Ecological and Human Diet Value of Locusts in a Changing World
Abstract
:1. Introduction
2. Background: Biology and Ecology of Locusts
2.1. Abiotic and Biotic Drivers of Locust Outbreaks
2.2. Anthropogenic Drivers
2.3. Historical and Current Control Methods
3. Locusts in a Changing World
3.1. The Desert Locust (Schistocerca gregaria) as an Example
Factor | Value |
---|---|
Adults | |
Adult body length | F: 5 to 6 cm (5.5 cm) M: 4.5 to 5 cm (4.75 cm) [43] |
Adult body weight | F: 3.5 g, M: 2.2 g Avge: 2.85 [43] |
Daily food consumption | Own body weight [44] |
Adult duration life stage | Min: 75 days, Max: 150 days Avge: 113 days [43] |
Swarms | |
Locust density settling | Avge: 60 million/km2 (patchy vegetation) [42] (Average density settled swarm in Kenya 1955) |
Flight speed | Range: 3.8–4.3 m/s and 3 m/s, Avge: 3.5 m/s = 12.6 km/h [45] |
Daily flight period | Min: 9–10 h, Max: 13–20 h, Avge: 14.5 h [43] |
Eggs | |
Number of times female lays | 2–3, Avge: 2 [43] |
Eggs per pod (1st, 2nd and 3rd laying) | 60–80 (1), 50–70 (2), 35–70 (3), Avge: 70, 60, 52.5 [43] |
Eggs per generation | 140 per female [43] |
Egg pod density | 200–500/m2 in groups, Avge: 350/m2 in groups [43] |
Pod length | 3–4cm [43] |
Egg mortality | Avge: 33% [43] |
Egg weight | Avge: 5.92 mg [46] |
Pod weight | Avge: 536.8 mg [46] |
Hoppers | |
Number of instars | 5 [43] |
Nymph body lengths (mm) | 7 (S1), 15 (S2), 20 (S3), 33 (S4), 50 (S5) [43] |
Nymph body weights (mg) | 30–40 (S1), 50–80 (S2), 120–200 (S3), 500–700 (S4), 1000–1200 (S5), Avge: 35, 65, 160, 600, 1100 [43] |
Daily food consumption | Own body weight [43] |
Duration of stages | S1–S4: 6–7 days, Avge: 6.5 days, S5: 10 days [43] |
Mortality | 70% (S1), 20% (S2), 10% (S3–S5) [43] |
3.2. Food Consumed by 1 km2 of Adult Locusts and Their Progeny
3.3. The Value of Locust Cadavers and Frass for Nitrogen and Carbon Cycling
3.4. Nutritional Value of Locusts for Human Food
3.5. Putting Things into Perspective
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Haskell, P.T. International Locust Research and Control. J. R. Soc. Arts 1971, 119, 249–263. [Google Scholar]
- Sayed, M.R. Locust and Its Signification in Ptolemaic Texts. J. Hist. Archaeol. Anthropol. Sci. 2018, 3, 584–588. [Google Scholar] [CrossRef]
- McNeill, W.H. Plagues and Peoples; Anchor Books: New York, NY, USA, 1998. [Google Scholar]
- Cullen, D.A.; Cease, A.J.; Latchininsky, A.V.; Ayali, A.; Berry, K.; Buhl, J.; De Keyser, R.; Foquet, B.; Hadrich, J.C.; Matheson, T.; et al. From molecules to management: Mechanisms and consequences of locust phase polyphenism. Adv. Insect Phys. 2017, 53, 167–285. [Google Scholar]
- Pener, M.P.; Simpson, S.J. Locust Phase Polyphenism: An Update. Adv. Insect Physiol. 2009, 36, 1–272. [Google Scholar]
- Applebaum, S.W.; Heifetz, Y. Density-Dependent Physiological Phase in Insects. Annu. Rev. Entomol. 1999, 44, 317–341. [Google Scholar] [CrossRef] [PubMed]
- Song, H. Phylogenetic Perspectives on the Evolution of Locust Phase Polyphenism. J. Orthoptera Res. 2005, 14, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Moulton, M.J.; Hiatt, K.D.; Whiting, M.F. Uncovering Historical Signature of Mitochondrial DNA Hidden in the Nuclear Genome: The Biogeography of Schistocerca Revisited. Cladistics 2013, 29, 643–662. [Google Scholar] [CrossRef]
- Chapuis, M.P.; Bazelet, C.S.; Blondin, L.; Foucart, A.; Vitalis, R.; Samways, M.J. Subspecific Taxonomy of the Desert Locust, Schistocerca gregaria (Orthoptera: Acrididae), Based on Molecular and Morphological Characters. Syst. Entomol. 2016, 41, 516–530. [Google Scholar] [CrossRef]
- Rainey, R. Migration and Meteorology. Flight Behaviour and the Atmospheric Environment of Locusts and Other Migrant Pests; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Balança, G.; Gay, P.; Rachadi, T.; Lecoq, M. Interpretation of Recent Outbreaks of the Migratory Locust Locusta migratoria migratorioides (Reiche and Fairmaire, 1850) [Orthoptera, Acrididae] in Lake Chad Basin According to Rainfall Data. J. Orthoptera Res. 1999, 8, 83–92. [Google Scholar] [CrossRef]
- Kennedy, J.S. The Behaviour of the Desert Locust (Schistocerca gregaria (Forsk.))(Orthopt.) in an Outbreak Centre. Trans. R. Entomol. Soc. Lond. 1939, 89, 385–542. [Google Scholar] [CrossRef]
- Roffey, J.; Popov, G. Environmental and Behavioural Processes in a Desert Locust Outbreak. Nature 1968, 219, 446–450. [Google Scholar] [CrossRef]
- Ji, R.; Xie, B.Y.; Li, D.M.; Li, Z.; Zeng, X.C. Relationships between Spatial Pattern of Locusta Migratoria Manilensis Eggpods and Soil Property Variability in Coastal Areas. Soil Biol. Biochem. 2007, 39, 1865–1869. [Google Scholar] [CrossRef]
- Bouaïchi, A.; Simpson, S.J.; Roessingh, P. The Influence of Environmental Microstructure on the Behavioural Phase State and Distribution of the Desert Locust Schistocerca gregaria. Physiol. Entomol. 1996, 21, 247–256. [Google Scholar] [CrossRef]
- Van Der Werf, W.; Woldewahid, G.; Van Huis, A.; Butrous, M.; Sykora, K. Plant Communities Can Predict the Distribution of Solitarious Desert Locust Schistocerca gregaria. J. Appl. Ecol. 2005, 42, 989–997. [Google Scholar] [CrossRef]
- Uvarov, B. Grasshoppers and Locusts. A Handbook of General Acridology. Volume 1; Cambridge University Press: Cambridge, UK, 1966. [Google Scholar]
- Uvarov, B. Grasshoppers and Locusts. A Handbook of General Acridology. Volume 2; Cambridge University Press: Cambridge, UK, 1977. [Google Scholar]
- Hägele, B.F.; Simpson, S.J. The Influence of Mechanical, Visual and Contact Chemical Stimulation on the Behavioural Phase State of Solitarious Desert Locusts (Schistocerca gregaria). J. Insect Physiol. 2000, 46, 1295–1301. [Google Scholar] [CrossRef]
- Rogers, S.M.; Matheson, T.; Despland, E.; Dodgson, T.; Burrows, M.; Simpson, S.J. Mechanosensory-Induced Behavioural Gregarization in the Desert Locust Schistocerca gregaria. J. Exp. Biol. 2003, 206, 3991–4002. [Google Scholar] [CrossRef] [Green Version]
- Anstey, M.L.; Rogers, S.M.; Ott, S.R.; Burrows, M.; Simpson, S.J. Serotonin Mediates Behavioral Gregarization Underlying Swarm Formation in Desert Locusts. Science 2009, 323, 627–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Lecoq, M.; Latchininsky, A.; Hunter, D. Locust and Grasshopper Management. Annu. Rev. Entomol. 2019, 64, 15–34. [Google Scholar] [CrossRef] [PubMed]
- Modder, W. Control of the Variegated Grasshopper Zonocerus variegatus (L.) on Cassava. Afr. Crop. Sci. J. 1994, 2, 391–406. [Google Scholar]
- Latchininsky, A.V. Moroccan Locust Dociostaurus maroccanus (Thunberg, 1815): A Faunistic Rarity or an Important Economic Pest? J. Insect Conserv. 1998, 2, 167–178. [Google Scholar] [CrossRef]
- Skaf, R.M. Le Criquet marocain au Proche-Orient et sa grégarisation sous l’influence de l’homme. Bull. Soc. Ecol. 1972, 3, 247–325. [Google Scholar]
- Sergeev, M.G. Ups and Downs of the Italian Locust (Calliptamus italicus L.) Populations in the Siberian Steppes: On the Horns of Dilemmas. Agronomy 2021, 11, 746. [Google Scholar] [CrossRef]
- Cease, A.; Elser, J.; Ford, C.; Hao, S.; Kang, L.; Harrison, J. Heavy Livestock Grazing Promotes Locust Outbreaks by Lowering Plant Nitrogen Content. Science 2012, 335, 467–469. [Google Scholar] [CrossRef]
- Deveson, E.D. Naturae Amator and the Grasshopper Infestations of South Australia’s Early Years. Trans. R. Soc. S. Aust. 2012, 136, 1–15. [Google Scholar] [CrossRef]
- Lecoq, M.; Sukirno. Drought and an exceptional outbreak of the oriental migratory locust, Locusta migratoria manilensis (Meyen 1835) in Indonesia (Orthoptera: Acrididae). J. Orthoptera Res. 1999, 8, 153–161. [Google Scholar] [CrossRef]
- Dobson, H.M. Desert Locust Guidelines 4. Control; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2001. [Google Scholar]
- FAO. Evaluation of field trials data on the efficacy and selectivity of insecticides on locusts and grasshoppers. In Proceedings of the Report to FAO by the Pesticide Referee Group Tenth Meeting, Gammarth, Tunisia, 10–12 December 2014; FAO: Rome, Italy, 1996. [Google Scholar]
- Zhang, L.; Lecoq, M. Nosema locustae (Protozoa, Microsporidia), a Biological Agent for Locust and Grasshopper Control. Agronomy 2021, 11, 711. [Google Scholar] [CrossRef]
- Lomer, C.J.; Bateman, R.P.; Johnson, D.L.; Langewald, J.; Thomas, M. Biological Control of Locusts and Grasshoppers. Annu. Rev. Entomol. 2001, 46, 667–702. [Google Scholar] [CrossRef] [Green Version]
- Hunter, D.M. Credibility of an IPM Approach for Locust and Grasshopper Control: The Australian Example. J. Orthoptera Res. 2010, 19, 133–137. [Google Scholar] [CrossRef]
- Rachadi, T. Locust Control. Handbook; EU: Wageningen, The Netherlands, 2010. [Google Scholar]
- Sharma, A. Locust Control Management: Moving from Traditional to New Technologies—An Empirical Analysis. Entomol. Ornithol. Herpetol. 2015, 4, 2161–2183. [Google Scholar]
- Cressman, K. The Use of New Technologies in Desert Locust Early Warning. Outlooks Pest. Manag. 2008, 19, 55–59. [Google Scholar] [CrossRef]
- Matthews, G.A. New Technology for Desert Locust Control. Agronomy 2021, 11, 1052. [Google Scholar] [CrossRef]
- Simpson, S.J.; Raubenheimer, D.; Behmer, S.T.; Whitworth, A.; Wright, G.A. A Comparison of Nutritional Regulation in Solitarious- and Gregarious-Phase Nymphs of the Desert Locust Schistocerca gregaria. J. Exp. Biol. 2002, 205, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Sword, G.A.; Lecoq, M.; Simpson, S.J. Phase Polyphenism and Preventative Locust Management. J. Insect Physiol. 2010, 56, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Van Huis, A. Harvesting Desert Locusts for Food and Feed May Contribute to Crop Protection but Will Not Suppress Upsurges and Plagues. J. Insects Food Feed 2021, 7, 245–248. [Google Scholar] [CrossRef]
- Rainey, R.C. The Use of Insecticides against the Desert Locust. J. Sci. Food Agric. 1958, 9, 677–692. [Google Scholar] [CrossRef]
- Symmons, P.M.; Cressman, K. Desert Locust Guidelines 1. Biology and Behaviour; FAO: Rome, Italy, 2001. [Google Scholar]
- Peng, W.; Ma, N.L.; Zhang, D.; Zhou, Q.; Yue, X.; Khoo, S.C.; Yang, H.; Guan, R.; Chen, H.; Zhang, X.; et al. A Review of Historical and Recent Locust Outbreaks: Links to Global Warming, Food Security and Mitigation Strategies. Environ. Res. 2020, 191, 110046. [Google Scholar] [CrossRef] [PubMed]
- Krogh, A.; Weis-Fogh, T. A Roundabout for Studying Sustained Flight of Locusts. J. Exp. Biol. 1952, 29, 211–219. [Google Scholar] [CrossRef]
- Maeno, K.; Tanaka, S. Phase-Specific Responses to Different Qualities of Food in the Desert Locust, Schistocerca gregaria: Developmental, Morphological and Reproductive Characteristics. J. Insect Physiol. 2011, 57, 514–520. [Google Scholar] [CrossRef]
- Fielding, D.J.; Trainor, E.; Zhang, M. Diet Influences Rates of Carbon and Nitrogen Mineralization from Decomposing Grasshopper Frass and Cadavers. Biol. Fertil. Soils 2013, 49, 537–544. [Google Scholar] [CrossRef]
- Reynolds, B.C.; Hunter, M.D.; Crossley, D.A., Jr. Effects of canopy herbivory on nutrient cycling in a Northern Hardwood Forest in Western North Carolina. Selbyana 2000, 21, 74–78. [Google Scholar]
- Fielding, D.J.; Conn, J.S. Feeding Preference for and Impact on an Invasive Weed (Crepis tectorum) by a Native, Generalist Insect Herbivore, Melanoplus borealis (Orthoptera: Acrididae). Ecol. Popul. Biol. Ann. Entomol. Soc. Am. 2011, 104, 1303–1308. [Google Scholar] [CrossRef]
- Lovett, G.M.; Christenson, L.M.; Groffman, P.M.; Jones, C.G.; Hart, J.E.; Mitchell, M.J. Insect Defoliation and Nitrogen Cycling in Forests. Bioscience 2002, 52, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Hill, L.; Mordue, W.; Highnam, K.C. The Endocrine System, Frontal Ganglion, and Feeding during Maturation in the Female Desert Locust. J. Insect Physiol. 1966, 12, 1197–1208. [Google Scholar] [CrossRef]
- Norris, M.J. Group Effects on Feeding in Adult Males of the Desert Locust, Schistocerca gregaria (Forsk.), in Relation to Sexual Maturation. Bull. Entomol. Res. 1961, 51, 731–753. [Google Scholar] [CrossRef]
- Evans, J.; Alemu, M.H.; Flore, R.; Frøst, M.B.; Halloran, A.; Jensen, A.B.; Maciel-Vergara, G.; Meyer-Rochow, V.B.; Münke-Svendsen, C.; Olsen, S.B.; et al. “Entomophagy”: An Evolving Terminology in Need of Review. J. Insects Food Feed 2015, 1, 293–305. [Google Scholar] [CrossRef]
- Samways, M.J. Approaches and Perspectives in Insect Species Conservation. In Insect Conservation: A Global Synthesis; CABI: Wallingford, UK, 2019; pp. 113–151. [Google Scholar]
- Lévi-Strauss, C. La vie familiale et sociale des indiens Nambikwara. J. Soc. Am. 1948, 37, 1–132. [Google Scholar] [CrossRef]
- Lecoq, M.; Pierozzi, I. Rhammatocerus schistocercoides Locust Outbreaks in Mato Grosso (Brazil): A Long-Standing Phenomenon. Int. J. Sustain. Dev. World Ecol. 1995, 2, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Setz, E.Z.F. Animals in the Nambiquara Diet: Methods of Collection and Processing. J. Ethnobiol. 1991, 11, 1–22. [Google Scholar]
- Raubenheimer, D.; Rothman, J.M. Nutritional Ecology of Entomophagy in Humans and Other Primates. Annu. Rev. Entomol. 2013, 58, 141–160. [Google Scholar] [CrossRef] [Green Version]
- Lensvelt, E.J.S.; Steenbekkers, L.P.A. Exploring Consumer Acceptance of Entomophagy: A Survey and Experiment in Australia and the Netherlands. Ecol. Food Nutr. 2014, 53, 543–561. [Google Scholar] [CrossRef] [PubMed]
- Van Huis, A. Potential of Insects as Food and Feed in Assuring Food Security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef]
- Ochiai, M.; Inada, M.; Horiguchi, S. Nutritional and safety evaluation of locust (Caelifera) powder as a novel food material. J. Food Sci. 2020, 85, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Yen, A.L. Edible Insects: Traditional Knowledge or Western Phobia? Entomol. Res. 2009, 39, 289–298. [Google Scholar] [CrossRef]
- Mariod, A.A. African Edible Insects as Alternative Source of Food, Oil, Protein and Bioactive Components; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Kinyuru, J.N. Nutrient Content and Lipid Characteristics of Desert Locust (Schistoscerca gregaria) Swarm in Kenya. Int. J. Trop. Insect Sci. 2020, 41, 1993–1999. [Google Scholar] [CrossRef]
- Wahed, A.E.; Samira, M.N.; Ahmad, A.F. Variations in Chemical Composition Value of Adults and Nymphs Desert Locust, Schistocerca gregaria Forskål (Orthoptera: Acrididae). J. Plant Prot. Pathol. 2019, 10, 677–681. [Google Scholar]
- Vanden Broeck, J.; Chiou, S.J.; Schoofs, L.; Hamdaoui, A.; Vandenbussche, F.; Simonet, G.; Wataleb, S.; De Loof, A. Cloning of Two CDNAs Encoding Three Small Serine Protease Inhibiting Peptides from the Desert Locust Schistocerca gregaria and Analysis of Tissue-Dependent and Stage-Dependent Expression. Eur. J. Biochem. 1998, 254, 90–95. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected Species of Edible Insects as a Source of Nutrient Composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- Badanaro, F.; Amevoin, K.; Lamboni, C.; Amouzou, K. Edible Cirina Forda (Westwood, 1849) (Lepidoptera: Saturniidae) Caterpillar among Moba People of the Savannah Region in North Togo: From Collector to Consumer. Asian J. Appl. Sci. Eng. 2014, 3, 13. [Google Scholar] [CrossRef]
- Musuna, A.C.Z. Cereal Crop Losses Caused by Locusts in Eastern, Central and Southern Africa Region. Int. J. Trop. Insect Sci. 1988, 9, 701–707. [Google Scholar] [CrossRef]
- Tandzi, L.N.; Mutengwa, C.S. Estimation of Maize (Zea mays L.) Yield Per Harvest Area: Appropriate Methods. Agronomy 2020, 10, 29. [Google Scholar] [CrossRef] [Green Version]
- Dobermann, A.; Witt, C. The Potential Impact of Crop. Intensification on Carbon and Nitrogen Cycling in Intensive Rice Systems; International Rice Research Institute: Los Baños, Philippines, 2000. [Google Scholar]
- Abuzar, M.R.; Sadozai, G.U.; Baloch, M.S.; Baloch, A.A.; Shah, I.H.; Javaid, T.; Hussain, N. Effect of Plant Population Densities on Yield of Maize. J. Anim. Plant Sci. 2011, 21, 692–695. [Google Scholar]
- Hou, P.; Liu, Y.; Liu, W.; Liu, G.; Xie, R.; Wang, K.; Ming, B.; Wang, Y.; Zhao, R.; Zhang, W.; et al. How to Increase Maize Production without Extra Nitrogen Input. Resour. Conserv. Recycl. 2020, 160, 104913. [Google Scholar] [CrossRef]
- Shao, H.; Xia, T.; Wu, D.; Chen, F.; Mi, G. Root Growth and Root System Architecture of Field-Grown Maize in Response to High Planting Density. Plant Soil 2018, 430, 395–411. [Google Scholar] [CrossRef]
- Du Plessis, J. Maize Production; Department of Agriculture: Pretoria, South Africa, 2003. [Google Scholar]
- FAO. Rice Consumption Per Capita in Kenya. Available online: https://www.helgilibrary.com/indicators/rice-consumption-per-capita/kenya/ (accessed on 26 July 2021).
- Marenya, P.P.; Wanyama, R.; Alemu, S.; Woyengo, V. Trait Preference Trade-Offs among Maize Farmers in Western Kenya. Heliyon 2021, 7, e06389. [Google Scholar] [CrossRef] [PubMed]
- MoALF. Agricultural Sector Transformation & Growth Strategy 2019–2029. Available online: https://www.kilimodata.developlocal.org (accessed on 26 July 2021).
- CARD. Rice for Africa–Kenya. Available online: https://riceforafrica.net/card-countries/group-1-countries/kenya/kenya,-march-2021 (accessed on 26 July 2021).
- Rumpold, B.A.; Schlüter, O.K. Nutritional Composition and Safety Aspects of Edible Insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Uvarov, B. The Locust Plague. J. R. Soc. Arts 1942, 91, 109–118. [Google Scholar] [CrossRef]
- Kumar, P.S.; Shukla, G.; Panwar, P.; Chakravarty, S. Locusts Plague: An Emerging Threat to India. Curr. Sci. 2021, 120, 10. [Google Scholar]
- Brader, L.; DJibo, H.; Faya, F.G.; Ghaout, S.; Lazar, M.; Luzietoso, P.N.; Ould Babah, M.A. Towards a More Effective Response to Desert Locusts and Their Impacts on Food Security, Livelihood and Poverty; FAO: Rome, Italy, 2006. [Google Scholar]
- Onyango, A. The Public Health Implication of the 2020 Locust Invasion in East Africa. Available online: https://globalhealth.euclid.int/the-public-health-implication-of-the-2020-locust-invasion-in-east-africa/ (accessed on 27 July 2021).
- De Vreyer, P.; Guilbert, N.; Mesple-Somps, S. Impact of Natural Disasters on Education Outcomes: Evidence from the 1987–89 Locust Plague in Mali. J. Afr. Econ. 2015, 24, 57–100. [Google Scholar] [CrossRef]
- Everts, J.W.; Ba, L. Environmental Effects of Locust Control: State of the Art and Perspectives. New Strateg. Locust Control. 1997, 331–336. [Google Scholar] [CrossRef]
- Peveling, R. Environmental Conservation and Locust Control-Possible Conflicts and Solutions. J. Orthoptera Res. 2001, 10, 171–187. [Google Scholar] [CrossRef] [Green Version]
- Stebaev, I.V.; Gukasian, A.B. Orthoptera (Tettigonoidea and Acrididae) as stimulators of microbiological processes of decomposition and mineralization of phytomass in the meadow steppes of West Siberia. Zool. Zh. 1963, 42, 216–221. [Google Scholar]
- Gandar, M.V. The dynamics and trophic ecology of grasshoppers (Acridoidea) in a South African savanna. Oecologia 1982, 54, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Belovsky, G.E. Do grasshoppers diminish? In Grasshoppers and Grassland Health: Managing Grasshopper Outbreaks without Risking Environmental Disaster; Lockwood, J.A., Latchininsky, A.V., Sergeev, M.G., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2000; pp. 7–29. [Google Scholar]
- Song, J.; Wu, D.; Shao, P.; Hui, D.; Wan, S. Ecosystem Carbon Exchange in Response to Locust Outbreaks in a Temperate Steppe. Oecologia 2015, 1, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Van Huis, A. Insect Pests as Food and Feed. J. Insects Food Feed 2020, 6, 327–331. [Google Scholar] [CrossRef]
- Samejo, A.A.; Sultana, R.; Kumar, S.; Soomro, S. Could Entomophagy Be an Effective Mitigation Measure in Desert Locust Management? Agronomy 2021, 11, 455. [Google Scholar] [CrossRef]
- Chen, P.; Wongsiri, S.; Jamyanya, T.; Rinderer, T.; Vongsamanode, S.; Matsuka, M.; Sylvester, A.; Oldroyd, B. Honey Bees and Other Edible Insects Used as Human Food in Thailand. Am. Entomol. 1998, 44, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Samšiňáková, A.; Purrini, K. Über Eine Natürliche Infektion Der Heuschrecke, Patanga Succincta Durch Den Pilz Metarhizium anisopliae in Thailand. J. Appl. Entomol. 1986, 102, 273–277. [Google Scholar] [CrossRef]
- Ratner, B. Farmers Fight Back: Making Animal Feed from a Locust Plague. Available online: https://widerimage.reuters.com/story/farmersfight-back-making-animal-feed-from-a-locust-plague (accessed on 26 July 2021).
- Saeed, T.; Abu Dagga, F.; Saraf, M. Analysis of Residual Pesticides Present in Edible Locusts Captured in Kuwait. Arab Gulf J. Sci. Res. 1993, 11, 1–5. [Google Scholar]
- Zimmermann, G. Review on Safety of the Entomopathogenic Fungus Metarhizium anisopliae. Biocontrol Sci. Technol. 2007, 17, 879–920. [Google Scholar] [CrossRef]
Variable | Measure |
---|---|
Average food consumed by 1 adult locust | 322 g (F: 395 g) (M: 249 g) |
Food consumed by 1 nymph (all instars) | 16.59 g |
Average food consumed by 1 locust | 338.59 g = 339 g (F: 411.59 g) (M: 265.59 g) |
Number of nymphs produced by adults | 2.814 billion hoppers |
Food consumed by 1 km2 of adults | 18,240,000 kg |
Food consumed by their progeny | 7,941,799 kg |
Food consumed by adults and progeny | 26,181,799 kg ≈ 26,182 t |
Source | %N | C/N | %C | %N Mineralized | %C Mineralized |
---|---|---|---|---|---|
Frass | 2.7 | 16.99 | 45.87 | 10.83 | 27.17 |
Cadavers | 10.7 | 4.3 | 46.01 | 44 | 44 |
Variable | Value |
---|---|
Weight of frass produced by 1 adult locust | F: 32 g, M: 23 g |
Weight of adult cadaver | F: 3.5 g, M: 2.2 g |
Weight of frass produced by 1 hopper | 16.59 g (S1: 0.23 g, S2: 0.42 g, S3: 1.04 g, S4: 3.9 g, S5: 11 g) |
Weight of hopper cadavers (all stages) | (S1: 0.035 g, S2: 0.065 g, S3: 0.16 g, S4: 0.6, S5: 1.1) |
1 km2 area of adult locusts | |
Weight of frass from adults | 1,650,000 kg |
N from frass of adults, N mineralized | 44,550 kg, mineralized: 4824.77 kg |
C from frass of adults, C mineralized | 756,855 kg, mineralized: 205,637.50 kg |
Weight of cadavers from adults | 17,100 kg |
N from cadavers of adults, N mineralized | 1829.7 kg, mineralized: 805.07 kg |
C from cadavers of adults, C mineralized | 7867.1 kg, mineralized: 3461.79 kg |
Progeny of 1 km2 area of adult locusts | |
Weight of hopper frass | 7,941,798 kg |
N from frass of hoppers, N mineralized | 214,428.55 kg, mineralized: 23,222.61 kg |
C from frass of hoppers, C mineralized | 3,642,902.74 kg, mineralized: 989,776.68 kg |
Weight of hopper cadavers | 146,671 kg |
N from hopper cadavers, N mineralized | 15,693.80 kg, mineralized: 6905.27 kg |
C from hopper cadavers, C mineralized | 67,468.66 kg, mineralized: 29,686.21 kg |
Overall N, overall N mineralized | 276,502.05 kg, mineralized: 35,757.72 kg |
Overall C, overall C mineralized | 4,475,093.50 kg, mineralized: 1,228,562.18 kg |
Factor (g/km2 of Adults) | Adults | Hoppers | Combined | Adult Recommended Intake (g/d) (WHO/FAO/UNU, 2004) |
---|---|---|---|---|
Phosphorus (P) | 1500 | 100,770 | 102,270 | 0.7 |
Potassium (K) | 115,130 | 8,633,830 | 8,748,960 | 4.7 |
Calcium (Ca) | 580 | 55,930 | 56,510 | 1 to 1.3 (Avge: 1.15) |
Magnesium (Mg) | 230 | 20,120 | 20,350 | 0.22 to 0.26 (Avge: 0.24) |
Protein | 9,711,090 | 727,155,610 | 736,866,700 | 46 (F); 56 (M) (Avge: 51) |
Fat | 4,928,220 | 167,117,830 | 172,046,050 | 44 to 77 (Avge: 60.5) |
Total Carbohydrate | 509,580 | 50,631,740 | 51,141,320 | 225 to 325 (Avge: 275) |
Fiber | 1,350,900 | 87,143,950 | 88,494,850 | 25 to 30 (Avge: 27.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kietzka, G.J.; Lecoq, M.; Samways, M.J. Ecological and Human Diet Value of Locusts in a Changing World. Agronomy 2021, 11, 1856. https://doi.org/10.3390/agronomy11091856
Kietzka GJ, Lecoq M, Samways MJ. Ecological and Human Diet Value of Locusts in a Changing World. Agronomy. 2021; 11(9):1856. https://doi.org/10.3390/agronomy11091856
Chicago/Turabian StyleKietzka, Gabriella J., Michel Lecoq, and Michael J. Samways. 2021. "Ecological and Human Diet Value of Locusts in a Changing World" Agronomy 11, no. 9: 1856. https://doi.org/10.3390/agronomy11091856
APA StyleKietzka, G. J., Lecoq, M., & Samways, M. J. (2021). Ecological and Human Diet Value of Locusts in a Changing World. Agronomy, 11(9), 1856. https://doi.org/10.3390/agronomy11091856