Management of Green Waste Streams from Different Origins: Assessment of Different Composting Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composting Experiments
2.2. Analytical Methods
2.3. Statistical Analyses
3. Results and Discussion
3.1. Thermal Development in the Composting Scenarios
3.2. Composting Process: Evolution of Physicochemical and Chemical Parameters
3.3. Quality of the Final Composts
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- R&A. Golf around the World Report; National Golf Foundation: Jupiter, FL, USA, 2019; Available online: https://www.thengfq.com/2019/02/ras-golf-around-the-world-report/ (accessed on 27 July 2021).
- McCartney, D. Auditing non-hazardous wastes from golf course operations: Moving from a waste to a sustainability framework. Resour. Conserv. Recy. 2003, 37, 283–300. [Google Scholar] [CrossRef]
- Han, W.; Clarke, W.; Pratt, S. Composting of waste algae: A review. Waste Manag. 2014, 34, 1148–1155. [Google Scholar] [CrossRef]
- Cocozza, C.; Parente, A.; Zaccone, C.; Mininni, C.; Santamaria, P.; Miano, T. Comparative management of offshore posidonia residues: Composting vs. energy recovery. Waste Manag. 2011, 31, 78–84. [Google Scholar] [CrossRef]
- Khalil, A.; Domeizel, M.; Prudent, P. Monitoring of green waste composting process based on redox potential. Bioresour. Technol. 2008, 99, 6037–6045. [Google Scholar] [CrossRef] [PubMed]
- López, M.; Soliva, M.; Martínez-Farré, F.X.; Bonmatí, A.; Huerta-Pujol, O. An assessment of the characteristics of yard trimmings and recirculated yard trimmings used in biowaste composting. Bioresour. Technol. 2010, 101, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, M.; Di Iaconi, C. Evaluation of Posidonia oceanica residues as feedstock for anaerobic digestion. Bioresour. Technol. Rep. 2019, 8, 100317. [Google Scholar] [CrossRef]
- Parente, A.; Montesano, F.F.; Lomoro, A.; Guido, M. Improvement of beached Posidonia residues performance to composting. Environ. Eng. Manag. J. 2013, 12, 81–84. [Google Scholar]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef] [PubMed]
- Vico, A.; Pérez-Murcia, M.D.; Bustamante, M.A.; Agulló, E.; Marhuenda-Egea, F.C.; Sáez, J.A.; Paredes, C.; Pérez-Espinosa, A.; Moral, R. Valorization of date palm (Phoenix dactylifera L.) pruning biomass by co-composting with urban and agri-food sludge. J. Environ. Manag. 2018, 226, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, M.A.; Ceglie, F.G.; Aly, A.; Mihreteab, H.T.; Ciaccia, C.; Tittarelli, F. Phosphorus availability from rock phosphate: Combined effect of green waste composting and sulfur addition. J. Environ. Manag. 2016, 182, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Sáez, J.A.; Flores, P.; Bustamante, M.Á.; Sanchez-Hernandez, J.C.; Moral, R.; Pérez-Murcia, M.D. Nitrogen isotope fractionation during composting of sewage and agri-food sludge with pruning waste. Agronomy 2020, 10, 1954. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Alburquerque, J.A.; Restrepo, A.P.; de la Fuente, C.; Paredes, C.; Moral, R.; Bernal, M.P. Co-composting of the solid fraction of anaerobic digestates, to obtain added-value materials for use in agriculture. Biomass Bioener. 2012, 43, 26–35. [Google Scholar] [CrossRef]
- Navarro, A.F.; Cegarra, J.; Roig, A.; Bernal, M.P. An automatic microanalysis method for the determination of organic carbon in wastes. Commun. Soil Sci. Plant Anal. 1991, 22, 2137–2144. [Google Scholar] [CrossRef]
- Lax, A.; Roig, A.; Costa, F. A method for determining the cation-exchange capacity of organic materials. Plant Soil 1986, 94, 349–355. [Google Scholar] [CrossRef]
- Zucconi, F.; Pera, A.; Forte, M.; de Bertoldi, M. Evaluating toxicity of immature compost. BioCycle 1981, 22, 54–57. [Google Scholar]
- Brewer, L.J.; Sullivan, D.M. Maturity and stability evaluation of composted yard trimmings. Compost Sci. Util. 2003, 11, 96–112. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X. Improving green waste composting by addition of sugarcane bagasse and exhausted grape marc. Bioresour. Technol. 2016, 218, 335–343. [Google Scholar] [CrossRef] [PubMed]
- López-González, J.A.; López, M.J.; Vargas-García, M.C.; Suárez-Estrella, F.; Jurado, M.; Moreno, J. Tracking organic matter and microbiota dynamics during the stages of lignocellulosic waste composting. Bioresour. Technol. 2013, 146, 574–584. [Google Scholar] [CrossRef]
- Doublet, J.; Francou, C.; Poitrenaud, M.; Houot, S. Influence of bulking agents on organic matter evolution during sewage sludge composting; consequences on compost organic matter stability and N availability. Bioresour. Technol. 2012, 102, 1298–1307. [Google Scholar] [CrossRef]
- Himanen, M.; Hänninen, K. Composting of bio-waste, aerobic and anaerobic sludges-Effect of feedstock on the process and quality of compost. Bioresour. Technol. 2011, 102, 2842–2852. [Google Scholar] [CrossRef]
- Morales, A.B.; Bustamante, M.A.; Marhuenda-Egea, F.C.; Moral, R.; Ros, M.; Pascual, J.A. Agri-food sludge management using different co-composting strategies: Study of the added value of the composts obtained. J. Clean. Prod. 2016, 121, 186–197. [Google Scholar] [CrossRef]
- European Commission. End-of-Waste Criteria for Biodegradable Waste Subjected to Biological Treatment (Compost & Digestate): Technical Proposals; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar]
- Gavilanes-Terán, I.; Jara-Samaniego, J.; Idrovo-Novillo, J.; Bustamante, M.A.; Moral, R.; Paredes, C. Windrow composting as horticultural waste management strategy—A case study in Ecuador. Waste Manag. 2016, 48, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Yañez, R.; Alonso, J.L.; Díaz, M.J. Influence of bulking agent on sewage sludge composting process. Bioresour. Technol. 2009, 100, 5827–5833. [Google Scholar] [CrossRef]
- Hogg, D.; Favoino, E.; Centemero, M.; Caimi, V.; Amlinger, F.; Devliegher, W.; Brinton, W.; Antler, S. Comparison of Compost Standards within the EU, North America and Australia; The Waste and Resources Programme (WRAP), Ed.; The Old Academy: Banbury, Oxon, UK, 2002. [Google Scholar]
- Bustamante, M.A.; Paredes, C.; Marhuenda-Egea, F.C.; Perez-Espinosa, A.; Bernal, M.P.; Moral, R. Co-composting distillery wastes with animal manure: Carbon and nitrogen transformations and evaluation of compost stability. Chemosphere 2008, 72, 551–557. [Google Scholar] [CrossRef]
- Reyes-Torres, M.; Oviedo-Ocaña, E.R.; Dominguez, I.; Komilis, D.; Sánchez, A. A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Manag. 2018, 77, 486–499. [Google Scholar] [CrossRef]
- Pelegrín, M.; Sáez, J.A.; Andreu-Rodríguez, J.; Pérez-Murcia, M.D.; Martínez-Sabater, E.; Marhuenda-Egea, F.C.; Pérez-Espinosa, A.; Bustamante, M.A.; Agulló, E.; Vico, A.; et al. composting of invasive species Arundo donax with sewage and agri-food sludge: Agronomic, economic and environmental aspects. Waste Manag. 2018, 78, 730–740. [Google Scholar] [CrossRef] [PubMed]
- Lemaire, F.; Dartigues, A.; Rivière, L.M. Properties of substrate made with spent mushroom compost. Acta Hort. 1985, 172, 13–29. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Restrepo, A.P.; Alburquerque, J.A.; Perez-Murcia, M.D.; Paredes, C.; Moral, R.; Bernal, M.P. Recycling of anaerobic digestates by composting: Effect of the bulking agent used. J. Clean. Prod. 2013, 47, 61–69. [Google Scholar] [CrossRef]
- Young, B.J.; Rizzo, P.F.; Riera, N.I.; Torre, V.D.; López, V.A.; Molina, C.D.; Fernández, F.E.; Crespo, D.C.; Barrena, R.; Komilis, D.; et al. Development of phytotoxicity indexes and their correlation with ecotoxicological, stability and physicochemical parameters during passive composting of poultry manure. Waste Manag. 2016, 54, 101–109. [Google Scholar] [CrossRef] [Green Version]
Parameter | SPW1 | SPW2 | SPW3 | SPW4 | PGW | SS |
---|---|---|---|---|---|---|
Dry matter (%) | 22.3 ± 1.3 | 38.2 ± 2.5 | 49.4 ± 4.5 | 30.3 ± 2.1 | 79.3 ± 0.2 | 18.9 ± 0.3 |
BD (kg L−1) | 0.199 ± 0.020 | 0.404 ± 0.038 | 0.262 ± 0.001 | 0.221 ± 0.018 | 0.070 ± 0.001 | 0.889 ± 0.028 |
pH | 8.5 ± 0.0 | 8.6 ± 0.0 | 8.6 ± 0.1 | 8.2 ± 0.1 | 8.2 ± 0.0 | 6.6 ± 0.1 |
EC (dS m−1) | 10.3 ± 1.4 | 7.21 ± 0.71 | 2.37 ± 0.26 | 3.16 ± 0.01 | 3.30 ± 0.05 | 2.89 ± 0.02 |
OM (%) | 14.3 ± 1.6 | 18.5 ± 0.6 | 11.2 ± 1.0 | 10.0 ± 1.1 | 64.9 ± 0.6 | 74.2 ± 0.0 |
TN (%) | 0.33 ± 0.03 | 0.31 ± 0.00 | 0.30 ± 0.05 | 0.20 ± 0.0 | 1.69 ± 0.03 | 6.28 ± 0.15 |
TOC (%) | 10.9 ± 0.5 | 11.3 ± 0.1 | 11.0 ± 0.0 | 10.7 ± 1.2 | 35.4 ± 4.8 | 41.3 ± 0.6 |
TOC/TN ratio | 33.4 ± 5.0 | 36.9 ± 0.4 | 36.8 ± 6.0 | 52.1 ± 3.1 | 20.8 ± 2.5 | 6.57 ± 0.26 |
P (g kg−1) | 0.29 ± 0.00 | 0.09 ± 0.00 | 0.51 ± 0.14 | 0.14 ± 0.0 | 4.36 ± 0.07 | 18.7 ± 0.6 |
K (g kg−1) | 2.67 ± 0.22 | 1.54 ± 0.13 | 12.2 ± 0.4 | 13.5 ± 0.0 | 22.9 ± 1.4 | 2.62 ± 0.06 |
Na (g kg−1) | 21.0 ± 0.46 | 23.8 ± 5.5 | 6.36 ± 0.10 | 10.8 ± 0.7 | 14.2 ± 0.35 | 3.01 ± 0.34 |
Composting Pile | SPW1 | SPW2 | SPW3 | SPW4 | PGW | SS |
---|---|---|---|---|---|---|
1 | 58.9 (28.8) | 41.1 (71.2) | ||||
2 | 75.1 (70.2) | 24.9 (29.8) | ||||
3 | 100 (100) | |||||
4 | 22.4 (50.4) | 5.6 (12.7) | 72.0 (36.9) | |||
5 | 14.6 (17.6]) | 6.2 (21.0) | 79.2 (61.4) |
EXI2 Index (°C2) | Duration Bio-Oxidative Phase | Days with Temperature > 50 °C | Maximum Temperature Reached (°C) | Ratio EXI2/Days in Bio-Oxidative Phase | |
---|---|---|---|---|---|
Pile 1 | 211,169 | 56 | 29 | 65.1 | 3771 |
Pile 2 | 373,877 | 75 | 45 | 63.6 | 4985 |
Pile 3 | 259,973 | 60 | 26 | 65.1 | 4333 |
Pile 4 | 245,673 | 65 | 41 | 69.6 | 3780 |
Pile 5 | 268,368 | 65 | 38 | 70.7 | 4129 |
Composting Phase | pH | EC (dS/m) | OM (%) | TOC (%) | TN (%) | TOC/TN |
---|---|---|---|---|---|---|
Pile 1: 58.9% SPW1 + 41.1% PGW | ||||||
IS | 8.4 ± 0.1 | 3.72 ± 0.63 | 28.1 ± 7.8 | 15.4 ± 3.8 | 0.31 ± 0.10 | 50.1 ± 3.5 |
TS | 9.0 ± 0.1 | 3.59 ± 0.94 | 18.7 ± 1.7 | 11.4 ± 0.1 | 0.56 ± 0.19 | 21.5 ± 7.1 |
EBS | 9.2 ± 0.0 | 2.29 ± 0.19 | 20.3 ± 5.9 | 13.0 ± 0.6 | 0.51 ± 0.14 | 25.5 ± 1.9 |
MS | 9.0 ± 0.0 | 3.18 ± 0.32 | 18.5 ± 3.1 | 12.6 ± 0.4 | 0.60 ± 0.00 | 21.0 ± 0.6 |
LSD | 0.1 | 0.92 | 8.1 | 3.9 | 0.26 | 11.4 |
Pile 2: 75.1% SPW2 + 24.9% PGW | ||||||
IS | 8.2 ± 0.0 | 3.61 ± 0.16 | 42.5 ± 5.0 | 19.7 ± 1.0 | 0.53 ± 0.08 | 37.3 ± 3.6 |
TS | 9.0 ± 0.0 | 3.22 ± 0.27 | 32.9 ± 3.6 | 20.2 ± 4.5 | 0.68 ± 0.00 | 29.7 ± 6.8 |
EBS | 9.2 ± 0.0 | 2.96 ± 0.36 | 25.7 ± 3.1 | 14.2 ± 7.3 | 0.54 ± 0.39 | 26.7 ± 0.4 |
MS | 8.8 ± 0.2 | 3.65 ± 0.40 | 24.5 ± 1.8 | 17.0 ± 1.2 | 0.91 ± 0.00 | 18.7 ± 1.4 |
LSD | 0.2 | 0.47 | 5.5 | 0.5 | 0.15 | 10.7 |
Pile 3: 100% PGW | ||||||
IS | 8.2 ± 0.0 | 3.30 ± 0.05 | 64.9 ± 0.6 | 35.4 ± 4.8 | 1.69 ± 0.03 | 20.8 ± 2.5 |
TS | 8.9 ± 0.0 | 2.73 ± 0.01 | 53.5 ± 0.1 | 27.7 ± 1.5 | 1.89 ± 0.05 | 14.7 ± 1.2 |
EBS | 8.6 ± 0.0 | 3.30 ± 0.05 | 54.1 ± 0.2 | 27.8 ± 0.2 | 1.73 ± 0.21 | 16.2 ± 2.0 |
MS | 8.6 ± 0.3 | 3.27 ± 0.00 | 43.1 ± 1.4 | 25.7 ± 0.6 | 1.96 ± 0.16 | 13.1 ± 0.7 |
LSD | 0.1 | 0.07 | 1.5 | 4.7 | 0.25 | 3.2 |
Pile 4: 22.4% SPW3 + 5.6% PGW + 72.0% SS | ||||||
IS | 7.6 ± 0.0 | 2.72 ± 0.10 | 32.7 ± 4.7 | 19.3 ± 1.0 | 1.29 ± 0.17 | 15.1 ± 2.8 |
TS | 7.3 ± 0.0 | 3.90 ± 0.04 | 32.8 ± 2.0 | 19.3 ± 0.7 | 1.56 ± 0.06 | 12.3 ± 1.2 |
EBS | 7.4 ± 0.0 | 3.72 ± 0.08 | 31.4 ± 3.6 | 18.0 ± 1.1 | 1.36 ± 0.10 | 13.2 ± 0.2 |
MS | 7.3 ± 0.0 | 3.71 ± 0.02 | 25.3 ± 2.3 | 18.7 ± 0.9 | 1.56 ± 0.16 | 12.0 ± 0.6 |
LSD | 0.1 | 0.12 | 5.5 | 0.1 | 0.36 | 2.8 |
Pile 5: 14.6% SPW4 + 6.2% PGW + 79.2% SS | ||||||
IS | 7.4 ± 0.1 | 2.84 ± 0.20 | 46.2 ± 3.5 | 25.7 ± 3.5 | 2.06 ± 0.47 | 12.6 ± 1.2 |
TS | 7.1 ± 0.0 | 4.20 ± 0.02 | 42.3 ± 1.3 | 22.8 ± 0.8 | 2.13 ± 0.01 | 10.7 ± 0.4 |
EBS | 7.4 ± 0.0 | 3.97 ± 0.02 | 37.1 ± 0.9 | 24.9 ± 2.6 | 2.10 ± 0.36 | 12.0 ± 0.8 |
MS | 7.3 ± 0.0 | 4.10 ± 0.02 | 36.6 ± 3.1 | 22.3 ± 3.0 | 2.03 ± 0.31 | 11.0 ± 0.2 |
LSD | 0.1 | 0.2 | 3.6 | 2.9 | 0.07 | 1.9 |
Parameter | Compost 1 | Compost 2 | Compost 3 | Compost 4 | Compost 5 |
---|---|---|---|---|---|
EC (dS m−1) | 3.18 ± 0.32 | 3.65 ± 0.40 | 3.27 ± 0.00 | 3.72 ± 0.02 | 4.10 ± 0.02 |
TOC/TN ratio | 21.0 ± 0.6 | 18.7 ± 1.4 | 13.1 ± 0.7 | 12.0 ± 0.6 | 11.0 ± 0.2 |
TN (g kg−1) | 6.00 ± 0.00 | 9.10 ± 0.0 | 19.6 ± 0.16 | 15.6 ± 0.16 | 20.3 ± 0.31 |
P (g kg−1) | 1.15 ± 0.04 | 2.36 ± 0.10 | 4.94 ± 0.22 | 6.23 ± 0.09 | 8.02 ± 0.56 |
K (g kg−1) | 7.49 ± 0.33 | 10.8 ± 1.1 | 19.6 ± 0.4 | 4.12 ± 0.18 | 5.42 ± 0.23 |
Na (g kg−1) | 6.76 ± 0.50 | 7.89 ± 0.77 | 16.9 ± 0.75 | 4.62 ± 0.39 | 4.62 ± 0.19 |
CEC (meq 100 g−1 OM) | 49.8 ± 5.3 | 170 ± 5 | 171 ± 14 | 142 ± 12 | 125 ± 5 |
CEC/TOC (meq g−1) | 0.54 ± 0.06 | 2.45 ± 0.08 | 2.35 ± 0.19 | 1.92 ± 0.16 | 2.05 ± 0.08 |
GI (%) | 127 ± 4 | 63.5 ± 6.4 | 64.1 ± 3.0 | 98.1 ± 7.1 | 59.8 ± 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guilabert, F.J.; Barber, X.; Pérez-Murcia, M.D.; Agulló, E.; Andreu-Rodríguez, F.J.; Moral, R.; Bustamante, M.Á. Management of Green Waste Streams from Different Origins: Assessment of Different Composting Scenarios. Agronomy 2021, 11, 1870. https://doi.org/10.3390/agronomy11091870
Guilabert FJ, Barber X, Pérez-Murcia MD, Agulló E, Andreu-Rodríguez FJ, Moral R, Bustamante MÁ. Management of Green Waste Streams from Different Origins: Assessment of Different Composting Scenarios. Agronomy. 2021; 11(9):1870. https://doi.org/10.3390/agronomy11091870
Chicago/Turabian StyleGuilabert, Francisco J., Xavier Barber, María Dolores Pérez-Murcia, Enrique Agulló, Francisco Javier Andreu-Rodríguez, Raúl Moral, and María Ángeles Bustamante. 2021. "Management of Green Waste Streams from Different Origins: Assessment of Different Composting Scenarios" Agronomy 11, no. 9: 1870. https://doi.org/10.3390/agronomy11091870
APA StyleGuilabert, F. J., Barber, X., Pérez-Murcia, M. D., Agulló, E., Andreu-Rodríguez, F. J., Moral, R., & Bustamante, M. Á. (2021). Management of Green Waste Streams from Different Origins: Assessment of Different Composting Scenarios. Agronomy, 11(9), 1870. https://doi.org/10.3390/agronomy11091870