Evaluating the Fertilising Potential of Blended Recovered Nutrients in Horticultural Growing Medium on Viola x wittrockiana L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recovered Nutrients and Blends Preparation
2.2. Experimental Setup
2.3. Plant Monitoring and Nutrient Content Analyses
2.4. Statistical Analyses
3. Results
3.1. Plant Available Nutrients in the Growing Medium after the Application of the Recycled Fertiliser Blends
3.2. Plant Performance
3.3. Nutrient Analyses in the Plant Tissue
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
Recovered Nutrients & Fertilizers | NH4-N (%) | NO3-N (%) | P (%) | K (%) | Mg (%) | SO3 (%) |
---|---|---|---|---|---|---|
A* | 0.00 | 0.00 | 5.81 | 7.34 | 4.56 | 0.0 |
B | 0.00 | 0.03 | 14.11 | 0.30 | 10.63 | 0.0 |
C | 6.64 | 0.00 | 13.18 | 0.00 | 10.25 | 0.0 |
D | 4.97 | 0.00 | 5.63 | 2.45 | 7.76 | 0.0 |
E | 8.24 | 0.00 | 8.96 | 0.50 | 12.60 | 0.0 |
F | 7.89 | 8.63 | 0.00 | 0.00 | 0.00 | 0.0 |
G | 19.47 | 0.00 | 0.00 | 0.00 | 0.00 | 60.0 |
H | 0.00 | 0.00 | 20.08 | 0.00 | 0.00 | 0.0 |
I | 0.00 | 0.00 | 0.00 | 43.15 | 0.00 | 45.90 |
Blend | NH4-N (mg/L) | NO3-N (mg/L) | Nmin (mg N/L) | P (mg/L) | K (mg/L) | Mg (mg/L) | SO4 (mg/L) |
---|---|---|---|---|---|---|---|
1 | 434.0 | 474.7 | 908.6 | 241.0 | 561.0 | 0.0 | 716.0 |
2 | 895.6 | 0.0 | 895.6 | 241.0 | 561.0 | 0.0 | 4028.0 |
3 | 434.0 | 475.2 | 909.1 | 239.9 | 566.1 | 180.7 | 716.0 |
4 | 895.6 | 0.5 | 896.1 | 239.9 | 566.1 | 180.7 | 4028.0 |
5 | 434.0 | 474.7 | 908.6 | 238.2 | 732.4 | 187.0 | 550.8 |
6 | 895.6 | 0.0 | 895.6 | 238.2 | 559.8 | 187.0 | 3642.5 |
7 | 460.3 | 405.6 | 865.9 | 101.3 | 605.1 | 139.7 | 716.0 |
8 | 985.1 | 0.0 | 985.1 | 101.3 | 605.1 | 139.7 | 4028.0 |
9 | 610.3 | 362.5 | 972.7 | 553.6 | 561.0 | 430.5 | 716.0 |
10 | 979.8 | 0.0 | 979.8 | 553.6 | 561.0 | 430.5 | 3308.0 |
11 | 537.7 | 353.8 | 891.6 | 233.0 | 574.0 | 327.6 | 716.0 |
12 | 915.2 | 0.0 | 915.2 | 233.0 | 574.0 | 327.6 | 3308.0 |
13 | 872.8 | 0.0 | 872.8 | 125.1 | 122.7 | 148.3 | 2996.1 |
14 | 504.0 | 396.0 | 900.0 | 235.4 | 547.8 | 72.4 | |
BNF | without fertiliser |
References
- Sonneveld, C.; Voogt, W. Plant nutrition in future greenhouse production. In Plant Nutrition of Greenhouse Crops; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar] [CrossRef]
- van Delden, S.H.; SharathKumar, M.; Butturini, M.; Graamans, L.J.A.; Heuvelink, E.; Kacira, M.; Kaiser, E.; Klamer, R.S.; Klerkx, L.; Kootstra, G.; et al. Current status and future challenges in implementing and upscaling vertical farming systems. Nat. Food 2021, 2, 944–956. [Google Scholar] [CrossRef]
- Carpenter, S.R. Eutrophication of aquatic ecosystems: Bistability and soil phosphorus. Proc. Natl. Acad. Sci. USA 2005, 102, 10002–10005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalkhajeh, Y.K.; Huang, B.; Hu, W.Y.; Holm, P.E.; Hansen, H.C.B. Phosphorus saturation and mobilization in two typical Chinese greenhouse vegetable soils. Chemosphere 2017, 187, 440–441. [Google Scholar] [CrossRef] [PubMed]
- Vaneeckhaute, C.; Ghekiere, G.; Michels, E.; Vanrolleghem, P.A.; Tack, F.M.G.; Meers, E. Assessing Nutrient Use Efficiency and Environmental Pressure of Macronutrients in Biobased Mineral Fertilizers: A Review of Recent Advances and Best Practices at Field Scale. Adv. Agron. 2014, 128, 137–180. [Google Scholar] [CrossRef] [Green Version]
- Vaneeckhaute, C.; Meers, E.; Michels, E.; Buysse, J.; Tack, F.M.G. Ecological and economic benefits of the application of bio-based mineral fertilizers in modern agriculture. Biomass Bioenerg. 2013, 49, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Haraldsen, T.K.; Andersen, U.; Krogstad, T.; Sorheim, R. Liquid digestate from anaerobic treatment of source-separated household waste as fertilizer to barley. Waste Manag. Res. 2011, 29, 1271–1276. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [Green Version]
- Regulation (eu) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019R1009 (accessed on 8 January 2022).
- Reuland, G.; Sigurnjak, I.; Dekker, H.; Michels, E.; Meers, E. The Potential of Digestate and the Liquid Fraction of Digestate as Chemical Fertiliser Substitutes under the RENURE Criteria. Agronomy 2021, 11, 1374. [Google Scholar] [CrossRef]
- Sigurnjak, I.; Brienza, C.; Snauwaert, E.; De Dobbelaere, A.; De Mey, J.; Vaneeckhaute, C.; Michels, E.; Schoumans, O.; Adani, F.; Meers, E. Production and performance of bio-based mineral fertilizers from agricultural waste using ammonia (stripping-)scrubbing technology. Waste Manag. 2019, 89, 265–274. [Google Scholar] [CrossRef]
- Van Gerrewey, T.; El-Nakhel, C.; De Pascale, S.; De Paepe, J.; Clauwaert, P.; Kerckhof, F.M.; Boon, N.; Geelen, D. Root-Associated Bacterial Community Shifts in Hydroponic Lettuce Cultured with Urine-Derived Fertilizer. Microorganisms 2021, 9, 1326. [Google Scholar] [CrossRef]
- Robles-Aguilar, A.A.; Grunert, O.; Hernandez-Sanabria, E.; Mysara, M.; Meers, E.; Boon, N.; Jablonowski, N.D. Effect of Applying Struvite and Organic N as Recovered Fertilizers on the Rhizosphere Dynamics and Cultivation of Lupine (Lupinus angustifolius). Front Plant Sci. 2020, 11, 572741. [Google Scholar] [CrossRef]
- Robles-Aguilar, A.A.; Pang, J.Y.; Postma, J.A.; Schrey, S.D.; Lambers, H.; Jablonowski, N.D. The effect of pH on morphological and physiological root traits of Lupinus angustifolius treated with struvite as a recycled phosphorus source. Plant Soil 2019, 434, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Muys, M.; Phukan, R.; Brader, G.; Samad, A.; Moretti, M.; Haiden, B.; Pluchon, S.; Roest, K.; Vlaeminck, S.E.; Spiller, M. A systematic comparison of commercially produced struvite: Quantities, qualities and soil-maize phosphorus availability. Sci Total Env. 2021, 756, 143726. [Google Scholar] [CrossRef]
- Rakhimol, K.R.; Thomas, S.; Volova, T.; Jayachandran, K. (Eds.) Controlled Release Fertilizers for Sustainable Agriculture; Academic Press: Cambridge, MA, USA, 2021; pp. 183–194. [Google Scholar] [CrossRef]
- Schmilewski, G. Socio-Economic Impact of the Peat and Growing Media Industry on Horticulture in the EU; European Peat and Growing Media Association (EPAGMA): Saterland-Sedelsberg, Germany, 2019. [Google Scholar]
- Zhang, F.S.; Cui, Z.L.; Chen, X.P.; Ju, X.T.; Shen, J.B.; Chen, Q.; Liu, X.J.; Zhang, W.F.; Mi, G.H.; Fan, M.S.; et al. Integrated Nutrient Management for Food Security and Environmental Quality in China. Adv. Agron. 2012, 116, 1–40. [Google Scholar] [CrossRef]
- Gadagi, R.S.; Krishnaraj, P.U.; Kulkarni, J.H.; Sa, T.M. The effect of combined Azospirillum inoculation and nitrogen fertilizer on plant growth promotion and yield response of the blanket flower Gaillardia pulchella. Sci Hortic-Amst. 2004, 100, 323–332. [Google Scholar] [CrossRef]
- Ruseckaite, A.; Fok, D.; Goos, P. Flexible Mixture-Amount Models UsingMultivariate Gaussian Processes. J. Bus. Econ. Stat. 2018, 38, 257–271. [Google Scholar] [CrossRef]
- Fonteno, W.C.; Nelson, P.V.; Bailey, D.A. Testing Procedures for Bedding Plants; North Carolina Flower Growers’ Bul: Asheville, NC, USA, 1996; pp. 1–11. [Google Scholar]
- Poorter, H.; Bergkotte, M. Chemical-Composition of 24 Wild-Species Differing in Relative Growth-Rate. Plant Cell Env. 1992, 15, 221–229. [Google Scholar] [CrossRef]
- Ma, S.H.; He, F.; Tian, D.; Zou, D.T.; Yan, Z.B.; Yang, Y.L.; Zhou, T.C.; Huang, K.Y.; Shen, H.H.; Fang, J.Y. Variations and determinants of carbon content in plants: A global synthesis. Biogeosciences 2018, 15, 693–702. [Google Scholar] [CrossRef] [Green Version]
- Mills, H.A.; Jones, J.B., Jr. Plant Nutrition Hand-Book II.; Micro-Macro: Athens, GA, USA, 1996. [Google Scholar]
- Yanez-Mansilla, E.; Cartes, P.; Reyes-Diaz, M.; Ribera-Fonseca, A.; Rengel, Z.; Lobos, W.; Alberdi, M. Leaf nitrogen thresholds ensuring high antioxidant features of Vaccinium corymbosum cultivars. J. Soil Sci. Plant Nut 2015, 15, 574–586. [Google Scholar] [CrossRef]
- Whipker, B.E.; Gibson, J.L.; Pitchay, D.S.; Nelson, P.V.; Baker, J.R.; Faust, J.E.; Thomas, P.A.; Benson, M.; Cavins, T.J.; Williams-Woodward, J.L. Diagnosing Common Pansy Problems. In GPN 2000. Available online: https://gpnmag.com/article/diagnosing-common-pansy-problems/ (accessed on 8 January 2022).
- Britto, D.T.; Kronzucker, H.J. NH4+ toxicity in higher plants: A critical review. J. Plant Physiol. 2002, 159, 567–584. [Google Scholar] [CrossRef] [Green Version]
- Hamlin, R.L.; Mills, H.A. Pansy floral development and nutrient absorption as influenced by temperature, nitrogen form, and stage of plant development. J. Plant Nutr. 2001, 24, 1975–1985. [Google Scholar] [CrossRef]
- Hamlin, R.L.; Mills, H.A.; Randle, W.M. Growth and nutrition of pansy as influenced by N-form ratio and temperature. J. Plant Nutr. 1999, 22, 1637–1650. [Google Scholar] [CrossRef]
- Straver, N.; de Kreij, C.; Verberkt, H. Bemestingsadviesbasis Potplanten; 1999. Available online: https://edepot.wur.nl/218456 (accessed on 8 January 2022).
- Garcia-Caparros, P.; Lao, M.T. The effects of salt stress on ornamental plants and integrative cultivation practices. Sci. Hortic-Amst. 2018, 240, 430–439. [Google Scholar] [CrossRef]
- James, E.C.; van Iersel, M.W. Fertilizer concentration affects growth and flowering of subirrigated petunias and begonias. Hortscience 2001, 36, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Carreras-Sempere, M.; Caceres, R.; Viñas, M.; Biel, C. Use of Recovered Struvite and Ammonium Nitrate in Fertigation in Tomato (Lycopersicum esculentum) Production for boosting Circular and Sustainable Horticulture. Agriculture 2021, 11, 1063. [Google Scholar] [CrossRef]
- Saputra, A.; Suprihati, S.; Pudjihartati, E. The Effect of Phosphorus and Potassium on the Growth and Quality of Viola (Viola cornuta L.) Seed Production. J. Sustain. Agric. 2019, 35, 12–22. [Google Scholar] [CrossRef]
- Li, X.Z.; Zhao, Q.L. MAP precipitation from landfill leachate and seawater bittern waste. Env. Technol. 2002, 23, 989–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Code | Description | State | Origin | Provided by |
---|---|---|---|---|
A | Potassium struvite | Solid | Digested manure from pilot plant | Stichting Mestverwerking Gelderlan (www.smg.nl, last accessed on 8 January 2022) |
B | Potassium struvite | Solid | Lab-scale waste water stream | Lequia (http://www.lequia.udg.edu, last accessed on 8 January 2022) |
C | Ammonium struvite | Solid | Digested manure from pilot plant | Lequia (http://www.lequia.udg.edu, last accessed on 8 January 2022) |
D | Ammonium struvite | Solid | Waste water treatment plant | Lequia (http://www.lequia.udg.edu, last accessed on 8 January 2022) |
E | Ammonium struvite | Solid | Digested manure | Lequia (http://www.lequia.udg.edu, last accessed on 8 January 2022) |
F | Ammonium nitrate | Liquid | Lab-scale digested manure | BOKU (https://boku.ac.at/ last accessed on 8 January 2022) |
G | Ammonium sulphate | Liquid | Lab-scale digested manure | BOKU (https://boku.ac.at/ last accessed on 8 January 2022) |
H | Triple-superphosphate | Solid | Commercial product- | Agaris (https://www.agaris.com/ last accessed on 8 January 2022) |
I | Potassium sulphate | Solid | Commercial product | Agaris (https://www.agaris.com/ last accessed on 8 January 2022) |
Blend | A* | B | C | D | E | F | G | H | I |
---|---|---|---|---|---|---|---|---|---|
BNF | without fertilizer | ||||||||
1 | - | - | - | - | - | 5.5 | - | 1.2 | 1.3 |
2 | - | - | - | - | - | - | 4.6 | 1.2 | 1.3 |
3 | - | 1.7 | - | - | - | 5.5 | - | - | 1.3 |
4 | - | 1.7 | - | - | - | - | 4.6 | - | 1.3 |
5 | 4.1 | - | - | - | - | 5.5 | - | - | 1.0 |
6 | 4.1 | - | - | - | - | - | 4.6 | - | 0.6 |
7 | - | - | - | 1.8 | - | 4.7 | - | - | 1.3 |
8 | - | - | - | 1.8 | - | - | 4.6 | - | 1.3 |
9 | - | - | 4.2 | - | - | 4.2 | - | - | 1.3 |
10 | - | - | 4.2 | - | - | - | 3.6 | - | 1.3 |
11 | - | - | - | - | 2.6 | 4.1 | - | - | 1.3 |
12 | - | - | - | - | 2.6 | - | 3.6 | - | 1.3 |
13 | 0.7 | - | - | 1.5 | - | 4.1 | - | 0.08 | |
14 | Osmocote 15 +9+11+2 MgO and trace elements—8–9 M (6 kg/m3) |
Blend | pH | EC (µS/cm) | NO3-N (mg/L) | NH4-N (mg/L) | P (mg/L) | K (mg/L) | Ca (mg/L) | Mg (mg/L) | SO4 (mg/L) |
---|---|---|---|---|---|---|---|---|---|
BNF | 5.3 | 472 | 0 | 13 | 20 | 122 | 614 | 277 | 686 |
1 | 5.3 | 807 | 16 | 24 | 275 | 599 | 1123 | 342 | 1310 |
2 | 4.7 | 2117 | 15 | 635 | 276 | 820 | 1200 | 331 | 2655 |
3 | 5.6 | 955 | 0 | 12 | 256 | 964 | 841 | 437 | 1552 |
4 | 4.7 | 2093 | 41 | 776 | 199 | 776 | 907 | 457 | 2615 |
5 | 5.8 | 1557 | 73 | 29 | 637 | 1442 | 902 | 982 | 2160 |
6 | 4.9 | 3783 | 156 | 1470 | 521 | 1072 | 1111 | 1086 | 3209 |
7 | 5.3 | 6057 | 109 | 102 | 516 | 1164 | 4245 | 622 | 2215 |
8 | 4.4 | 4737 | 108 | 2120 | 553 | 1453 | 1092 | 708 | 3245 |
9 | 5.2 | 1603 | 82 | 359 | 751 | 1229 | 1208 | 779 | 2172 |
10 | 5.1 | 1807 | 45 | 472 | 493 | 928 | 937 | 629 | 2360 |
11 | 5.3 | 1747 | 98 | 239 | 792 | 1128 | 988 | 795 | 2105 |
12 | 4.9 | 1877 | 106 | 565 | 420 | 651 | 871 | 524 | 2396 |
13 | 5.6 | 640 | 12 | 36 | 426 | 133 | 942 | 548 | 910 |
14-Osmocote® | 4.9 | 603 | 84 | 68 | 49 | 98 | 708 | 282 | 950 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robles-Aguilar, A.A.; Grunert, O.; Meers, E.; Jablonowski, N.D. Evaluating the Fertilising Potential of Blended Recovered Nutrients in Horticultural Growing Medium on Viola x wittrockiana L. Agronomy 2022, 12, 182. https://doi.org/10.3390/agronomy12010182
Robles-Aguilar AA, Grunert O, Meers E, Jablonowski ND. Evaluating the Fertilising Potential of Blended Recovered Nutrients in Horticultural Growing Medium on Viola x wittrockiana L. Agronomy. 2022; 12(1):182. https://doi.org/10.3390/agronomy12010182
Chicago/Turabian StyleRobles-Aguilar, Ana A., Oliver Grunert, Erik Meers, and Nicolai D. Jablonowski. 2022. "Evaluating the Fertilising Potential of Blended Recovered Nutrients in Horticultural Growing Medium on Viola x wittrockiana L." Agronomy 12, no. 1: 182. https://doi.org/10.3390/agronomy12010182
APA StyleRobles-Aguilar, A. A., Grunert, O., Meers, E., & Jablonowski, N. D. (2022). Evaluating the Fertilising Potential of Blended Recovered Nutrients in Horticultural Growing Medium on Viola x wittrockiana L. Agronomy, 12(1), 182. https://doi.org/10.3390/agronomy12010182