Recognition of Areca Leaf Yellow Disease Based on PlanetScope Satellite Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.2.1. Ground Sample Data Collection
2.2.2. Satellite Remote Sensing Imagery Acquisition
2.3. Sensitive Feature Variable Extraction
2.4. Model Building Method
2.4.1. RF Algorithm Model
- (1)
- Dataset input. The 94 ground samples were divided into 60 and 34 samples for training set trainA and validation set testB, with training and verification labels labelA and labelB, respectively.
- (2)
- Parameter setting. The number of decision trees were set to 500. When the number of decision trees is more than 500, the error is generally stable and over-fitting does not occur. Other parameter values were taken as the system default.
- (3)
- Training and prediction. Factor = TreeBagger (n, trainA, lableA) was adopted to construct a decision and [Predict_lable, Scores] = predict (Factor, testB) for testing.
2.4.2. BPNN Algorithm Model
2.4.3. AdaBoost Algorithm Model
2.5. Features Selection
2.6. Accuracy Assessment
3. Results
3.1. Spectral Features Analysis and Feature Variable Optimization
3.1.1. Spectral Features Analysis
3.1.2. Feature Variables Optimization
3.2. Recognizition Model Building and Verification
3.3. Areca Yellow Leaf Disease Mapping
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Office of the Development of South Subtropical Crops, Ministry of Agriculture. Production of Tropical, Southern and Subtropical Crops of the Ministry of Agriculture, 2007th ed.; South Subtropical Crops Development Office, Ministry of Agriculture: Beijing, China, 2008; pp. 343–356.
- Che, H.; Cao, X.; Xuan, Z.; Luo, D. Betel nut yellowing disease “should be prevented” or “cured”. China Trop. Agric. 2018, 5, 46–48. [Google Scholar]
- Manimekalai, R.; Sathish Kumar, R.; Soumya, V.P.; Thomas, G.V. Molecular Detection of Phytoplasma Associated with Yellow Leaf Disease in Areca Palms (Areca catechu) in India. Plant Dis. 2010, 94, 1376. [Google Scholar] [CrossRef]
- Che, H.; Cao, X.; Luo, D. Research and Demonstration Application of Diagnosis and Rapid Pathogen Detection Technology of Areca Yellow Leaf Disease in Hainan. In Proceedings of the China Plant Protection Society 2019 Annual Conference, Guiyang, China, 23–25 October 2019. [Google Scholar]
- Zhang, J.; Li, J.; Yang, G.; Yang, G.; Huang, W.; Luo, J.; Wang, J. Monitoring of Winter Wheat Stripe Rust Based on the Spectral Knowledge Base for TM Images. Spectrosc. Spectr. Anal. 2010, 30, 1579–1585. [Google Scholar]
- Franke, J.; Menz, G. Multi-temporal Wheat Disease Detection by Multi-spectral Remote Sensing. Precis. Agric. 2007, 8, 161–172. [Google Scholar] [CrossRef]
- Tang, C.; Huang, W.; Luo, J.; Liang, D.; Zhao, J.; Huang, L. Forecasting Wheat Aphid with Remote Sensing Based on Relevance Vector Machine. Trans. Chin. Soc. Agric. Eng. 2015, 31, 201–207. [Google Scholar]
- Ma, H.; Huang, W.; Jing, Y.; Dong, Y.; Zhang, J.; Nie, C.; Tang, C.; Zhao, J.; Huang, L. Remote Sensing Monitoring of Wheat Powdery Mildew Based on AdaBoost Model Combining mRMR Algorithm. Trans. Chin. Soc. Agric. Eng. 2017, 33, 162–169. [Google Scholar]
- Yuan, L.; Pu, R.; Zhang, J.; Wang, J.; Yang, H. Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale. Precis. Agric. 2016, 17, 332–348. [Google Scholar] [CrossRef]
- Gašparović, M.; Medak, D.; Pilaš, I.; Jurjević, L.; Balenović, I. Fusion of sentinel-2 and Planetscope imagery for vegetation detection and monitoring. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-1, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Guo, J.; Ye, H.; Zhao, J.; Huang, W.; Cui, B. Extraction of Arecanut Planting Distribution Based on the Feature Space Optimization of PlanetScope Imagery. Agriculture 2021, 11, 371. [Google Scholar] [CrossRef]
- Gasparovic, M.; Dobrinic, D.; Medak, D. Urban Vegetation Detection Based on The Land- Cover Classification of PlanetScope, RapidEye and WorldView-2 Satellite Imagery. In Proceedings of the 2018 18th International Multidisciplinary Scientific GeoConference SGEM2018 Work, Albena, Bulgaria, 2–8 July 2018; International Multidisciplinary Scientific GeoConference-SGEM: Sofia, Bulgaria, 2018; Volume 7, pp. 1314–2704. [Google Scholar] [CrossRef] [Green Version]
- Szabó, L.; Abriha, D.; Phinzi, K.; Szabó, S. Urban vegetation classification with high-resolution PlanetScope and SkySat multispectral imagery. Landsc. Amp. Environ. 2021, 15, 66–75. [Google Scholar] [CrossRef]
- Hainan Provincial Bureau of Statistics. Hainan Statistical Yearbook, 2019th ed.; China Statistical Publishing House: Beijing, China, 2020; pp. 217–266.
- Yang, C.; Zhan, Q.; Zhou, Y.; Zhang, Y. Investigation on the Condition of Areca yellow leaf disease in the South of Wanning. China Pharm. 2018, 27, 70–71. (In Chinese) [Google Scholar]
- Wang, F.; Yao, F.; Chen, Y.; Chen, C. Monitoring Study on the Influence of Hainan International Tourism Island Construction to the Mangrove Forest Based on RS and GIS. Adv. Mat. Res. 2011, 1198, 33–38. [Google Scholar] [CrossRef]
- Planet Team. Planet Application Program Interface: In Space for Life on Earth; Planet Team: San Francisco, CA, USA, 2018. [Google Scholar]
- Huang, Z.; Cao, C.; Chen, W.; Xu, M.; Dang, Y.; Singh, R.P.; Bashir, B.; Xie, B.; Lin, X. Remote sensing monitoring of vegetation dynamic changes after fire in the Greater Hinggan Mountain Area: The algorithm and application for eliminating phenological impacts. Remote Sens. 2020, 12, 156. [Google Scholar] [CrossRef] [Green Version]
- Zeng, C.; Binding, C. The Effect of Mineral Sediments on Satellite Chlorophyll-a Retrievals from Line-Height Algorithms Using Red and Near-Infrared Bands. Remote Sens. 2019, 11, 2036. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.R.; Jackson, R.D. Suitability of spectral indices for evaluating vegetation characteristics on arid rangelands. Remote Sens. Environ. 1987, 23, 213–232. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Goel, N.S.; Qin, W. Influences of canopy architecture on relationships between various vegetation indices and LAI and Fpar: A computer simulation. Remote Sens. Rev. 1994, 10, 309–347. [Google Scholar] [CrossRef]
- Penuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Chen, S.F.; Goodman, J. An empirical study of smoothing techniques for language modeling. ACL 1999, 13, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of leaf senescence and fruit ripening. Physiol. Plantarum. 1999, 106, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Huemmrich, K.F.; Black, T.A.; Jarvis, P.G.; McCaughey, J.H.; Hall, F.G. High temporal resolution NDVI phenology from micrometeorological radiation sensors. JGR Earth Surf. 1999, 104, 27935–27944. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Zhao, Y.; Potgieter, A.B.; Zhang, M.; Wu, B.; Hammer, G.L. Predicting Wheat Yield at the Field Scale by Combining High-Resolution Sentinel-2 Satellite Imagery and Crop Modelling. Remote Sens. 2020, 12, 1024. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Chen, X.; An, S. Assessing plant senescence reflectance index-retrieved vegetation phenology and its spatiotemporal response to climate change in the Inner Mongolian Grassland. Int. J. Biometeorol. 2017, 61, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Kwok, S.W.; Carter, C. Multiple Decision Trees. Mach. Intell. 2013, 9, 327–335. [Google Scholar] [CrossRef]
- Santana, F.B.; Neto, W.B.; Poppi, R.J. Random forest as one-class classifier and infrared spectroscopy for food adulteration detection. Food Chem. 2019, 293, 323–332. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, N.; Wu, L.; Wang, Y. Wind Speed Forecasting Based on the Hybrid Ensemble Empirical Mode Decomposition and GA-BP Neural Network Method. Renew. Energy 2016, 94, 629–636. [Google Scholar] [CrossRef]
- Schapire, R.E.; Freund, Y.; Bartlett, P.; Lee, W.S. Boosting the margin: A new explanation for the effectiveness of voting methods. Ann. Stat. 1998, 26, 1651–1686. [Google Scholar] [CrossRef]
- Guo, L.; Xi, X.; Yang, W.; Liang, L. Monitoring Land Use/Cover Change Using Remotely Sensed Data in Guangzhou of China. Sustainability 2021, 13, 2944. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, W.; Ye, H.; Ruan, C.; Xing, N.; Geng, Y.; Dong, Y.; Peng, D. Partial Least Square Discriminant Analysis Based on Normalized Two-Stage Vegetation Indices for Mapping Damage from Rice Diseases Using PlanetScope Datasets. Sensors 2018, 18, 1901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manivasagam, V.S.; Sadeh, Y.; Kaplan, G.; Bonfil, D.J.; Rozenstein, O. Studying the Feasibility of Assimilating Sentinel-2 and PlanetScope Imagery into the SAFY Crop Model to Predict Within-Field Wheat Yield. Remote Sens. 2021, 13, 2395. [Google Scholar] [CrossRef]
- Zhao, J.; Jin, Y.; Ye, H.; Huang, W.; Dong, Y.; Fan, L.; Ma, H.; Jiang, J. Remote sensing monitoring of areca yellow leaf disease based on UAV multi-spectral images. Trans. Chin. Soc. Agric. Eng. 2020, 36, 54–61. [Google Scholar]
- Pickering, J.; Tyukavina, A.; Khan, A.; Potapov, P.; Adusei, B.; Hansen, M.C.; Lima, A. Using Multi-Resolution Satellite Data to Quantify Land Dynamics: Applications of PlanetScope Imagery for Cropland and Tree-Cover Loss Area Estimation. Remote Sens. 2021, 13, 2191. [Google Scholar] [CrossRef]
- Sun, Z.; Bebis, G.; Miller, R. Object detection using feature subset selection. Pattern Recognit 2004, 37, 2165–2176. [Google Scholar] [CrossRef]
- Gu, Z.; Ju, W.; Liu, Y.; Li, D.; Fan, W. Forest Leaf Area Index Estimated from Tonal and Spatial Indicators Based on IKONOS_2 Imagery. IJRSA 2013, 3, 175–184. [Google Scholar] [CrossRef]
- Hinojo-Hinojo, C.; Goulden, M.L. Plant Traits Help Explain the Tight Relationship between Vegetation Indices and Gross Primary Production. Remote Sens. 2020, 12, 1405. [Google Scholar] [CrossRef]
- Villamuelas, M.; Fernández, N.; Albanell, E.; Gálvez-Cerón, A.; Bartolomé, J.; Mentaberre, G.; López-Olvera, J.R.; Fernández-Aguilar, X.; Colom-Cadena, A.; López-Martín, J.M.; et al. The Enhanced Vegetation Index (EVI) as a proxy for diet quality and composition in a mountain ungulate. Ecol. Indic. 2016, 61, 658–666. [Google Scholar] [CrossRef]
- Dash, M.; Liu, H. Feature selection for classification. Intell. Data Anal. 1997, 1, 131–156. [Google Scholar] [CrossRef]
- Lu, J.; Sun, L.; Huang, W. Research progress in monitoring and forecasting of crop pests and diseases by remote sensing. Remote Sens. Technol. Appl. 2019, 34, 21–32. [Google Scholar]
Parameter | Parameter Value |
---|---|
Track height | International space station orbit 400 km Sun-synchronous orbit 475 km |
Orbital inclination | 52° 98° |
Sensor type | Bayer filter CCD camera |
Width | 24.6 km × 16.4 km |
Spatial resolution | 3–4 m |
Spectral band | Band1: Blue (455–515 nm) Band2: Green (500–590 nm) Band3: Red (590–670 nm) Band4: NIR (780–860 nm) |
Spectral Features | Formula | Reference |
---|---|---|
Blue band reflectance (Blue) | RB | [18] |
Green band reflectance (Green) | RG | [18] |
Red band reflectance (Red) | RR | [19] |
NIR reflectance (NIR) | RNIR | [19] |
Ratio vegetation index (RVI) | [20] | |
Normalized difference vegetation Index (NDVI) | [21] | |
Normalized pigment chlorophyll index (NPCI) | [22] | |
Enhanced vegetation index (EVI) | [23] | |
Modified soil adjusted vegetation index (MSAVI) | [24] | |
Plant senescence reflectance index (PSRI) | [25] | |
Soil-adjusted vegetation index (SAVI) | [26] | |
Optimization of soil regulatory vegetation index (OSAVI) | [27] | |
Triangular vegetation index (TVI) | [28] |
Vegetable Index | Sample Category | Mean of VI Value | Std. Deviation | p-Value (t-Test) | Correlation Coefficient (r) |
---|---|---|---|---|---|
Green | Healthy | 0.058 | 0.002 | 0.000 | 0.59 *** |
Diseased | 0.056 | 0.002 | |||
Blue | Healthy | 0.074 | 0.002 | 0.000 | 0.57 *** |
Diseased | 0.071 | 0.002 | |||
Red | Healthy | 0.065 | 0.003 | 0.000 | 0.58 *** |
Diseased | 0.061 | 0.003 | |||
PSRI | Healthy | 0.021 | 0.007 | 0.000 | 0.49 *** |
Diseased | 0.015 | 0.006 | |||
EVI | Healthy | 2.348 | 0.115 | 0.000 | 0.49 *** |
Diseased | 2.452 | 0.107 | |||
NPCI | Healthy | 0.052 | 0.018 | 0.001 | 0.47 ** |
Diseased | 0.040 | 0.011 | |||
NDVI | Healthy | 0.654 | 0.031 | 0.003 | 0.47 ** |
Diseased | 0.680 | 0.024 | |||
RVI | Healthy | 4.839 | 0.552 | 0.003 | 0.47 ** |
Diseased | 5.293 | 0.452 | |||
OSAVI | Healthy | 0.459 | 0.031 | 0.003 | 0.39 ** |
Diseased | 0.480 | 0.023 | |||
SAVI | Healthy | 0.422 | 0.036 | 0.003 | 0.35 ** |
Diseased | 0.443 | 0.027 | |||
MSAVI | Healthy | 0.406 | 0.043 | 0.003 | 0.35 ** |
Diseased | 0.430 | 0.033 | |||
NIR | Healthy | 0.313 | 0.029 | 0.071 | 0.25 * |
Diseased | 0.322 | 0.021 | |||
TVI | Healthy | −16.706 | 3.278 | 0.244 | 0.16 |
Diseased | −15.908 | 3.315 |
Model | Sample | Evaluation Index | ||||||
---|---|---|---|---|---|---|---|---|
Health | Disease | Sum | Omission (%) | Commission (%) | OA (%) | Kappa | ||
RF | Health | 17 | 4 | 21 | 0.00 | 19.05 | 88.24 | 0.765 |
Disease | 0 | 13 | 13 | 23.53 | 0.00 | |||
Sum | 17 | 17 | 34 | |||||
BPNN | Health | 17 | 5 | 22 | 0.00 | 22.73 | 85.29 | 0.706 |
Disease | 0 | 12 | 12 | 29.41 | 0.00 | |||
Sum | 17 | 17 | 34 | |||||
AdaBoost | Health | 17 | 11 | 28 | 0.00 | 39.29 | 67.65 | 0.353 |
Disease | 0 | 6 | 6 | 64.71 | 0.00 | |||
Sum | 17 | 17 | 34 |
Model | Sample | Evaluation Index | ||||||
---|---|---|---|---|---|---|---|---|
Health | Disease | Sum | Omission (%) | Commission (%) | OA (%) | Kappa | ||
RF | Health | 17 | 3 | 20 | 0.00 | 15.00 | 91.18 | 0.824 |
Disease | 0 | 14 | 14 | 17.65 | 0.00 | |||
Sum | 17 | 17 | 34 | |||||
BPNN | Health | 15 | 2 | 17 | 11.76 | 11.76 | 88.24 | 0.778 |
Disease | 2 | 15 | 12 | 11.76 | 11.76 | |||
Sum | 17 | 17 | 34 | |||||
AdaBoost | Health | 17 | 10 | 27 | 0.00 | 37.04 | 73.53 | 0.412 |
Disease | 0 | 7 | 6 | 58.82 | 0.00 | |||
Sum | 17 | 17 | 34 |
Model | Sample | Evaluation Index | ||||||
---|---|---|---|---|---|---|---|---|
Health | Disease | Sum | Omission (%) | Commission (%) | OA (%) | Kappa | ||
RF | Health | 15 | 4 | 19 | 11.76 | 21.05 | 82.35 | 0.647 |
Disease | 2 | 13 | 15 | 23.53 | 13.33 | |||
Sum | 17 | 17 | 34 | |||||
BPNN | Health | 15 | 9 | 24 | 11.76 | 37.50 | 68.65 | 0.353 |
Disease | 2 | 8 | 10 | 52.94 | 20.00 | |||
Sum | 17 | 17 | 34 | |||||
AdaBoost | Health | 17 | 12 | 28 | 0.00 | 42.86 | 64.71 | 0.294 |
Disease | 0 | 5 | 6 | 70.59 | 0.00 | |||
Sum | 17 | 17 | 34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Jin, Y.; Ye, H.; Huang, W.; Zhao, J.; Cui, B.; Liu, F.; Deng, J. Recognition of Areca Leaf Yellow Disease Based on PlanetScope Satellite Imagery. Agronomy 2022, 12, 14. https://doi.org/10.3390/agronomy12010014
Guo J, Jin Y, Ye H, Huang W, Zhao J, Cui B, Liu F, Deng J. Recognition of Areca Leaf Yellow Disease Based on PlanetScope Satellite Imagery. Agronomy. 2022; 12(1):14. https://doi.org/10.3390/agronomy12010014
Chicago/Turabian StyleGuo, Jiawei, Yu Jin, Huichun Ye, Wenjiang Huang, Jinling Zhao, Bei Cui, Fucheng Liu, and Jiajian Deng. 2022. "Recognition of Areca Leaf Yellow Disease Based on PlanetScope Satellite Imagery" Agronomy 12, no. 1: 14. https://doi.org/10.3390/agronomy12010014
APA StyleGuo, J., Jin, Y., Ye, H., Huang, W., Zhao, J., Cui, B., Liu, F., & Deng, J. (2022). Recognition of Areca Leaf Yellow Disease Based on PlanetScope Satellite Imagery. Agronomy, 12(1), 14. https://doi.org/10.3390/agronomy12010014