Combined Use of Charcoal, Sago Bark Ash, and Urea Mitigate Soil Acidity and Aluminium Toxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling, Preparation, and Characterization
2.2. Characterization of Charcoal and Sago Bark Ash
2.3. Incubation Study Set Up
2.4. Experimental Design and Statistical Analysis
3. Results
3.1. Amending Urea with Charcoal and Sago Bark Ash on Selected Soil Chemical Properties
3.2. Amending Urea with Charcoal and Sago Bark Ash on Soil Total Nitrogen, Exchangeable Ammonium, and Available Nitrate
4. Discussion
4.1. Effects of Treatments on Selected Soil Physicochemical Properties
4.2. Treatments on Total Nitrogen, Exchangeable Ammonium, and Available Nitrate
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tsiknia, M.; Tzanakakis, V.A.; Oikonomidis, D.; Paranychianakis, N.V.; Nikolaidis, N.P. Effects of olive mill wastewater on soil carbon and nitrogen cycling. Appl. Microbiol. Microbiol. 2014, 98, 2739–2749. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. Sustain. Agric. 2011, 2, 761–786. [Google Scholar]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Marschner, P.; Rengel, Z. Nutrient availability in soils. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: Waltham, MA, USA, 2012; pp. 315–330. [Google Scholar]
- Li, S.; Barreto, V.; Li, R.; Chen, G.; Hsieh, Y.P. Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures. J. Anal. Appl. Pyrolysis 2018, 133, 136–146. [Google Scholar] [CrossRef]
- Henriksson, L.E.; DaSilva, E.J. Effects of some inorganic elements on nitrogen-fixation in blue-green algae and some ecological aspects of pollution. Z. Allg. Mikrobiol. 1978, 18, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Naz, M.Y.; Sulaiman, S.A. Slow release coating remedy for nitrogen loss from conventional urea: A review. J. Control. Release 2016, 225, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Nweke, I.A. Effect of land use on organic matter concentration of aggregate fractions of fallow and cultivated soils. Indian J. Appl. Res. 2015, 5, 507–511. [Google Scholar]
- Brady, N.C.; Weil, R.R.; Weil, R.R. The Nature and Properties of Soils; Prentice Hall: Upper Saddle River, NJ, USA, 2010; Volume 13, pp. 662–710. [Google Scholar]
- Guelfi, D. 2017 Stabilized nitrogen fertilizers, slow or controlled release. Inf. Agron. 2008, 157, 1–14. [Google Scholar]
- Rodrigues, A.S.P. Aspects that Interfere with the Nodulation and Biological Nitrogen Fixation by Bradyrhizobium in the Culture of Soy; University of Cuiabá East Spring: Mato Grosso, Brazil, 2017. [Google Scholar]
- Junior, E.M.P.; Lobato, E.M.S.G.; Lima, B.M.; Quadros, B.R.; da Silva Lobato, A.K.; Andrade, I.P.; Abreu, L.F. Advancement of Nitrogen Fertilization on Tropical Environmental. In Nitrogen Fixation; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar]
- Ariyaratne, R.M. Integrated Plant Nutrition Systems (IPNS) Training Manual (Sri Lanka); The Fertilizer Advisory, Development Information Network for Asia and the Pacific (FADINAP): Bangkok, Thailand, 2000; p. 140. [Google Scholar]
- Nabeya, K.; Nakamura, S.; Nakamura, T.; Fujii, A.; Watanabe, M.; Nakajima, T.; Nita, Y. Goto, Y. Growth behavior of sago palm (Metroxylon sagu Rottb.) from transplantation to trunk formation. Plant Prod. Sci. 2015, 18, 209–217. [Google Scholar] [CrossRef]
- Wahi, R.; Abdullah, L.C.; Mobarekeh, M.N.; Ngaini, Z.; Yaw, T.C.S. Utilization of esterified sago bark fibre waste for removal of oil from palm oil mill effluent. J. Environ. Chem. Eng. 2017, 5, 170–177. [Google Scholar] [CrossRef]
- Demeyer, A.; Nkana, J.V.; Verloo, M.G. Characteristics of wood ash and influence on soil properties and nutrient uptake: An overview. Bioresour. Technol. 2001, 77, 287–295. [Google Scholar] [CrossRef]
- Nweke, I.A.; Mbah, C.N.; Oweremadu, E.O.; Dambaba, N.; Orji, E.C.; Ekesiobi, A.I.; Nnabuife, E.L.C. Soil pH, available P of an ultisol and castor performance as influenced by contrasting tillage methods and wood ash. Afr. J. Agric. Res. 2017, 12, 606–616. [Google Scholar] [CrossRef] [Green Version]
- Kilpimaa, S.; Kuokkanen, T.; Lassi, U. Characterization and utilization potential of wood ash from combustion process and carbon residue from gasification process. BioResources 2013, 8, 1011–1027. [Google Scholar] [CrossRef]
- Scheepers, G.P.; du Toit, B. Potential use of wood ash in South African forestry: A review. South. For. J. For. Sci. 2016, 78, 255–266. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K. Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biol. Biochem. 2016, 103, 1–15. [Google Scholar] [CrossRef]
- Yu, X.Y.; Ying, G.G.; Kookana, R.S. Sorption and desorption behaviors of diuron in soils amended with charcoal. J. Agric. Food Chem. 2006, 54, 8545–8550. [Google Scholar] [CrossRef] [PubMed]
- Patel, H. Charcoal as an adsorbent for textile wastewater treatment. Sep. Sci. Technol. 2018, 53, 2797–2812. [Google Scholar] [CrossRef]
- Kocsis, T.; Biró, B.; Ulmer, Á.; Szántó, M.; Kotroczó, Z. Time-lapse effect of ancient plant coal biochar on some soil agrochemical parameters and soil characteristics. Environ. Sci. Pollut. Res. 2018, 25, 990–999. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A.; Ahmad, W.; Alamoudi, R.; Sheikh, M. Sustainable charcoal production from biomass. Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 1882–1889. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Wang, W.X.; Yang, X.Y.; Hu, Q.X.; Li, Y.F. Preparation of 4A zeolite from coal gangue through a alkali fusion method. China Surfactant Deterg Cosmet 2008, 5, 294–297. [Google Scholar]
- Kookana, R.S.; Sarmah, A.K.; Van Zwieten, L.; Krull, E.; Singh, B. Biochar application to soil: Agronomic and environmental benefits and unintended consequences. Adv. Agron. 2011, 112, 103–143. [Google Scholar]
- Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M.A.; Sonoki, T. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 2014, 11, 6613–6621. [Google Scholar] [CrossRef] [Green Version]
- Soil Survey Staff. Soil Survey Field and Laboratory Methods Manual; Soil Survey Investigations Report No. 51, Version 2.0; Burt, R., Staff, S.S., Eds.; U.S. Department of Agriculture, Natural Resources Conservation Service: Brookhaven, MI, USA, 2014.
- Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils 1. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Peech, M. Hydrogen-Ion Activity. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; ASA: Madison, WI, USA, 1965; Volume 9, pp. 914–926. [Google Scholar]
- Rowell, D.L. Soil Science: Methods and Applications; Longman Scientific & Technical: Essex, UK, 1994. [Google Scholar]
- Chefetz, B.; Hatcher, P.G.; Hadar, Y.; Chen, Y. Chemical and biological characterization of organic matter during composting of municipal solid waste. Am. Soc. Agron. Crop. Sci. Soc. Am. Soil Sci. Soc. Am. 1996, 25, 776–785. [Google Scholar] [CrossRef]
- Cotennie, A. Soil and plant testing as a basis of fertilizer recommendation. In FAO Soil Bulletin; Food and Agriculture Organization of the United Nations: Rome, Italy, 1980; Volume 38. [Google Scholar]
- Bremner, J.M. Total nitrogen. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 1965, 9, 1149–1178. [Google Scholar]
- Keeney, D.R.; Nelson, D.W. Nitrogen—inorganic forms. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 1983, 9, 643–698. [Google Scholar]
- Mehlich, A. Determination of P, K, Na, Ca, Mg and NH4, p. Soil Test Division Mimeo; North Carolina Department of Agriculture: Raleigh, NC, USA, 1953.
- Paramananthan, S. Soils of Malaysia: Their Characteristics and Identification; Academy of Sciences Malaysia: Kuala Lumpur, Malaysia, 2000; Volume 1. [Google Scholar]
- Malaysian Agricultural Research and Development Institute (MARDI). Jagung Manis Baru, Masmadu [New Sweet Corn, Masmadu]; Malaysian Agricultural Research and Development: Serdang, Malaysia, 1993; pp. 3–5. [Google Scholar]
- Free, H.F.; McGill, C.R.; Rowarth, J.S.; Hedley, M.J. The effect of biochars on maize (Zea mays) germination. N. Zealand J. Agric. Res. 2010, 53, 1–4. [Google Scholar] [CrossRef]
- Ndor, E.; Dauda, S.N.; Azagaku, E.D. Response of maize varieties (Zea mays) to biochar amended soil in Lafia, Nigeria. J. Exp. Agric. Int. 2015, 5, 525–531. [Google Scholar] [CrossRef]
- Mandre, M.; Pärn, H.; Ots, K. Short-term effects of wood ash on the soil and the lignin concentration and growth of Pinus sylvestris L. For. Ecol. Manag. 2006, 223, 349–357. [Google Scholar] [CrossRef]
- Ozolinčius, R.; Buožytė, R.; Varnagirytė-Kabašinskienė, I. Wood ash and nitrogen influence on ground vegetation cover and chemical composition. Biomass Bioenergy 2007, 31, 710–716. [Google Scholar] [CrossRef]
- Perucci, P.; Monaci, E.; Onofri, A.; Vischetti, C.; Casucci, C. Changes in physico-chemical and biochemical parameters of soil following addition of wood ash: A field experiment. Eur. J. Agron. 2008, 28, 155–161. [Google Scholar] [CrossRef]
- Xu, J.M.; Tang, C.; Chen, Z.L. The role of plant residues in pH change of acid soils differing in initial pH. Soil Biol. Biochem. 2006, 38, 709–719. [Google Scholar] [CrossRef]
- Yargicoglu, E.N.; Sadasivam, B.Y.; Reddy, K.R.; Spokas, K. Physical and chemical characterization of waste wood derived biochars. Waste Manag. 2015, 36, 256–268. [Google Scholar] [CrossRef]
- Makoto, K.; Koike, T. Charcoal ecology: Its function as a hub for plant succession and soil nutrient cycling in boreal forests. Ecol. Res. 2021, 36, 4–12. [Google Scholar] [CrossRef]
- Tryon, E.H. Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecol. Monogr. 1948, 18, 81–115. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar system. In Biochar for Environmental Management: Science and Technology; Routledge: Oxfordshire, UK, 2012; pp. 179–200. [Google Scholar]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Rajkovich, S.; Enders, A.; Hanley, K.; Hyland, C.; Zimmerman, A.R.; Lehmann, J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 2012, 48, 271–284. [Google Scholar] [CrossRef]
- Sharifnia, S.; Khadivi, M.A.; Shojaeimehr, T.; Shavisi, Y. Characterization, isotherm and kinetic studies for ammonium ion adsorption by light expanded clay aggregate (LECA). J. Saudi Chem. Soc. 2016, 20, S342–S351. [Google Scholar] [CrossRef] [Green Version]
- Yusof, A.M.; Keat, L.K.; Ibrahim, Z.; Majid, Z.A.; Nizam, N.A. Kinetic and equilibrium studies of the removal of ammonium ions from aqueous solution by rice husk ash-synthesized zeolite Y and powdered and granulated forms of mordenite. J. Hazard. Mater. 2010, 174, 380–385. [Google Scholar] [CrossRef]
- Liu, H.; Dong, Y.; Liu, Y.; Wang, H. Screening of novel low-cost adsorbents from agricultural residues to remove ammonia nitrogen from aqueous solution. J. Hazard. Mater. 2010, 178, 1132–1136. [Google Scholar] [CrossRef]
- Ji, Z.Y.; Yuan, J.S.; Li, X.G. Removal of ammonium from wastewater using calcium form clinoptilolite. J. Hazard. Mater. 2007, 141, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Andersson, K.I.; Eriksson, M.; Norgren, M. Removal of lignin from wastewater generated by mechanical pulping using activated charcoal and fly ash: Adsorption isotherms and thermodynamics. Ind. Eng. Chem. Res. 2011, 50, 7722–7732. [Google Scholar] [CrossRef]
- Gómez-Rey, M.X.; Madeira, M.; Coutinho, J. Wood ash effects on nutrient dynamics and soil properties under Mediterranean climate. Ann. For. Sci. 2012, 69, 569–579. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R.; Brady, N.C. Elements of the Nature and Properties of Soils (No. 631.4 B733E); Pearson Educational International: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Walworth, J. Nitrogen in the Soil and the Environment; University of Arizona: Tucson, AZ, USA, 2013. [Google Scholar]
- Jury, W.A.; Nielsen, D.R. Nitrate transport and leaching mechanisms. In Developments in Agricultural and Managed Forest Ecology; Elsevier: Amsterdam, The Netherlands, 1989; Volume 21, pp. 139–157. [Google Scholar]
Property | Current Study | Range * |
---|---|---|
pH (H2O) | 4.61 | 4.6–4.9 |
pH (KCl) | 3.95 | 3.8–4.0 |
EC (µS cm−1) | 35.10 | NA |
Bulk density (Mg m−3) | 1.25 | NA |
Total Organic C (%) | 2.16 | 0.57–2.51 |
Total N (%) | 0.08 | 0.04–0.17 |
Exchangeable NH4+ (%) | 0.00049 | NA |
Available NO3− (%) | 0.00049 | NA |
CEC (cmol kg−1) | 4.67 | 3.86–8.46 |
Exchangeable K+ (cmol kg−1) | 0.06 | 0.05–0.19 |
Exchangeable Ca2+ (cmol kg−1) | 0.02 | 0.01 |
Exchangeable Mg2+ (cmol kg−1) | 0.22 | 0.07-0.21 |
Exchangeable Na+ (cmol kg−1) | 0.03 | 0.01 |
Exchangeable Fe2+ (cmol kg−1) | 1.09 | NA |
Exchangeable Mn2+ (cmol kg−1) | 0.01 | NA |
Total titratable acidity (cmol kg−1) | 1.15 | NA |
Exchangeable H+ (cmol kg−1) | 0.13 | NA |
Exchangeable Al3+ (cmol kg−1) | 1.02 | NA |
Soil texture | Sand (%): 71.9 Silt (%): 13.5 Clay (%): 14.6 Sandy loam | Sand (%): 72–76 Silt (%): 8–9 Clay (%): 16–19 Sandy clay loam |
Property | Charcoal | Sago Bark Ash |
---|---|---|
pH (H2O) | 7.74 | 9.99 |
pH (KCl) | 7.31 | 9.66 |
EC (dS m−1) | 0.27 | 5.75 |
Total N (%) | 1.54 | 1.37 |
Exchangeable NH4+ (%) | 0.00023 | 0.00026 |
Available NO3− (%) | 0.00023 | 0.00026 |
Exchangeable K+ (cmol kg−1) | 3.67 | 23.33 |
Exchangeable Ca2+ (cmol kg−1) | 11.71 | 16.77 |
Exchangeable Mg2+ (cmol kg−1) | 3.37 | 3.57 |
Exchangeable Na+ (cmol kg−1) | 0.43 | 1.51 |
Exchangeable Fe2+ (cmol kg−1) | 0.15 | 0.03 |
Treatment | Soil (kg) | Urea (g) | Charcoal (g) | Sago Bark Ash (g) | Charcoal: Ash Ratio |
---|---|---|---|---|---|
S0 | 1 | - | - | - | Soil only |
U1 | 1 | 4.7 | - | - | Urea only |
C1 | 1 | 4.7 | 51.4 | - | Charcoal only |
A1 | 1 | 4.7 | - | 25.7 | Ash only |
C1A1 | 1 | 4.7 | 51.4 | 25.7 | 100:100 |
C2A2 | 1 | 4.7 | 38.6 | 19.3 | 75:75 |
C3A2 | 1 | 4.7 | 25.7 | 19.3 | 50:75 |
C4A2 | 1 | 4.7 | 12.9 | 19.3 | 25:75 |
C2A3 | 1 | 4.7 | 38.6 | 12.9 | 75:50 |
C3A3 | 1 | 4.7 | 25.7 | 12.9 | 50:50 |
C4A3 | 1 | 4.7 | 12.9 | 12.9 | 25: 50 |
C2A4 | 1 | 4.7 | 38.6 | 6.4 | 75: 25 |
C3A4 | 1 | 4.7 | 25.7 | 6.4 | 50: 25 |
C4A4 | 1 | 4.7 | 12.9 | 6.4 | 25:25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamidi, N.H.; Ahmed, O.H.; Omar, L.; Ch'ng, H.Y. Combined Use of Charcoal, Sago Bark Ash, and Urea Mitigate Soil Acidity and Aluminium Toxicity. Agronomy 2021, 11, 1799. https://doi.org/10.3390/agronomy11091799
Hamidi NH, Ahmed OH, Omar L, Ch'ng HY. Combined Use of Charcoal, Sago Bark Ash, and Urea Mitigate Soil Acidity and Aluminium Toxicity. Agronomy. 2021; 11(9):1799. https://doi.org/10.3390/agronomy11091799
Chicago/Turabian StyleHamidi, Nur Hidayah, Osumanu Haruna Ahmed, Latifah Omar, and Huck Ywih Ch'ng. 2021. "Combined Use of Charcoal, Sago Bark Ash, and Urea Mitigate Soil Acidity and Aluminium Toxicity" Agronomy 11, no. 9: 1799. https://doi.org/10.3390/agronomy11091799
APA StyleHamidi, N. H., Ahmed, O. H., Omar, L., & Ch'ng, H. Y. (2021). Combined Use of Charcoal, Sago Bark Ash, and Urea Mitigate Soil Acidity and Aluminium Toxicity. Agronomy, 11(9), 1799. https://doi.org/10.3390/agronomy11091799