Do Water and Nitrogen Management Practices Impact Grain Quality in Maize?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statistical Analysis
2.2. Meta-Analysis
3. Results
3.1. Meta-Analysis Results
3.1.1. Water Stress
3.1.2. Nitrogen Fertilizer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vyn, T.J.; Tollenaar, M. Changes in chemical and physical quality parameters of maize grain during three decades of yield improvement. Field Crops Res. 1998, 59, 135–140. [Google Scholar] [CrossRef]
- Morris, C.E.; Sands, D.C. The breeder’s dilemma—Yield or nutrition? Nat. Biotechnol. 2006, 24, 1078–1080. [Google Scholar] [CrossRef]
- Diepenbrock, C.H.; Gore, M.A. Closing the Divide between Human Nutrition and Plant Breeding. Crop. Sci. 2015, 55, 1437–1448. [Google Scholar] [CrossRef]
- Darrah, L.; McMullen, M.; Zuber, M. Breeding, Genetics and Seed Corn Production; Elsevier: Amsterdam, The Netherlands, 2018; pp. 19–41. [Google Scholar]
- Motukuri, S.K. Quality Protein Maize: An Alternative Food to Mitigate Protein Deficiency in Developing Countries. In Maize—Production and Use; Intech Open: London, UK, 2019; pp. 45–72. [Google Scholar] [CrossRef] [Green Version]
- Ali, Q.; Ashraf, M.; Anwar, F. Seed Composition and Seed Oil Antioxidant Activity of Maize Under Water Stress. J. Am. Oil Chem. Soc. 2010, 87, 1179–1187. [Google Scholar] [CrossRef]
- FAO. FAOSTAT Statistical Database; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2021; Available online: http://www.fao.org/faostat/ (accessed on 16 August 2021).
- Jahangirlou, M.; Akbari, G.; Alahdadi, I.; Soufizadeh, S.; Parsons, D. Grain Quality of Maize Cultivars as a Function of Planting Dates, Irrigation and Nitrogen Stress: A Case Study from Semiarid Conditions of Iran. Agriculture 2020, 11, 11. [Google Scholar] [CrossRef]
- Flint-Garcia, S.A.; Bodnar, A.; Scott, M.P. Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. Theor. Appl. Genet. 2009, 119, 1129–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butts-Wilmsmeyer, C.J.; Seebauer, J.R.; Singleton, L.; Below, F.E. Weather During Key Growth Stages Explains Grain Quality and Yield of Maize. Agronomy 2019, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Alqudah, A.M.; Samarah, N.H.; Mullen, R.E. Drought Stress Effect on Crop Pollination, Seed Set, Yield and Quality. In Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation; Springer Science and Business Media LLC: Dordrecht, The Netherlands, 2011; pp. 193–213. [Google Scholar]
- Lu, D.; Cai, X.; Zhao, J.; Shen, X.; Lu, W. Effects of drought after pollination on grain yield and quality of fresh waxy maize. J. Sci. Food Agric. 2014, 95, 210–215. [Google Scholar] [CrossRef]
- Da Ge, T.; Sui, F.G.; Nie, S.; Sun, N.B.; Xiao, H.; Tong, C.L. Differential responses of yield and selected nutritional compositions to drought stress in summer maize grains. J. Plant Nutr. 2010, 33, 1811–1818. [Google Scholar] [CrossRef]
- Barutçular, C.; Dizlek, H.; El-Sabagh, A.; Sahin, T.; Elsabagh, M.; Islam, M.S. Nutritional quality of maize in response to drought stress during grain-filling stages in mediterranean climate condition. J. Exp. Biol. Agric. Sci. 2016, 4, 644–652. [Google Scholar] [CrossRef]
- Martínez, R.; Cirilo, A.; Cerrudo, A.; Andrade, F.; Izquierdo, N. Discriminating post-silking environmental effects on starch composition in maize kernels. J. Cereal Sci. 2019, 87, 150–156. [Google Scholar] [CrossRef]
- Borrás, L.; Curá, J.A.; Otegui, M.E. Maize Kernel Composition and Post-Flowering Source-Sink Ratio. Crop. Sci. 2002, 42, 781–790. [Google Scholar] [CrossRef]
- Abdala, L.J.; Gambin, B.L.; Borrás, L. Sowing date and maize grain quality for dry milling. Eur. J. Agron. 2018, 92, 1–8. [Google Scholar] [CrossRef]
- Miao, Y.; Mulla, D.J.; Robert, P.C.; Hernandez, J.A. Within-Field Variation in Corn Yield and Grain Quality Responses to Nitrogen Fertilization and Hybrid Selection. Agron. J. 2006, 98, 129–140. [Google Scholar] [CrossRef]
- Cirilo, A.; Actis, M.; Andrade, F.; Valentinuz, O. Crop management affects dry-milling quality of flint maize kernels. Field Crop. Res. 2011, 122, 140–150. [Google Scholar] [CrossRef]
- Sadras, V.O. A quantitative top-down view of interactions between stresses: Theory and analysis of nitrogen - water co-limitation in Mediterranean agro-ecosystems. Aust. J. Agric. Res. 2005, 56, 1151–1157. [Google Scholar] [CrossRef]
- Tremblay, N.; Bouroubi, Y.M.; Bélec, C.; Mullen, R.W.; Kitchen, N.R.; Thomason, W.E.; Ebelhar, S.; Mengel, D.B.; Raun, W.; Francis, D.D.; et al. Corn Response to Nitrogen is Influenced by Soil Texture and Weather. Agron. J. 2012, 104, 1658–1671. [Google Scholar] [CrossRef] [Green Version]
- Laurent, A.; Miguez, F.; Kyveryga, P.; Makowski, D. Going beyond mean effect size: Presenting prediction intervals for on-farm network trial analyses. Eur. J. Agron. 2020, 120, 126127. [Google Scholar] [CrossRef]
- Fernandez, J.A.; DeBruin, J.; Messina, C.D.; Ciampitti, I. Late-season nitrogen fertilization on maize yield: A meta-analysis. Field Crop. Res. 2020, 247, 107586. [Google Scholar] [CrossRef]
- Wortmann, C.S.; Tarkalson, D.D.; Shapiro, C.A.; Dobermann, A.R.; Ferguson, R.B.; Hergert, G.W.; Walters, D. Nitrogen Use Efficiency of Irrigated Corn for Three Cropping Systems in Nebraska. Agron. J. 2011, 103, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Mariotti, F.; Tomé, D.; Mirand, P.P. Converting Nitrogen into Protein—Beyond 6.25 and Jones’ Factors. Crit. Rev. Food Sci. Nutr. 2008, 48, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Sosulski, F.W.; Imafidon, G.I. Amino acid composition and nitrogen-to-protein conversion factors for animal and plant foods. J. Agric. Food Chem. 1990, 38, 1351–1356. [Google Scholar] [CrossRef]
- Ali, Q.; Ashraf, M. Exogenously applied glycinebetaine enhances seed and seed oil quality of maize (Zea mays L.) under water deficit conditions. Environ. Exp. Bot. 2011, 71, 249–259. [Google Scholar] [CrossRef]
- Hussain, S.; Maqsood, M.; Ijaz, M.; Ul-Allah, S.; Sattar, A.; Sher, A.; Nawaz, A. Combined Application of Potassium and Zinc Improves Water Relations, Stay Green, Irrigation Water Use Efficiency, and Grain Quality of Maize under Drought Stress. J. Plant Nutr. 2020, 43, 2214–2225. [Google Scholar] [CrossRef]
- Kresović, B.; Gajić, B.; Tapanarova, A.; Dugalić, G. How Irrigation Water Affects the Yield and Nutritional Quality of Maize (Zea mays L.) in a Temperate Climate. Pol. J. Environ. Stud. 2018, 27, 1123–1131. [Google Scholar] [CrossRef]
- Mason, S.C.; D’Croz-Mason, N.E. Agronomic Practices Influence Maize Grain Quality. J. Crop. Prod. 2002, 5, 75–91. [Google Scholar] [CrossRef]
- Barrios, M.; Basso, C. Efecto de la fertilizacion nitrogenada sobre componentes del rendimiento y calidad nutricional del grano de seis hibridos de maiz. Bioagro 2018, 30, 39–48. [Google Scholar]
- Duarte, A.P.; Mason, S.C.; Jackson, D.S.; Kiehl, J.D.C. Grain Quality of Brazilian Maize Genotypes as Influenced by Nitrogen Level. Crop. Sci. 2005, 45, 1958–1964. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.L.; Biswas, D.K. Field-Level Comparison of Nitrogen Rates and Application Methods on Maize Yield, Grain Quality and Nitrogen Use Efficiency in a Humid Environment. J. Plant Nutr. 2015, 39, 727–741. [Google Scholar] [CrossRef]
- O’Leary, M.J.; Rehm, G.W. Nitrogen and Sulfur Effects on the Yield and Quality of Corn Grown for Grain and Silage. J. Prod. Agric. 1990, 3, 135–140. [Google Scholar] [CrossRef]
- Perry, L.J.; Olson, R.A. Yield and Quality of Corn and Grain Sorghum Grain and Residues as Influenced by N Fertilization 1. Agron. J. 1975, 67, 816–818. [Google Scholar] [CrossRef]
- Simić, M.; Dragičević, V.; Drinić, S.M.; Vukadinovic, J.; Kresović, B.; Tabaković, M.; Brankov, M. The Contribution of Soil Tillage and Nitrogen Rate to the Quality of Maize Grain. Agronomy 2020, 10, 976. [Google Scholar] [CrossRef]
- Tamagno, S.; Greco, I.A.; Almeida, H.; Di Paola, J.C.; Ribes, F.M.; Borrás, L. Crop Management Options for Maximizing Maize Kernel Hardness. Agron. J. 2016, 108, 1561–1570. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Dweikat, I.; Huber, D.M.; Warren, H.L. Inter-relationship of nitrogen nutrition with maize (Zea mays) grain yield, nitrogen use efficiency and grain quality. J. Sci. Food Agric. 1992, 58, 1–8. [Google Scholar] [CrossRef]
- Uribelarrea, M.; Below, F.E.; Moose, S.P. Grain Composition and Productivity of Maize Hybrids Derived from the Illinois Protein Strains in Response to Variable Nitrogen Supply. Crop. Sci. 2004, 44, 1593–1600. [Google Scholar] [CrossRef]
- Zhang, F.; Mackenzie, A.F.; Smith, D.L. Corn yield and shifts among corn quality constituents following application of different nitrogen fertilizer sources at several times during corn development. J. Plant Nutr. 1993, 16, 1317–1337. [Google Scholar] [CrossRef]
- Philibert, A.; Loyce, C.; Makowski, D. Assessment of the quality of meta-analysis in agronomy. Agric. Ecosyst. Environ. 2012, 148, 72–82. [Google Scholar] [CrossRef]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The Meta-Analysis of Response Ratios in Ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting Meta-Analyses inRwith themetaforPackage. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: http://www.R.-project.org/ (accessed on 17 August 2021).
- Adams, D.C.; Gurevitch, J.; Rosenberg, M.S. Resampling tests for meta-analysis of ecological data. Ecology 1997, 78, 1277–1283. [Google Scholar] [CrossRef]
- Noortgate, W.V.D.; Onghena, P. Parametric and nonparametric bootstrap methods for meta-analysis. Behav. Res. Methods 2005, 37, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Canty, A.; Ripley, B. Boot: Bootstrap R (S-Plus) Functions. 2021. R Package Version 1. pp. 3–27. Available online: https://cran.r-project.org/web/packages/boot/boot.pdf (accessed on 17 August 2021).
- Borenstein, C.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Random-effects model. In Introduction to Meta-Analysis; John Wiley & Sons, Ltd: Padstow, UK, 2009; Chapter 12; pp. 69–75. [Google Scholar] [CrossRef]
- Gandah, M.; Bouma, J.; Brouwer, J.; Hiernaux, P.; Van Duivenbooden, N. Strategies to optimize allocation of limited nutrients to sandy soils of the Sahel: A case study from Niger, west Africa. Agric. Ecosyst. Environ. 2003, 94, 311–319. [Google Scholar] [CrossRef]
- Lemaire, G.; Ciampitti, I. Crop Mass and N Status as Prerequisite Covariables for Unraveling Nitrogen Use Efficiency across Genotype-by-Environment-by-Management Scenarios: A Review. Plants 2020, 9, 1309. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Ma, G.; Wang, C.; Lu, H.; Li, S.; Xie, Y.; Ma, D.; Zhu, Y.; Guo, T. Effect of irrigation and nitrogen application on grain amino acid composition and protein quality in winter wheat. PLOS ONE 2017, 12, e0178494. [Google Scholar] [CrossRef]
- Allen, N.K.; Baker, D.H. Quantitative Evaluation of Nonspecific Nitrogen Sources for the Growing Chick. Poult. Sci. 1974, 53, 258–264. [Google Scholar] [CrossRef]
- Lenis, N.P.; Van Diepen, H.T.M.; Bikker, P.; Jongbloed, A.W.; Van Der Meulen, J. Effect of the ratio between essential and nonessential amino acids in the diet on utilization of nitrogen and amino acids by growing pigs. J. Anim. Sci. 1999, 77, 1777–1787. [Google Scholar] [CrossRef]
- Liu, S.; Cui, S.; Zhang, X.; Wang, Y.; Mi, G.; Gao, Q. Synergistic Regulation of Nitrogen and Sulfur on Redox Balance of Maize Leaves and Amino Acids Balance of Grains. Front.Plant Sci. 2020, 11, 576718. [Google Scholar] [CrossRef]
- Morris, T.F.; Murrell, T.S.; Beegle, D.B.; Camberato, J.J.; Ferguson, R.B.; Grove, J.; Ketterings, Q.; Kyveryga, P.M.; Laboski, C.A.M.; McGrath, J.M.; et al. Strengths and Limitations of Nitrogen Rate Recommendations for Corn and Opportunities for Improvement. Agron. J. 2018, 110, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Raun, W.R.; Dhillon, J.; Aula, L.; Eickhoff, E.; Weymeyer, G.; Figueirdeo, B.; Lynch, T.; Omara, P.; Nambi, E.; Oyebiyi, F.; et al. Unpredictable Nature of Environment on Nitrogen Supply and Demand. Agron. J. 2019, 111, 2786–2791. [Google Scholar] [CrossRef] [Green Version]
- Correndo, A.A.; Rotundo, J.L.; Tremblay, N.; Archontoulis, S.; Coulter, J.A.; Ruiz-Diaz, D.; Franzen, D.; Franzluebbers, A.J.; Nafziger, E.; Schwalbert, R.; et al. Assessing the uncertainty of maize yield without nitrogen fertilization. Field Crop. Res. 2021, 260, 107985. [Google Scholar] [CrossRef]
- Dhakal, C.; Lange, K.; Parajulee, M.N.; Segarra, E. Dynamic Optimization of Nitrogen in Plateau Cotton Yield Functions with Nitrogen Carryover Considerations. J. Agric. Appl. Econ. 2019, 51, 385–401. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Paulsen, M.R.; Tian, L.; Yao, H. Site-Specific Study of Corn Protein, Oil, and Extractable Starch Variability Using NIT Spectroscopy; ASAE Meeting Paper; 02–1111; ASAE: St. Joseph, MI, USA, 2002. [Google Scholar]
- Seebauer, J.R.; Singletary, G.W.; Krumpelman, P.M.; Ruffo, M.L.; Below, F.E. Relationship of source and sink in determining kernel composition of maize. J. Exp. Bot. 2010, 61, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Genter, C.F.; Eheart, J.F.; Linkous, W.N. Effects of Location, Hybrid, Fertilizer, and Rate of Planting on the Oil and Protein Contents of Corn Grain 1. Agron. J. 1956, 48, 63–67. [Google Scholar] [CrossRef]
- Weir, C.J.; Butcher, I.; Assi, V.; Lewis, S.C.; Murray, G.D.; Langhorne, P.; Brady, M.C. Dealing with missing standard deviation and mean values in meta-analysis of continuous outcomes: A systematic review. BMC Med Res. Methodol. 2018, 18, 1–14. [Google Scholar] [CrossRef] [PubMed]
No. | Authors | Variables | Country | Years | SY (#) | Treatments | +Factors |
---|---|---|---|---|---|---|---|
Water | |||||||
1 | Ali et al., 2010 [6] | PRO, STA, OIL | Turkey | 2007 | 1 | Irrigated (15d intervals), Water stress (21d intervals) | Hybrid |
2 | Ali et al., 2011 [27] | PRO, STA, OIL | Turkey | - | 1 | Irrigated (15d intervals), Water stress (21d intervals) | Hybrid, Hormones |
3 | Barutcular et al., 2016 [14] | PRO, STA, OIL | Turkey | 2014–2015 | 2 | Irrigated (full), Water stress (reproductive) | Hybrid |
4 | Ge et al., 2020 [13] | PRO, STA, OIL | China | 2002–2003 | 2 | Irrigated (full), Water stress (mild-severe, 3rd leaf to maturity-) | - |
5 | Hussain et al., 2020 [28] | PRO, STA, OIL | Pakistan | 2013–2014 | 2 | Irrigated (full), Water stress (mild-severe) | - |
6 | Kresovic et al., 2007 [29] | PRO, STA, OIL | Serbia | 2012–2014 | 3 | Irrigated (full), Water stress (75% FC–50% FC–rainfed) | - |
7 | * Lu et al., 2014 [12] | PRO, STA | China | 2011–2012 | 2 | Irrigated (75% RSMC), Water stress (60% RSMC, flowering to harvest) | Hybrid (wax) |
8 | Mason and Mason, 2002 [30] | STA | United States | 1991–1994 | 4 | Irrigated, rainfed | Hybrid, Plant density |
9 | Jahangirlou et al., 2021 [8] | STA, OIL | Iran | 2018–2019 | 2 | Irrigated (6d intervals), Water stress (12d intervals) | N |
Nitrogen | |||||||
9 | Jahangirlou et al., 2021 [8] | PRO, STA, OIL | Iran | 2018–2019 | 2 | 0, 184 | Water Stress |
10 | Barrios and Basso, 2018 [31] | PRO, STA | Venezuela | 2013 | 1 | 0, 100, 150, 200 | Hybrid |
11 | Duarte et al., 2005 [32] | PRO, OIL | Brazil | 2000–2001 | 3 | 0, 60, 120, 240 | - |
12 | Ma and Biswas, 2016 [33] | PRO | Canada | 2006–2010 | 5 | 0, 30,60,90,120,150,180 | - |
13 | Miao et al., [18] | PRO, STA, OIL | United States | 2001–2003 | 6 | 0, 112, 168, 224, 336 | Hybrid |
14 | O’Leary and Rehm, 1990 [34] | PRO | United States | 1984–1986 | 8 | 0, 75, 150, 225 | - |
15 | Perry and Olson, 1975 [35] | PRO | United States | 1972–1973 | 2 | 0, 90, 180, 270 | - |
16 | Simić et al., 2020 [36] | PRO, STA, OIL | Serbia | 2016–2018 | 3 | 0, 180, 240 | Tillage |
17 | Tamagno et al., 2016 [37] | PRO, STA, OIL | Argentina | 2012–2013 | 2 | 0, 70, 165 | Hybrid |
18 | Tsai et al., 1992 [38] | PRO | United States | 1984–1986 | 3 | 0, 67, 134, 201, 268 | Hybrid |
19 | Uribelarrea et al., 2004 [39] | PRO, STA, OIL | United States | 2001–2002 | 2 | 0, 30, 60, 90, 120, 160, 200, 240 | Hybrid |
20 | Wortmann et al., 2011 [24] | PRO | United States | 2002–2004 | 32 | 0, 84, 140, 196, 280 | - |
21 | Zhang et al., 1993 [40] | PRO, OIL | Canada | 1989–1991 | 6 | 0, 90, 180 | N timing |
Variable | n | Mean | Median | Min | Max | sd | cv (%) |
---|---|---|---|---|---|---|---|
Grain yield, Mg ha−1 | 510 | 8.7 | 8.4 | 1.3 | 18.1 | 2.8 | 32 |
Water, Control | 7 | 11.6 | 12 | 3.9 | 18.1 | 5.3 | 46 |
Water, Stress | 9 | 8.4 | 7.9 | 1.3 | 15.7 | 4.8 | 58 |
N, Control | 103 | 6.4 | 5.7 | 2.4 | 13.1 | 2.3 | 36 |
N, Fertilized | 391 | 9.2 | 8.9 | 1.8 | 14.4 | 2.5 | 27 |
Protein, % | 562 | 8.990 | 7.79 | 2.8 | 18.4 | 2.0 | 24.5 |
Water, Control | 29 | 8.1 | 7.80 | 5.75 | 12.4 | 1.2 | 14.9 |
Water, Stress | 31 | 8.1 | 8.17 | 6.24 | 12.0 | 1.1 | 14.3 |
N, Control | 107 | 7.0 | 6.8 | 2.8 | 11.3 | 1.7 | 24.7 |
N, Fertilized | 395 | 8.2 | 8.05 | 3.2 | 18.4 | 2.0 | 24.6 |
Starch, % | 279 | 70.2 | 72.2 | 43.8 | 80.2 | 5.3 | 7.6 |
Water, Control | 37 | 64.7 | 64.1 | 56.7 | 71.4 | 3.9 | 6.1 |
Water, Stress | 39 | 63.9 | 64.1 | 43.8 | 75.5 | 6.1 | 9.5 |
N, Control | 43 | 72.7 | 73.6 | 65.2 | 78.6 | 3.2 | 4.4 |
N, Fertilized | 160 | 72.3 | 72.9 | 63.0 | 80.2 | 3.5 | 4.8 |
Oil, % | 265 | 4.4 | 4.1 | 0.6 | 7.9 | 1.3 | 30.0 |
Water, Control | 29 | 3.5 | 3.1 | 2.5 | 6.4 | 1.1 | 31.5 |
Water, Stress | 31 | 3.5 | 3.0 | 0.6 | 6.1 | 1.2 | 34.9 |
N, Control | 45 | 4.4 | 4.1 | 3.2 | 7.2 | 1.0 | 23.2 |
N, Fertilized | 160 | 4.8 | 4.7 | 2.9 | 7.9 | 1.3 | 26.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correndo, A.A.; Fernandez, J.A.; Vara Prasad, P.V.; Ciampitti, I.A. Do Water and Nitrogen Management Practices Impact Grain Quality in Maize? Agronomy 2021, 11, 1851. https://doi.org/10.3390/agronomy11091851
Correndo AA, Fernandez JA, Vara Prasad PV, Ciampitti IA. Do Water and Nitrogen Management Practices Impact Grain Quality in Maize? Agronomy. 2021; 11(9):1851. https://doi.org/10.3390/agronomy11091851
Chicago/Turabian StyleCorrendo, Adrian A., Javier A. Fernandez, P.V. Vara Prasad, and Ignacio A. Ciampitti. 2021. "Do Water and Nitrogen Management Practices Impact Grain Quality in Maize?" Agronomy 11, no. 9: 1851. https://doi.org/10.3390/agronomy11091851
APA StyleCorrendo, A. A., Fernandez, J. A., Vara Prasad, P. V., & Ciampitti, I. A. (2021). Do Water and Nitrogen Management Practices Impact Grain Quality in Maize? Agronomy, 11(9), 1851. https://doi.org/10.3390/agronomy11091851