Over-Optimistic Projected Future Wheat Yield Potential in the North China Plain: The Role of Future Climate Extremes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experimental and Phenotyping
2.2. Model Simulation
2.2.1. APSIM-Wheat
2.2.2. Model Parameterisation and Validation
2.2.3. Factorial Simulations
2.2.4. Simulating the Effect of Frost and Heat Damage on Yield
- Y wl,i = water-limited yield on day i
- cumulative frost multiplieri = cumulative frost multiplieri−1 × frost multiplieri
- cumulative heat multiplieri = cumulative heat multiplieri−1 × heat multiplieri
2.2.5. Climate Data
2.2.6. Last Frost Day, First Heat Day and Target Flowering Windows
2.2.7. Long-Term Seasonal Water Stress Typologies and Frequencies
3. Results
3.1. Validation of APSIM-Wheat Model
3.2. Wheat Productivity under Future Climates
3.3. Cumulative Probability of Heat and Frost Stress during the Flowering Window
3.4. Seasonal Drought Stress under Future Climates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cook, B.I.; Smerdon, J.E.; Seager, R.; Coats, S. Global warming and 21st century drying. Clim. Dyn. 2014, 43, 2607–2627. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, T.; von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Gourdji, S.M.; Sibley, A.M.; Lobell, D.B. Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections. Environ. Res. Lett. 2013, 8, 024041. [Google Scholar] [CrossRef]
- Xiao, D.; Tao, F. Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades. Eur. J. Agron. 2014, 52, 112–122. [Google Scholar] [CrossRef]
- Liu, W.; Ye, T.; Shi, P. Decreasing wheat yield stability on the North China Plain: Relative contributions from climate change in mean and variability. Int. J. Climatol. 2021, 41, E2820–E2833. [Google Scholar] [CrossRef]
- You, Q.; Cai, Z.; Wu, F.; Jiang, Z.; Pepin, N.; Shen, S.S.P. Temperature dataset of CMIP6 models over China: Evaluation, trend and uncertainty. Clim. Dyn. 2021, 57, 17–35. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Archontoulis, S.V.; Huth, N.; Yang, R.; Liu, D.L.; Yan, H.; Meinke, H.; Huber, I.; Feng, P.; et al. Climate change shifts forward flowering and reduces crop waterlogging stress. Environ. Res. Lett. 2021, 16, 094017. [Google Scholar] [CrossRef]
- Wang, B.; Feng, P.; Chen, C.; Liu, D.L.; Waters, C.; Yu, Q. Designing wheat ideotypes to cope with future changing climate in South-Eastern Australia. Agric. Syst. 2019, 170, 9–18. [Google Scholar] [CrossRef]
- Harrison, M.T.; Tardieu, F.; Dong, Z.; Messina, C.D.; Hammer, G.L. Characterizing drought stress and trait influence on maize yield under current and future conditions. Glob. Change Biol. 2014, 20, 867–878. [Google Scholar] [CrossRef]
- Chenu, K.; Deihimfard, R.; Chapman, S.C. Large-scale characterization of drought pattern: A continent-wide modelling approach applied to the Australian wheatbelt—Spatial and temporal trends. New Phytol. 2013, 198, 801–820. [Google Scholar] [CrossRef]
- Harrison, M.T.; Cullen, B.R.; Mayberry, D.E.; Cowie, A.L.; Bilotto, F.; Badgery, W.B.; Liu, K.; Davison, T.; Christie, K.M.; Muleke, A.; et al. Carbon myopia: The urgent need for integrated social, economic and environmental action in the livestock sector. Glob. Change Biol. 2021, 27, 5726–5761. [Google Scholar] [CrossRef]
- Hammer, G.L.; McLean, G.; Chapman, S.; Zheng, B.; Doherty, A.; Harrison, M.T.; van Oosterom, E.; Jordan, D. Crop design for specific adaptation in variable dryland production environments. Crop Pasture Sci. 2014, 65, 614–626. [Google Scholar] [CrossRef]
- Hammer, G.L.; McLean, G.; van Oosterom, E.; Chapman, S.; Zheng, B.; Wu, A.; Doherty, A.; Jordan, D. Designing crops for adaptation to the drought and high-temperature risks anticipated in future climates. Crop Sci. 2020, 60, 605–621. [Google Scholar] [CrossRef]
- Yan, H.; Harrison, M.T.; Liu, K.; Wang, B.; Feng, P.; Fahad, S.; Meinke, H.; Yang, R.; Liu, D.L.; Archontoulis, S.; et al. Crop traits enabling yield gains under more frequent extreme climatic events. Sci. Total Environ. 2022, 808, 152170. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Hunt, J.; Angessa, T.T.; Meinke, H.; Li, C.; Tian, X.; Zhou, M. Identifying optimal sowing and flowering periods for barley in Australia: A modelling approach. Agric. For. Meteorol. 2020, 282–283, 107871. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Shabala, S.; Meinke, H.; Ahmed, I.; Zhang, Y.; Tian, X.; Zhou, M. The State of the Art in Modeling Waterlogging Impacts on Plants: What Do We Know and What Do We Need to Know. Earth’s Future 2020, 8, e2020EF001801. [Google Scholar] [CrossRef]
- Liu, D.L.; Zuo, H. Statistical downscaling of daily climate variables for climate change impact assessment over New South Wales, Australia. Clim. Change 2012, 115, 629–666. [Google Scholar] [CrossRef]
- Wang, B.; Feng, P.; Liu, D.L.; O’Leary, G.J.; Macadam, I.; Waters, C.; Asseng, S.; Cowie, A.; Jiang, T.; Xiao, D.; et al. Sources of uncertainty for wheat yield projections under future climate are site-specific. Nat. Food 2020, 1, 720–728. [Google Scholar] [CrossRef]
- Xiao, D.; Liu, D.L.; Wang, B.; Feng, P.; Bai, H.; Tang, J. Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios. Agric. Water Manag. 2020, 238, 106238. [Google Scholar] [CrossRef]
- Mo, X.; Liu, S.; Lin, Z.; Guo, R. Regional crop yield, water consumption and water use efficiency and their responses to climate change in the North China Plain. Agric. Ecosyst. Environ. 2009, 134, 67–78. [Google Scholar] [CrossRef]
- Wang, J.; Wang, E.; Yang, X.; Zhang, F.; Yin, H. Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Clim. Change 2012, 113, 825–840. [Google Scholar] [CrossRef]
- Holzworth, D.P.; Huth, N.I.; deVoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM—Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Harrison, M.T.; Roggero, P.P.; Zavattaro, L. Simple, efficient and robust techniques for automatic multi-objective function parameterisation: Case studies of local and global optimisation using APSIM. Environ. Model. Softw. 2019, 117, 109–133. [Google Scholar] [CrossRef]
- Batjes, N.H.; Ribeiro, E.; van Oostrum, A. Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth Syst. Sci. Data 2020, 12, 299–320. [Google Scholar] [CrossRef] [Green Version]
- Lilley, J.M.; Bell, L.W.; Kirkegaard, J.A. Optimising grain yield and grazing potential of crops across Australia’s high-rainfall zone: A simulation analysis. 2. Canola. Crop Pasture Sci. 2015, 66, 349–364. [Google Scholar] [CrossRef]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.G.; Meinke, H.; Hochman, Z.; et al. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef] [Green Version]
- Flohr, B.M.; Hunt, J.R.; Kirkegaard, J.A.; Evans, J.R. Water and temperature stress define the optimal flowering period for wheat in south-eastern Australia. Field Crops Res. 2017, 209, 108–119. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Change 2011, 109, 5. [Google Scholar] [CrossRef]
- Liu, D.L.; Zeleke, K.T.; Wang, B.; Macadam, I.; Scott, F.; Martin, R.J. Crop residue incorporation can mitigate negative climate change impacts on crop yield and improve water use efficiency in a semiarid environment. Eur. J. Agron. 2017, 85, 51–68. [Google Scholar] [CrossRef] [Green Version]
- Boer, G.J. Climate change and the regulation of the surface moisture and energy budgets. Clim. Dyn. 1993, 8, 225–239. [Google Scholar] [CrossRef]
- Stone, P.J.; Nicolas, M.E. Wheat Cultivars Vary Widely in Their Responses of Grain Yield and Quality to Short Periods of Post-Anthesis Heat Stress. Funct. Plant Biol. 1994, 21, 887–900. [Google Scholar] [CrossRef]
- Zheng, B.; Chenu, K.; Fernanda Dreccer, M.; Chapman, S.C. Breeding for the future: What are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Glob. Change Biol. 2012, 18, 2899–2914. [Google Scholar] [CrossRef]
- Chenu, K.; Porter, J.R.; Martre, P.; Basso, B.; Chapman, S.C.; Ewert, F.; Bindi, M.; Asseng, S. Contribution of Crop Models to Adaptation in Wheat. Trends Plant Sci. 2017, 22, 472–490. [Google Scholar] [CrossRef]
- Yin, Y.; Tang, Q.; Liu, X. A multi-model analysis of change in potential yield of major crops in China under climate change. Earth Syst. Dyn. 2015, 6, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Xuan, Y.; Xu, T.; Bao-De, C.; Zhan, T.; Si-Jian, Z. Impacts of Climate Change on Wheat Yield in China Simulated by CMIP5 Multi-Model Ensemble Projections. Sci. Agric. Sin. 2014, 47, 3009–3024. [Google Scholar] [CrossRef]
- Guo, R.; Lin, Z.; Mo, X.; Yang, C. Responses of crop yield and water use efficiency to climate change in the North China Plain. Agric. Water Manag. 2010, 97, 1185–1194. [Google Scholar] [CrossRef]
- Rashid, M.A.; Jabloun, M.; Andersen, M.N.; Zhang, X.; Olesen, J.E. Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain. Agric. Water Manag. 2019, 222, 193–203. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, L.P.; Wang, J.; Wang, E.L.; Xu, Y.L. Using APSIM to explore wheat yield response to climate change in the North China Plain: The predicted adaptation of wheat cultivar types to vernalization. J. Agric. Sci. 2013, 151, 836–848. [Google Scholar] [CrossRef]
- Sognnaes, I.; Gambhir, A.; van de Ven, D.-J.; Nikas, A.; Anger-Kraavi, A.; Bui, H.; Campagnolo, L.; Delpiazzo, E.; Doukas, H.; Giarola, S.; et al. A multi-model analysis of long-term emissions and warming implications of current mitigation efforts. Nat. Clim. Chang. 2021, 11, 1055–1062. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Rötter, R.P.; Cammarano, D.; et al. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Chang. 2013, 3, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Asseng, S.; Jamieson, P.D.; Kimball, B.; Pinter, P.; Sayre, K.; Bowden, J.W.; Howden, S.M. Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crops Res. 2004, 85, 85–102. [Google Scholar] [CrossRef]
- Yan, H.; Wang, C.; Liu, K.; Tian, X. Detrimental effects of heat stress on grain weight and quality in rice (Oryza sativa L.) are aggravated by decreased relative humidity. PeerJ 2021, 9, e11218. [Google Scholar] [CrossRef]
- Liu, K.; Deng, J.; Lu, J.; Wang, X.; Lu, B.; Tian, X.; Zhang, Y. High Nitrogen Levels Alleviate Yield Loss of Super Hybrid Rice Caused by High Temperatures During the Flowering Stage. Front. Plant Sci. 2019, 10, 357. [Google Scholar] [CrossRef] [Green Version]
- Harrison, M.T.; Christie, K.M.; Rawnsley, R.P.; Eckard, R.J. Modelling pasture management and livestock genotype interventions to improve whole-farm productivity and reduce greenhouse gas emissions intensities. Anim. Prod. Sci. 2014, 54, 2018–2028. [Google Scholar] [CrossRef]
- Harrison, M.T.; Cullen, B.R.; Armstrong, D. Management options for dairy farms under climate change: Effects of intensification, adaptation and simplification on pastures, milk production and profitability. Agric. Syst. 2017, 155, 19–32. [Google Scholar] [CrossRef]
- Harrison, M.T.; Evans, J.R.; Dove, H.; Moore, A.D. Recovery dynamics of rainfed winter wheat after livestock grazing 2. Light interception, radiation-use efficiency and dry-matter partitioning. Crop Pasture Sci. 2011, 62, 960–971. [Google Scholar] [CrossRef]
- Bänziger, M.; Setimela, P.S.; Hodson, D.; Vivek, B. Breeding for improved abiotic stress tolerance in maize adapted to southern Africa. Agric. Water Manag. 2006, 80, 212–224. [Google Scholar] [CrossRef]
- Chen, C.; Wang, B.; Feng, P.; Xing, H.; Fletcher, A.L.; Lawes, R.A. The shifting influence of future water and temperature stress on the optimal flowering period for wheat in Western Australia. Sci. Total Environ. 2020, 737, 139707. [Google Scholar] [CrossRef]
- Bell, M.J.; Eckard, R.J.; Harrison, M.T.; Neal, J.S.; Cullen, B.R. Effect of warming on the productivity of perennial ryegrass and kikuyu pastures in south-eastern Australia. Crop Pasture Sci. 2013, 64, 61–70. [Google Scholar] [CrossRef]
- Tao, F.; Rötter, R.P.; Palosuo, T.; Díaz-Ambrona, C.G.H.; Mínguez, M.I.; Semenov, M.A.; Kersebaum, K.C.; Nendel, C.; Cammarano, D.; Hoffmann, H.; et al. Designing future barley ideotypes using a crop model ensemble. Eur. J. Agron. 2017, 82, 144–162. [Google Scholar] [CrossRef]
- Kimball, B.A.; Kobayashi, K.; Bindi, M. Responses of Agricultural Crops to Free-Air CO2 Enrichment. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2002; Volume 77, pp. 293–368. [Google Scholar]
Year | Sowing Date (d-m-y) | Flowering Date (d-m-y) | Maturity Date (d-m-y) | Fertilisation (kg N ha−1) | Seeding Rate (Plants m−2) | Irrigation (mm) |
---|---|---|---|---|---|---|
2015–2016 | 13 October 2015 | 14 April 2016 | 14 May 2016 | 105 (basal) + 105 (ZS31) | 180 | 60 (ZS31) + 61 (ZS60) |
2016–2017 | 12 October 2016 | 13 April 2017 | 13 May 2017 | 105 (basal) + 105 (ZS31) | 180 | 44 (ZS31) + 38 (ZS60) |
2017–2018 | 23 October 2017 | 24 April 2018 | 20 May 2018 | 105 (basal) + 105 (ZS31) | 270 | 45 (ZS31) + 45 (ZS60) |
Variables | RMSE | R2 | MB | RRMSE | VR |
---|---|---|---|---|---|
Flowering days (d) | 2.1 | 0.91 | −0.1 | 4% | 1.06 |
Maturity days (d) | 3.2 | 0.97 | 0.2 | 3% | 0.95 |
Maturity biomass (kg ha−1) | 281 | 0.95 | −1.3 | 4.2% | 1.01 |
Grain yield (kg ha−1) | 321 | 0.95 | −3.6 | 4.5% | 1.03 |
Parameters | Definition | Unit | Value |
---|---|---|---|
tt_end_of juvenile | Thermal time from sowing to end of juvenile | °C day−1 | 450 |
tt_start_grain_fill | Thermal time from start grain filling to maturity | °C day−1 | 655 |
grains_per_gram_stem | Kernel number per stem weight at the beginning of grain filling | g | 30 |
potential_grain_filling_rate | Potential daily grain filling rate | g grain−1 day−1 | 0.003 |
max_grain_size | Maximum grain size | g | 0.045 |
vern_sens | Vernalisation sensitivity | 3.0 | |
Photo_sens | Photoperiod sensitivity | 2.5 | |
rue from ZS30 to ZS90 | Radiation use efficiency | g MJ−1 | 1.49 |
No. | GCM | Abbreviation | Institution | Country |
---|---|---|---|---|
1 | ACCESS-CM2 | ACC1 | CSIRO–ARCCSS | Australia |
2 | ACCESS- ESM1-5 | ACC2 | CSIRO–ARCCSS | Australia |
3 | BCC-CSM2-MR | BCC | BCC | China |
4 | CanESM5 | CAN1 | CCCMA | Canada |
5 | CanESM5-CanOE | CAN2 | CCCMA | Canada |
6 | CNRM-CM6-1 | CNR1 | CNRM | France |
7 | CNRM-CM6-1-HR | CNR1 | CNRM | France |
8 | CNRM-ESM2-1 | CNR2 | CNRM | France |
9 | EC-Earth3-Veg | ECE1 | EC–EARTH | Europe |
10 | EC-Earth3 | ECE2 | EC–EARTH | Europe |
11 | FGOALS-g3 | FGO | FGOALS | China |
12 | GFDL-ESM4 | GFD | NOAA–GFDL | America |
13 | GISS-E2-1-G | GIS | NASA–GISS | America |
14 | INM-CM4-8 | INM1 | INM | Russia |
15 | INM-CM5-0 | INM2 | INM | Russia |
16 | IPSL-CM6A-LR | IPS | IPSL | France |
17 | MPI-ESM1-2- HR | MPI1 | MPI-M | Germany |
18 | MPI-ESM1-2- LR | MPI2 | MPI-M | Germany |
19 | MIROC6 | MIR1 | MIROC | Japan |
20 | MIROC-ES2L | MIR2 | MIROC | Japan |
21 | MRI-ESM2-0 | MRI | MRI | Japan |
22 | UKESM1-0-LL | U0L | UKESM | U. K |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Dai, P.; Wang, B.; Jin, T.; Liu, K.; Fahad, S.; Harrison, M.T.; Man, J.; Shang, J.; Meinke, H.; et al. Over-Optimistic Projected Future Wheat Yield Potential in the North China Plain: The Role of Future Climate Extremes. Agronomy 2022, 12, 145. https://doi.org/10.3390/agronomy12010145
Yang R, Dai P, Wang B, Jin T, Liu K, Fahad S, Harrison MT, Man J, Shang J, Meinke H, et al. Over-Optimistic Projected Future Wheat Yield Potential in the North China Plain: The Role of Future Climate Extremes. Agronomy. 2022; 12(1):145. https://doi.org/10.3390/agronomy12010145
Chicago/Turabian StyleYang, Rui, Panhong Dai, Bin Wang, Tao Jin, Ke Liu, Shah Fahad, Matthew Tom Harrison, Jianguo Man, Jiandong Shang, Holger Meinke, and et al. 2022. "Over-Optimistic Projected Future Wheat Yield Potential in the North China Plain: The Role of Future Climate Extremes" Agronomy 12, no. 1: 145. https://doi.org/10.3390/agronomy12010145
APA StyleYang, R., Dai, P., Wang, B., Jin, T., Liu, K., Fahad, S., Harrison, M. T., Man, J., Shang, J., Meinke, H., Liu, D., Wang, X., Zhang, Y., Zhou, M., Tian, Y., & Yan, H. (2022). Over-Optimistic Projected Future Wheat Yield Potential in the North China Plain: The Role of Future Climate Extremes. Agronomy, 12(1), 145. https://doi.org/10.3390/agronomy12010145