|---|---|---|
Kanawha 2018 | NTC | 4.8 | 1.37 | 3086.8 |
Fluxapyroxad + pyraclostrobin | 3.8 | 1.25 | 3214.6 | |
Flutriafol + fluoxastrobin | 4.6 | 1.26 | 3221.3 | |
p value | 0.191 | 0.890 | 0.797 | |
Lewis 2018 | NTC | 19.6 a | 1.05 | 3631.5 b |
Fluxapyroxad + pyraclostrobin | 15.8 a | 1.66 | 3725.7 b | |
Flutriafol + fluoxastrobin | 9.3 b | 1.43 | 4310.7 a | |
p value | 0.059 | 0.234 | 0.008 | |
Kanawha 2019 | NTC | 2.5 | 1.15 | 3806.4 |
Fluxapyroxad + pyraclostrobin | 1.5 | 1.37 | 3779.5 | |
Flutriafol + fluoxastrobin | 0.5 | 1.29 | 3947.6 | |
p value | 0.375 | 0.659 | 0.259 |
GDDG y | Treatment z | PC | DM (g) | CC (%) | TLAI | GLAIDx | NDVI | SPAD |
---|---|---|---|---|---|---|---|---|
GDDG-1 | 13.2 a | 98.6 e | 84.3 c | 2.5 c | 2.0 c | 0.87 a | 40.0 a | |
GDDG-2 | 11.9 b | 154.0 d | 92.9 ab | 3.9 ab | 3.7 ab | 0.89 a | 40.8 a | |
GDDG-3 | 11.0 b | 201.8 c | 96.0 a | 4.0 a | 3.8 a | 0.88 a | 37.7 a | |
GDDG-4 | 11.8 b | 317.8 b | 96.6 a | 3.3 b | 3.1 b | 0.82 b | 34.6 a | |
GDDG-5 | 11.2 b | 335.3 ab | 90.7 b | 2.0 c | 1.2 d | 0.63 c | 23.7 b | |
GDDG-6 | 11.9 ab | 365.0 a | 58.3 d | 0.9 d | 0.5 d | 0.50 d | 17.3 b | |
NTC | 11.6 | 233.1 | 83.0 b | 3.0 | 2.6 | 0.78 | 32.7 | |
Fluxapyroxad + pyraclostrobin | 11.7 | 227.1 | 87.0 a | 2.9 | 2.5 | 0.78 | 33.5 | |
Flutriafol + fluoxastrobin | 12.0 | 233.6 | 89.4 a | 2.8 | 2.5 | 0.77 | 32.6 |
GDDG | Treatment z | PC | DM (g) | CC (%) | TLAI | GLAIDx | NDVI | SPAD |
---|---|---|---|---|---|---|---|---|
GDDG-3 | 11.3 | 254.9 b | 90.7 a | 4.4 a | 4.3 a | 0.88 a | 45.9 a | |
GDDG-4 | 11.9 | 403.8 a | 99.1 a | 4.3 a | 4.2 a | 0.89 a | 48.0 a | |
GDDG-5 | 11.4 | 396.2 a | 97.8 a | 2.2 b | 1.9 b | 0.76 b | 45.0 a | |
GDDG-6 | 11.9 | 371.1 a | 58.3 b | 0.9 c | 0.5 c | 0.50 c | 17.3 b | |
p value | 0.906 | 0.016 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
NTC | 11.3 | 354.6 | 81.5 | 3.1 | 2.9 | 0.76 | 37.6 | |
Fluxapyroxad + pyraclostrobin | 11.5 | 346.1 | 87.3 | 3.0 | 2.5 | 0.76 | 40.6 | |
Flutriafol + fluoxastrobin | 12.1 | 368.8 | 90.5 | 2.8 | 2.7 | 0.75 | 39.0 | |
p value | 0.653 | 0.781 | 0.120 | 0.414 | 0.356 | 0.597 | 0.529 |
CC y | ||||||||
---|---|---|---|---|---|---|---|---|
Site Year | Treatment z | GDDG-1 | GDDG-2 | GDDG-3 | GDDG-4 | GDDG-5 | GDDG-6 | p Value |
Kanawha 2018 | 81.8 b, C | 90.2 b, B | 98.7 a, A | 93.2 b, AB | 0.012 | |||
Lewis 2018 | 90.7 c, A | 99.1 a, A | 97.8 a, A | 58.3 B | <0.001 | |||
Kanawha 2019 | 87.0 a, B | 95.6 a, A | 97.4 b, A | 98.4 ab, A | 85.3 b, B | <0.001 | ||
p value | 0.046 | 0.003 | <0.001 | 0.136 | <0.001 | |||
NTC | 86.5 a, A | 92.5 a, A | 95.4 a, A | 94.2 a, A | 88.6 a, A | 40.7 a, B | <0.001 | |
Fluxapyroxad + pyraclostrobin | 82.4 a, C | 93.6 a, AB | 96.3 a, A | 97.6 a, A | 91.6 a, B | 60.6 a, D | <0.001 | |
Flutriafol + fluoxastrobin | 84.2 a, C | 92.5 a, B | 96.3 a, AB | 98.1 a, A | 91.8 a, B | 73.4 a, D | <0.001 | |
p value | 0.481 | 0.863 | 0.814 | 0.512 | 0.776 | 0.246 |
TLAI | |||||||
---|---|---|---|---|---|---|---|
Site Year | GDDG-1 | GDDG-2 | GDDG-3 | GDDG-4 | GDDG-5 | GDDG-6 | p Value |
Kanawha 2018 | 2.4 a, A | 2.5 b, A | 2.4 c, A | 1.7 b, B | 0.083 | ||
Lewis 2018 | 4.4 b, A | 4.3 a, A | 2.2 a, B | 0.9 C | <0.001 | ||
Kanawha 2019 | 2.5 a, C | 5.2 a, A | 5.2 a, A | 4.2 a, B | 1.8 a, D | <0.001 | |
p value | 0.746 | <0.001 | <0.001 | <0.001 | 0.287 | ||
GLAIDx | |||||||
Kanawha 2018 | 1.6 b, B | 2.2 b, A | 2.2 c, A | 1.4 b, B | 0.068 | ||
Lewis 2018 | 4.3 b, A | 4.2 a, A | 1.9 a, B | 0.5 C | <0.001 | ||
Kanawha 2019 | 2.5 a, C | 5.2 a, A | 5.0 a, A | 4.0 a, B | 0.8 b, D | <0.001 | |
p value | 0.003 | <0.001 | <0.001 | <0.001 | 0.004 |
Variable | Yield | Frogeye Leaf Spot | RUE |
---|---|---|---|
Yield | − | 0.15 (0.420) | −0.17 (0.357) |
FLS | 0.15 (0.420) | − | 0.16 (0.404) |
RUE | −0.17 (0.357) | 0.16 (0.404) | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phillips, X.A.; Kandel, Y.R.; Mueller, D.S. Impact of Foliar Fungicides on Frogeye Leaf Spot Severity, Radiation Use Efficiency and Yield of Soybean in Iowa. Agronomy 2021, 11, 1785. https://doi.org/10.3390/agronomy11091785
Phillips XA, Kandel YR, Mueller DS. Impact of Foliar Fungicides on Frogeye Leaf Spot Severity, Radiation Use Efficiency and Yield of Soybean in Iowa. Agronomy. 2021; 11(9):1785. https://doi.org/10.3390/agronomy11091785
Chicago/Turabian StylePhillips, Xavier A., Yuba R. Kandel, and Daren S. Mueller. 2021. "Impact of Foliar Fungicides on Frogeye Leaf Spot Severity, Radiation Use Efficiency and Yield of Soybean in Iowa" Agronomy 11, no. 9: 1785. https://doi.org/10.3390/agronomy11091785
APA StylePhillips, X. A., Kandel, Y. R., & Mueller, D. S. (2021). Impact of Foliar Fungicides on Frogeye Leaf Spot Severity, Radiation Use Efficiency and Yield of Soybean in Iowa. Agronomy, 11(9), 1785. https://doi.org/10.3390/agronomy11091785